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ABSTRACT. The extreme points for prestarlike functions having negative coef-

ficients are determined. Coefficient, distortion and radii of univalence, star-

likeness, and convexity theorems are also obtained.
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I. INTRODUCTION.

Let S denote the class of functions normalized by f(0) f’ (0) 1 0 that

are analytic and univalent in the unit disk U. Given , 0 _< _< I, a function

f S is said to be in the class of functions starlike of orde_r , denoted by S*(a),
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if

Re{zf’(z)/f(z)} > (z U),

and is said to be in the class of functions conve_x o_.f a, denoted by K(a), if

Re{l + zf"(z)/f’(z)} > (z U).

Further, let T and T*[a] denote the subclasses of S and S*(a), respectively, whose

n
elements can be expressed in the form f(z) z I ..lanlZn=2

n
The convolution or Hadamard product of two power series f(z) En=0 anZ and

g(z) In=0 bnzn is defined as the power series (f’g)(z) In=0 anbnzn" An analytic

function normalized by f(0) f’ (0) 1 0 is said to be in the class of functions

prestarlike of order , 0 < a < i, denoted by R if f*s S*() where s (z)

z/(-z) 2(-) The function s is the well-known extremal function for the class

S*(a). In the sequel, we let

n
(k-2a)k=2C(,n) (n-l) (n=2, 3, ), (I. I)

so that s can be written in the form

n
sa(z) z + Zn=2 C(a,n)z

Note that C(a,n) is a decreasing function of a with

, a < 112

llm C(a,n) I, a 1/2 (1.2)
n - 0, > 1/2

The class R was introduced by Ruscheweyh [3], who showed that a necessary and

sufficient condition for f to be in R is that the functional
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satisfy

G(=,z)

s (z)
f(z), l’Z
fCz) * SOCz)

Re G(e,z) > 1/2 (z U). (1.3)

Since Sl(Z) z, we say that f is prestarlike of order 1 if and only if

S*(I/2). In [3] it wasRe{f(z)/z} > 1/2 (z U). Note that R
0 K(0) and RI/2

shown that

Rs c R
8

for 0 < < 8 < I,

which generalizes the well-known result that K(0) c S*(I/2).

In Section 2, we obtain a sufficient condition in terms of the modulus of the

coefficients for a function to be in R and show that this condition is also nec-

essary for the subclass

R[] R n T. (1.4)

In Section 3, we obtain the extreme points for the closed convex hull of R[] and

use them to prove distortion and covering theorems. In Section 4, we determine the

radii of univalence, starlikeness, and convexity for R[e]. Finally, we find the

smallest 8 8(e) for which T*[] c R[8], 0 < e < I.

2. COEFFICIENT INEQUALITIES FOR THE CLASS RIll.

We first obtain a relationship between the order of prestarlikeness of a

function and the modulus of its coefficients.

n
THEOREM i. Let f(z) z + Zn=2 anZ If

(n-e)C(en) lanl < IZn=2 i -’ e
0 <e < I,

then f R.
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REMARK. For the case 1 in the theorem and all subsequent results, the

expression (n-)C(,n)/(l-) is taken to be 2, its limit as / i

PROOF. An equivalent formulation of (1.3) is I/G(,z)- I < i, 0 ! <_ i.

For s (z) z + En=2 C(,n)z
n

we have s (z)/(l-z) z + Y.n=2 o(,n) z
n
where

o(,n) 1 + Ek=2 C(e,k). Thus

anznEn=2 o(,n-l)

znz + En=2 o(e,n)a
n

En=2 o(,n-l)lanl<

i Y.= ( n) lanln=2

which is bounded by 1 whenever (2.1) is satisfied.

The converse of Theorem 1 is also true for the class RIll, defined by (1.4).

Since a necessary and sufficient condition [4] for

f(z) z- En=2 Ibn Izn to be in T*[] is that

n=2(n- Ibnl <_1 , (2.2)

we obtain

THEOREM 2. A function f(z) z En=2 lan Izn is in R[a] if and only if

Zn=2= (n-)C,(l_ ==’n) lan < , 0 <o<I.

COROLLARY. If f(z) z r.n=21anlzn R[], 0 <_ <_ I, then

la <_ (l-)/(n-)C(,n), with equality only for functions of the form
n

z (l-a)zn/(n-)C(a,n).

We now determine the extreme points of this class.
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3. EXTREME POINTS OF R[].

For any compact family of analytic functions , it is well known that the real

part of any continuous linear functional over is maximized (minimized) at one of

the extreme points of the closed convex hull of . The solutions to several extremal

problems in R[] follow easily from the extreme points for this class. In view of

Theorem 2, we see that R[] is a closed convex family. Thus, the extreme points are

obtained in

THEOREM 3. Set fl(z) z and fn(Z) z (l-)zn/(n-)C(,n), n=2, 3,

Then f RIll, 0 _< _< i, if and only if it can be expressed in the form

f(z) Y. %nfn(Z) where % > 0 and Y. % i.
n I n n I n

PROOF. Suppose f(z) In=I %nfn (z) Then

(n-) C (,n)
n=2 i

n i_ %1 < i"
(n-) C (,n) In=2 %n

Therefore, f e R[] by Theorem 2.

Conversely suppose f(z) z y.n=2 fan z
n

R[], 0 < < I. Then

la < (l-)/(n-)C(n) n--2 3 Set % (n-)C(,n)lanl/(l-) and
n n

%1 1 In==2 %n" From Theorem 2, it follows that %1 > 0. Since

f(z) Y.n= 1%nfn(Z), the proof is complete.

As an immediate consequence of Theorem 3, we obtain distortion theorems for the

class RIll.

THEOREM 4. If f(z) z Y.n=2 lanlZn R[], 0 <_ <_ i, then

1 2 1 2
r- 2"2--------r < If(z) <_ r + 2(2-a) r (Izl r),

with equality only for f2(z) z
I 2
-z z=+r.
4-2
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PROOF. From The@rem 3, we have

I n
r max =nlnC(’’,.__ r <_ If(z) < r + max (n-) C (,n) r

It suffices to show that A(,n) (l-)/(n-)C(,n) is a decreasing function of n.

From (I.i), it follows that

n+l-2C(,n+l) C(,n). (3.1)n

Therefore, we have A(,n+l) < A(,n), n=2, 3, whenever (n+l-)(n+l-2) > n(n-e)

This is equivalent to (l)[l+2(n-)] > 0, which proves the result.

COROLLARY. The disk zl < 1 is mapped onto a domain that contains the disk

lwl < (3-2e)/(4-2e) for any f E R[], 0 < < i. The result is sharp, with extremal

function

f2(z) z 2(2-e)z R[].

PROOF. Let r / 1 in Theorem 4.

As a second application of Theorem 3, we have

THEOREM 5. If f E R[], 0 < e < I, then 1 M(e,r) _< If’(z) ! I + M(s,r)

(Izl r), where

:,n. n-M(s,r) max (n-)C(on) r
n

COROLLARY. If f R[e] with either r 2/3 or = < I/2, then

I I1 -2_--r < If’(z)l <_ I + 2_-L-r <lzl =>.

PROOF. It suffices to show that
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g(a r,n) (1-a)nrn-1
(n-a) C’(a,n)

is a decreasing function of n. In view of (3. I), the inequality

g(a,r,n+l) < g(a,r,n) is equivalent to

h(,,r,n) (1-r)n2 + [2-3c-(1-s)r]n + (1-)(1-2) + ar > O.

Since, for n fixed, h is a decreasing function of r, we have

h(,r,n) > h(a,l,n) (l-2a)n + (l-a)(l-2a) + a 0

for s < 1/2. Since h is also a decreasing function of s, it follows for r < 2/3

that

h(,r,n) > h(l,r,n) (l-r)n
2

n + r h(l,2/3,n) h(1,2/3,2) 0.

REMARKS. I. Since h(l,r,2) 2 3r < 0 for r 2/3, we have

g(l,r,2) < g(l,r,3). Thus the corollary will not be true for all when r > 2/3.

2. We next show that the corollary will not be true for all r when

a I/2. For each a, 1/2 < a < I, we must find an r r(a) such that

M(u,r) > (I/ (2-u))r. It suffices to show for n n(u) sufficiently large that

(l-u)n/(n-u)C(u,n) I/(2-u), which is equivalent to

C(,n) < ,(I-,) (2-)n (3.2)

Since C(s,n) / 0 for 1/2 and the right hand side of (3.2) is bounded below by

(l-s)(2-) 0, the result follows.

4. RADII OF UNIVALENCE, STARLIKENESS, AND CONVEXITY.

The functions in R[] for 0 < = < 1/2 are starlike of a positive order. The

bound is given in
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THEOREM 6. If f e R[], 0 -< -< 1/2, then f T*[2(I-)/(3-2)]. The result

is sharp, with extremal function

i 2
f2(z) z 2(2_-----z

PROOF. From (2.2), it suffices to show that

(n-) C(n)
En=2 i- anl < I

implies

2(i-)
n

3-2
En=2 I

I- 2(I-) an --3-2

This will follow if

(3-2)n 2(i-) < C(,n)

or, equivalently, when

[(3-2)n 2(l-=)](1-a)g(,n) (n-=) C (,n)

Since g(,2) I, it suffices to show that g(,n) is a decreasing function of n.

In view of (3.1), the inequality g(,n+l) < g(,n), n=2, 3, is equivalent to

2+n(3-2) n (3-2)n-2<
(n+l-a) (n+l-2a) n-

This holds if and only if, for each fixed a, we have

2 3
h(n) (4a2-8a+3)n + (62-4a -l)n + 4a

3
10a

2 + 8a 2 > 0.

Note that h(1) 0 and

h(n+l) h(n) 2(4a2-8a+3)n + 2(l-4a+52-2a3) A()n + B(a)
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Since A() > 0 and B() > 0 for 0 < < 1/2, the result follows.

REMARK. For 0, Theorem 6 reduces to the known result [4] that

R[0] K[0] c T*[2/3].

When > 1/2, R[] S. We will show that gn(Z) z 2zn/n R[] S for

n n() sufficiently large. If n e 4, then gn R[I]. If 1/2 < < I, then

gn*S z 2C( n)zn/n. Taking (1.2) into account we have

2C( n)/n < (l-)/(n-) for n sufficiently large so that gn*S T*[].

Therefore, gn e R[].

We next determine the largest disk in which R[] is univalent.

THEOREM 7. The radius of univalence and starlikeness for R[], i/2 < < I,

is

(n-a) C(a,n) } I/(n-l)
r() min n(l

n
-a)

PROOF. For f(z) z Y.n=21anlz
n

in R[], the inequality Izf’/f i is

valid for Iz <_ r whenever Y.
n=2 nlanlr

n-I
<_ i. In view of Theorem 2, this is true

if

< r(n_)C(,n)] I/(n-1)
r n(l-)L ]

Hence, f is starlike for Izl <_ r(). On the other hand, for some n we have

n(l-) n-I
f’ (z) i
n (n-) C (,n) z 0 when z r().

Thus f is not univalent (or starlike) for Izl <_ r, r > r().

COROLLARY. The radius of univalence and starlikeness for R[I] is

i/ m 794.

PROOF. We must show that
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1/(n-l)
1r(1) mlnn

This can be found by differentiating g(x) (2/x)I/(x-l) and observing that g is

decreasing for 2 _< x _< x
0

and increasing for x > x0, where x
0

satisfies 4 < x
0

< 5.

Since g(4) < g(5), the result follows.

Thus, for all , f in R[] is univalent and starlike when Izl < i’/.
REMARK. MacGregor showed [2] that the radius of univalence and starllkeness

for RI is I/v .707.

We will now obtain the radius of convexity for R[e].

THEOREM 8. If f R[e], 0 < < i, then f is convex in the disk

I(n_)C(e,n)I 11 (n-l)
zl < r(e) inf

n2n (1-)

The result is sharp, with the extremal function of the form

1-xf (z) z-
n (n-=) C(,n) z

for some n.

PROOF For f(z) z In=2[anl zn E RIll, it suffices to show that

Izf"(z)If’(z)l -< 1 for Izl -< r(e). we have

-r.n__2 n(n-1)la Izn-In

I In=2 n lanl zn-I
Y’n=2 n(n-l)la Izl n-1n

1- En__2 =1, Iz[ -1n

n
2 n-Iwhich is bounded by I whenever En=2 a z

n
< I. From Theorem 2, this will

hold whenever
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2 n-1 (n-a) C (.a,n)n [z[ <’ n=2 3
l-a

or

(4.1)

The result follows upon setting Izl r(a) in (4.1).

Using arguments similiar to those in the corollary to Theorem 7, we have the

following

COROLLARY. The radius of convexity for R[I] is /3 .471.

REMARK. The radius of convexity r.c. for R
1

is known to satisfy

.395 < r.c. < .40. See [I].

We conclude with the determination of the-smallest B B() for which

T*[m] c R[].

THEOREM 9. If f T*[a] then f R[(2-3a)/2(l-a)3 for 0 < a 1/2, and

f R[I/23 for 1/2 < a < I. The result is sharp, with extremal function

l-a 2
z -2_--z for 0 < a < 1/2

and of the form

z----- z for 1/2 < a < I

PROOF. From Theorem 2 it suffices to show, for 0 _< a s 1/2, that

implies Zn__2(n-B)C(B,n)lanl/(1-B) < I, where

8 8(a) (2-3a)/(2-2a). This will follow if we can show that

g(a,B,n) I- n-S C(B,n) < 1
n-a l-B

Since g(a,8,23 I, it is sufficient to show that g(a,B,n) is a decreasing function
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of n. In view of (3.1), g (,8,n+l) < g(e, 8,n) whenever

(n+l-8) (n+i-28) < n-8
n(n+l-s) n-=

which is equivalent to

p(,n) i-2 n
2

2 (2(l-e) + (2+2s_2)n 2) > 0
2(I-)

However, since

p(e,n+l) p(e,n) IU2’
2 (4(l-s)n+e2)

2(-)

is nonnegative for 0 < = < 1/2, the first inclusion is proved.

The inclusion relation T*[eI] c T*[2] for eI
> e

2
shows that T*[] c R[I/2]

for > 1/2. But for any e < 1 and y < 1/2, we will show that

f(z) z----- z [e] R[y]

for n n(e,y) sufficiently large. If f R[y], then

i- z
n

f,s z C(y,n) T*[7].
y n-

This is true if and only if

I-___ c(,n) < I----!
n- n-

or, equivalently, if

.n-o) (11_)C(y,n) < [n-- (4.2)

Since C(7,n) / for y < i/2 and the right hand side of (4.2) is bounded, the in-

equality is not true for n sufficiently large.

REMARK. T*[I] {z} c R[0].
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