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ABSTRACT. Linear multistep methods are considered which have a stability region

S and are D-stable on the whole boundary S c S of S. Error estimates are derived

which hold uniformly for the class of initial value problems Y’ AY + B(t), t > 0,

Y(0) Y with normal matrix A satisfying the spectral condition Sp(AtA) S At
O

time step, Sp(A) spectrum of A. Because of this property, the result can be

applied to semidiscrete systems arising in the Galerkin approximation of parabolic

problems. Using known results of the Ritz theory in elliptic boundary value

problems error bounds for Galerkin multistep procedures are then obtained in this

way.
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INTRODUCTION

If a linear parabolic initial boundary value problem is descretized in the

space dimensions by the finite element method then the resulting semidiscrete

problem is an initial value problem for a system of ordinary differential equa-

tions:

M(Ax)U
t

+ K(Ax)U P(t), t > O, U(O) UO, (I)

see e.g. Strang and Fix [!9]. In the nomenclature of matrix structural analysis,

P(t) is the external load vector, M(Ax) the mass matrix, and K(Ax) the stiffness

matrix; cf. e.g. Bathe and Wilson [2] and Przemieniecki [!5]. In the present com-

munication both matrices are supposed to be independent of the time t, real sym-

metric and positive definite. They depend together with their dimension on the

small parameter Ax which is, in general, the maximum diameter of all elements in

the finite element subspace; see e.g. [2, !5, !9]. The condition number of M(Ax),

-! -I/2
cond(M(Ax)) IIM(Ax)II

2
IIM(Ax)

2
depends not on Ax but for L(Ax) M(Ax)

K(Ax)M(Ax) -I/2 we find cond(L(Ax)) !/Axj with j 2 or j 4 respectively if

the elliptic operator in the analytic problem is of order two or four, cf.e.g.

Strang and Fix [19, ch. 5]. These properties follow in a natural way since the

finite-dimensional operator L must be an approximation to the analytical operator

As a consequence the problem (!) becomes very stiff if a small mesh width Ax

is chosen.

Linear multistep methods were frequently proposed for the solution of stiff

problems, cf. e.g. Lambert [|O]. Their application to systems of the form (|)

was studied for instance by Descloux [5], Zlamal [23, 24], and Gekeler [6, 7].

Apart from the drawback to need a special starting procedure, (one-stage) multi-

step methods have two advantageous properties in comparison with multistage

(one-step) methods (io e. Runge-Kutta methods etc.

The order of the discretization error is not negatively affected if the

mesh width Ax becomes small.
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The linear system of equations to be solved in every time step of an impli-

cit multistep method has the simple form (M(Ax) / AtK(Ax))Y C, At time

step.

The aim of this paper is to show that the stability of linear multistep

approximations to (1), too, remains unaffected by the space discretization if

the below defined spectral condition is satisfied. This condition implies no

restriction of the relation between At and Ax if the multistep method is

Ao-stable (definition below).

In the last section we apply our estimates to Galerkin multistep discreti-

zations of parabolic initial boundary problems and show that the order of con-

sistence is the order of convergence in this class of numerical approximations.

The results improve some of our error bounds derived in [6] where exponential

stability was not yet obtained.

An other goal of the present contribution was to obtain error estimates in

a form which is applicable to multistep methods in systems of second order. In

a subsequent paper we use our results and consider Galerkin multistep discreti-

zations of hyperbolic initial boundary value problems. The error estimates de-

duced there correspond to a high degree to those established here for parabolic

problems.

2. UNIFORM STABILITY.

To introduce linear multistep methods let

.k _k- k k-,p() .=Og sO
> O, () r, =O O > O,

be two real polynomials without common roots (including zero). Let At be a small

increment of time t, Yn Y(nAt), and let the shift operator T be defined by

(TY)(t) Y(t+At), T TT-I Then a linear k-step method <p,> for the initial

value problem
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Y’ AY + B(t), t > O, Y(O) YO’
is formally defined by

(2)

0(T)V AtA(T)V + At(T)B n O,|, (3)
n n n

Here the starting values VO,...,Vk_ are assumed to be known. If we apply the

scheme <0,> to (I) then we obtain

M(Ax)0(T)V + AtK(Ax)cI(T)V At(T)P n O,I (3’)
n n n

By the linearity of the multistep method this relation is equivalent to (3) if

we set A L(Ax) and replace M(Ax) I/2V
n

by V
n

again.

DEFINITION I. (Cf. Stetter [17, Def. 4.1.7], Lambert [IO, ch. 2].)

Let O < be a fixed constant and 0 < At < . A linear multistep method <0,>

is consistent if there exists a positive integer q called the order of <0,>

such that the truncation error (or defect)

satisfies

for all w E +I

d<p,o>(At,w) (t) p(T)w(t) At((T)w’ (t)

Id<o,>(At,w)(t) <<Atq+|

(), where < depends on t, , and w but not on At.

A method <0,> is consistent if and only if the following conditions are

fulfilled:

p() 0, 0’(1) o(1) (4)

see e.g. Lambert [10, p.30]. The following estimation of the truncation error

is due to Dahlquist [4, ch.4]; see also Lambert [10, 3.3].

LEMMA I. If the linear multistep method <p,d> is consistent of order q

then

IId<0,>(At,w)(t)ll < cmaXtATL_t+kAt w(q+l)(T)II Atq+l

for all W E Cq+!(), where depends on the data of <p,d> but not on t, At, W,

and the norm.

Let now be the complex plane extended by the point in the usual

way, let
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(;,n) p(;) no(;), (;,)

be the characteristic polynomial of the method <0,> and let Sp(A) be the spec-

trum of the matrix A. As well-known, the concept of absolute stability plays a

fundamental role in the numerical solution of stiff differential equations. How-

ever, there exists no method <0,> of order q > 2 which is A-stable in the sense

of Dahlquist, see e.g. Stetter [17, Def. 2.3.13, Th. 4.6.6]. Therefore Odeh and

Liniger [13] weakened the requirement of A-stability in the following way.

DEFINITION 2. A method <0,> is AG-Stable if G # and

E G = implies ll < for all roots of (,)

A method <0,> is said to be D-stable if no root of the polynomial (,O) 0()

has modulus greater than one and every root with modulus one is simple. It is

strongly D-stable if it is D-stable and is the only root of 0() with too-

dulus one. In a D-stable method <0,> the roots of 0() with modulus one are

called essential roots of 0(), the quantity X ()/(0’()) associated

with an essential root of 0() is called the growth parameter of . A

D-stable and consistent method <0,> is AG-Stable if all ReX > O, cf. e.g. [17,

Th 4.6.4] Especially, every consistent and strongly D-stable method <0,> is

AG-Stable with G including the negative real line in a neighborhood of the ori-

gin since the essential root I has the growth parameter X I.

If a method <0,> is AG-Stable then the numerical approximation of (2) ob-

tained by (3) is exponentially stable for every fixed matrix A and fixed time

step At if Sp(AtA) = G, cf. e.g. [17, Th. 4.6.3]. But in the present communica-

tion we consider an entire class of initial value problems (2) thus Sp(AtA) can

be arbitrary close to the whole boundary G of G where by a continuity argu-

ment- roots of (,) can have modulus one. (Moreover, if we admit an arbitrary

small At then G must contain the negative real line in a neighborhood of the

origin, i.e., 0 E G.) Therefore we must require that <0,o> is D-stable on G-

and not only in the origin. The next definition was also used by Nevanlinna [12].
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DEFINITION 3. The stability region S of a method <0,> consists of those

E for which all roots of (,D) satisfy lI < and those of modulus one are

simp le.

Obviously, an AG-Stable method <0,(I> has the stability region S G. With

this notation the below needed spactral condition can now be written as follows.

DEFINITION 4. The method <0,> At, and the matrix A fulfil the spectral

condition if

()

(ii)

<0,> has a stability region S # @.

S is closed in .
(iii) Sp(AtA) c S.

A method <0,> is called Ao-stable if it is AG-Stable with G containing the

open negative real line R_. Thus, for instance, <0,(I> fulfils the first two con-

ditions of Def. 4 with S

_
if it is Ao-stable D-stable in the origin and in

the latter meaning that all roots of (I() have modulus not greater than one

and those of modulus one are simple.

We now consider the Frobenius matrix Fw(N) associated with the characteris-

k k-Ktic polynomial (,) p() D(Y() ZK=OY<() yO() # O,

0
0

F (n)
0

YO(r)- Yk (r) YO (rl)-ly
For a matrix A with regular Yo(A) 01 80A the block matrix F(A) is obtained

if in F(N) the scalar N is replaced by the matrix A. The following lemma repre-

sents the basic tool of this paper. It was proved in an entirely different way

by Zlamal [23, p. 355] for Ao-stable methods which are D-stable in O and

LEMMA 2. Let <0,> be a multistep method with stability region S. If S is
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closed then

-<P,> supEsSUPn6lqllF(n)nll <

II- denoting the Euclidean norm (spectral norm).

PROOF. (i) By assumption there exists for every fixed N E S a lub-norm

II. llsuch that IIF()II < I, see e..g. Stoer and Bulirsch [18, Th. 6.8.2]. Hence

< and by the norm equivalence theorem (cf. e.g. Ortega andF(B)n
Rheinboldt [14, Th. 2.2.1])we obtain

IIFg()nll < c()llF()nll < c() <

where c() depends only on and the dimension k. Therefore the assertion follows

for every fixed N S.

(ii) The matrix F(N) has the characteristic polynomial 7r(,),

i.e., the eigenvalues of F(N) are the roots of 7r(,N). Hence the eigenvalues of

F(N) are the branches of the algebraic variety defined by (,) O. This

algebraic variety has the unique finite pole at N sO
/ 80 > 0 which cannot lie

in S. Moreover, a simple calculation shows that can have only a finite set

of exceptional points or branching points N*, i.e., points in the complex plane

where some eigenvalues coalesce or- in other words -where F(N*) has multiple

eigenvalues. Now, we have by (i) that c(N*) < for every N*6 S N but by con-

struction of the norm II. (cf. [18] and the explicit Jordan decomposition of

Fz(N) given below) we find lim_D.c(N) for N*6 S N . Thus we must prove the

assertion of the lemma for N - * in a separated way. For simplicity we show

the boundedness of IIF(N)nll near N* here only for a finite * in which the alge-

braic variety has only one confluenting cycle of branches. The assertion is

proved analogeously if N, 6 S replacing I/N by N since in this case the

method <p,o> must be implicit, i.e., 80 # O.

(iii) Consider a fixed N*SN. By assumption all confluenEing

branches 9(N) where without loss of generality l,...,m < k satisfy
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I(D)I < in a small disc )with center *. By Kato 8, 2.1.7] we may write

9(N) in as a Puiseux series,

(5))(r)) Z=Oqb[o)(r-rl*)I/m] r] ..,m

] representswhere O I (*) m(*) and 0 exp{2i/m} () Z=O
an analytic function in. with I()I < in a sufficiently small disc with

center 0 and radius 8. Hence we can estimate the coefficients (n) , (rl) nof

as the coefficients of @()n by Cauchy’s estimate (see Ahlfors [I, p. 98]),

l(n)[ < maxgal(g)n[10 n-o
/ O, O, (6)

(iv) By the norm equivalence theorem it suffices to show that the

elements f(n)(N) of F(N)
n

are uniformly bounded in a neighborhood of N* with
J

exception of *. Let F(N) Q(N)Z(N)Q(N)- be the Jordan canonical decomposi-

tion. Then for N , Q(D) is the matrix of the column eigenvectors of F ()

and it has the form

| k
Q det(Q) >( ) (7)

"k-I "k-I
1 k

where the argument N is omitted. Consequently, using Cramer’s rule we obtain

after some simple calculations

f(n) (n)
ij () det(Qij (N))/Het(Q(N)) (8)

(n)Here Qij (N) is obtained from Q(N) by replacing the th row by

(gl()n+i-l’’’’’gk(B)n+i-l) (9)

The denominator of (8) satisfies by (7) limD+N,det(Q(N)) 0 with exactly the

rate of convergence m(m-l)/2m (m-l)/2 since by assumption exactly m roots v
coalesce in N*. (We assume that I * 0 in (5) otherwise the proof follows in a

slightly modified way.)

(v) By (6) and (9) the assertion of the lemma is now proved for

when we show that the numerator in (8) converges to zero at the same rate
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the denominator. To this aim we set briefly v 03)(N N*)as

(n)ting (5), det(Qii
(N)) can be written in the form

det(Q.)(D)) (( *)(m-l)2/m)
(m-l) 2-1 (m-l) 2-1

+ det(( E n,tfl’ E )(n)ft,Om’’tm
(lq), ’k^(n)(rl)))

=0 =0

where (n) (N) II < by assumption for ) m+l k and

(n) ((O) (j-l) (n+i-l) (j+l) (k-l) r,..., , , ,...,

l/m
then, substitu-

with the notations of (iii). Accordingly, as a determinant is zero if two columns

coincide up to a scalar factor,

(n)
det(Qij (rl)) O’((rl rl*) (m-l)2/m)

1... mdet(()+ I I m
! Nm
OZ-

i- (m- 2_

Ur#ls
r,s

(n),o(n) (D) Ok(n) (n)))m m+l

This proves the desired result since

m

.m’ ((q
/mII’" m

@((n n*)m(m-I )/2m)
if 0 < D1 < (m-l)2-1 and r # s for r * s.

By means of Lemma 2 an error bound is now easily derived. The error E Y V
n n n

of the method (3) in the problem (2) fulfils the relation

O(T)E AtAo(T)E d<0 (At A) n=O,l (I0)
n n ,> n

by definition of the truncation error d<0,O>
tors

(At,Y) Introducing the block vec-

T
E (En_k+ ,En)~n

-I T
~d<0,>(At’Y) n (0,...,0,(0I- oAtA) d<0,>(At,Y)n_k)

-I
the Jordan canonical decomposition of A, A XAX and the block diagonal ma-

trix X (X, X) we find that (I0) is equivalent to
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E F (AtA)E + (At Y)
~n ~ n- d<0,> n

or

-!m XFz(AtA)X m + (At Y)
~n ~n-I d<p,a> n

Therefore Lemma 2 immediately yields

n--k,...,

n=k, (|I)

THEOREM 1. If the matrix A is diagonable and the spectral condition is sa-

tisfied then

n E<p,o>
It should be emphasized that this error bound holds uniformly for the class

of normal matrices A satisfying the spectral condition.

3. UNIFORM EXPONENTIAL STABILITY.

The regions S c S of -exponential stability considered in this section

are here introduced in a slight modification of Stetter [17, Def. 2.3.15 and

4.6.2].

DEFINITION 4. A method <0,o> has the region of -exponential stability

S, U > O, if the associated Frobenius matrix Fr(N) satisfies spr(F(D))] -4U

for all DS, spr(F) denoting the spectral radius of F.

For two (m,m)-matrices P, Q we write P < Q if wHpw < wHQw holds for all

WCm, WH T. The following matrix theorem of Kreiss [9] is quoted here in a

somewhat shortened form using a modification of Widlund [20].

KREISS’ MATRIX THEOREM. Let 9f denote a family of real or complex (k,k)-

matrices. Then the following statements are equivalent:

=
(i) -I suPFESUPn61ql]Fn]] <

(ii) There is a constant = > O depending only on = and the dimension k,2

and for every matrix F E a positive definite hermitean matrix H with

-’2 1 < H < E21 (I identity)

such that

FHHF < (l +spr(F))H/2
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As already used, we have ~F (AtA) ~~XF(AtA)X-I~ for every diagonable matrix

A XAX-I with regular SO1 oAtA and, moreover, llF(AtA)nll--maxlz_Z_kllF(At)nll
is true. Hence the following corollary is an immediate consequence of Lemma 2

and the Kreiss’ Matrix Theorem.

COROLLARY. Let the matrix A be diagonable and let the spectral condition

be satisfied If Sp(AtA) c S then there is a constant E2 depending only on

= and the dimension k, and for every F(AtA) a positive definite hermitean-<p, (>

matrix H such that

and

=-I
-2 I < H < E2I

Fr(AtA)H(x-|)HHx-IF (AtA) <(! -2)(X-I)HHx-|.

Let now lie II--9 EH(x-I)"HX-|E then multiplying the error equations (I|) from
~n ~n n

left by H|/2X-| we obtain

liE < IIFTr(AtA)En-I JIM <p,c>~n H + (At,Y)nlIH, n k,

and

=-1/2]j_2 XjJ-I ]J~EJJ < ]J~JE < "2l/2jjx-lj] JJEJ]~ (J]. Euclidean norm)

AccordinglF, a recursive estimation by means of the Corollary yields

THEOREM 2. Let the matrix A be diagonable and the spectral condition be

satisfied. If Sp(AtA) c S, > O, then

IIYn- VnlJ < E2II X X- lJJ [exp{ (/At)nAt} lk-IK=O JJYK- VK

and

+ y.n=kexp {-(/At)(n-2)At )]]d<0,o> (At,Y)II ]
ll<p,>(At Y)II < (aOI-13oAtA)-IIIK lllY(q+l)[ll Atq+l

IIJYJJJ maxo_ztZ_AtJJY(t)[] if <p,> is of order q.

The next lemma shows that for a fixed matrix A the exponential growing fac-

tor B/At can be estimated more exactly.

LEMMA 3. If the growth parameters XK of a D-stable method <p,o> satisfy
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Re X > 0 and if all eigenvalues % of the matrix A satisfy % < - < O then,

for At sufficiently small,

/At minRex/8 > 0

PROOF. For simplicity let <, < ,i, i k, be the essential roots

of the polynomial 0() and let <(N) be the corresponding roots of (,N),

<(N) <, N / 0 Then there exists a non-empty interval such that

spr(F(N)) maxl_<_i] <()], 61 < n < O, 61 < 0 (13)

But () [I + X + (2)] as follows by substituting this expansion in

(,) O. Therefore, I()I 2
+ 2Rex + (lI 2) and there is a non-

empty interval such that

l<(n) < + (Rex<n/2), I, i, 62 < n < O, 62 < O (14)

since Rexm > O by assumption. By (]3) and (14) we obtain

spr(F(n)) < + nmin]z_<_zi(ReX</2), max{6],6 2} < n < 0

and thus

spr(F(Atl )) < Atmin]_<_i(ReX</2)

for Atc < max{16|I 1621} Now the assertion follows because we can set here

[I maxl_AmSpr(F(At%))]/4

4. GALERKIN MULTISTEP PROCEDURES IN PARABOLIC PROBLEMS.

To be brief we first list up some necessary notations: c RP bounded

domain;

llfll ( YO IDf(x) 12dx) ]/2
s Ol-s s , Sobolev norm with the standard

multi-index notation;

Co(f) set of real-valued functions f C (2) with compact support in

sWO() closure of Co() with respect to

wS() closure of C () with respect to II.
s

swS() closed subspace with SO() =;
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a:[ 9 (u,v) / a(u,v) 6 symmetric bilinear form over satisfying

0 < llv[l2 < a(v,v) for all 0 # v 6 [
s

(f,g) /f (x) g (x) dx

Then, following Schultz [16], see also Strang and Fix [|9, ch. 7],

Mitchell and Wait [||, 6.3], a large class of parabolic initial boundary

value problems with homogeneous boundary conditions can be written in the weak

form

((. ,t) ,v) + a(u(. ,t) ,v) (b(-,t),v) for all v ], t>O,
(15)

(u(.,O) bo,v) O for all v

Let o c |{be a finite-dimensional subspace which is defined by an explicitely

known set of basis functions Sl,...,s The Galerkin approximation to the SO-
N

lution u(-,t) of (15) is a function UG(.,t) which satisfies (15) for all

v . Accordingly, substituting in (15)

UG(X,t) U(t)Ts (x) ~s(x) (s l(x),...,sm(x)), U(t) 6m

we obtain a system-of the form (1) where, as well-known,

) )mM ((s K (a(s (16)s) ,=1’ s)

The Galerkin multistep approximation UA(.,nAt) UA(.)nE , n=k to the

problem (15) is given by

uA(x, t) V(t) Ts(x) t nat (17)

and

o(T)(UA(-)n,S) + Ato(T)a(uA(.)n s Ato(T)(b(.)n,S ),

l,...,m, n k,...,
(18)

where UA(-)O,...,UA(-)k_ are assumed to be known. It is easily shown that (17)

and (18) are equivalent to (3’) and (16).

An estimation of u u
G usually needs the Ritz projection uR

6 of u de-

fined by
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a(u(.,t) uF.(.,t),v)= 0 for all v Y, t > O,

see e.g. Strang and Fix []9, 7.2]. Hence we estimate the error u u
A
via the

decomposition

u UA= (u-u) + (UR-UA) (19)

directly. However, it is not the aim of the present contribution to discuss the

vast field of error bounds in the Ritz theory of elliptic boundary value prob-

lems. Therefore we make the following assumption on the bilinear form a, the

boundary of , and the subspace , cf. Ciarlet [3, Th. 3.2.5], Strang and Fix

[19, Th. 3.7], Schultz [16], and Zlamal [21, 22].

ASSUMPTION A. The Ritz projection R of the solution of the elliptic

boundary value problem

a(,v) (f,v) for all v

satisfies for a fixed I E

II RIIO < RAXI IIII
I

where R depends not on the sufficiently smooth right side f and the small para-

meter Ax.

Under Assumption A we obtain in case the solution u of the parabolic prob-

lem (]5) is sufficiently smooth

llu(-,t) UR(.,t) 0
< RAXI llu(.,t)

I
t > O,

since u(.,t) can be viewed as the solution of the elliptic problem

a(u(.,t),v) (b(.,t) ut(-,t),v) for all v ,
u
t

u/t. Further, let

(uR uA)(x,t) y.m=]g(t)s (x) t nat

|/2 T
then, writing E(t) M (el(t) ’gm(t)) we obtain

(uR uA)(’,t)ll0 llE(t)ll, t nat II" Euclid norm. (20)

In order to deduce an estimation of u
R uA we first observe that by (8) and

Def.
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s + Atg(T)a((u (.) so(T)((u uh)(’)n’ 1 Uh) n’ V

(d<0,>(At,u(.))n,s)
or, by definition of the Ritz projection,

0(T)((u
R uA)(.)n,Sv) + Ato(T)a((u

R uA)(.)n,Sv)
d<o,o>(At,u(.))n,sv) + p(T)((u

R u)(.)n,Sv)
l,...,m, n--O,l,...

This relation is equivalent to

o(T)E
n

where L N- 1/2I- l/2

the form

with

+ AtLO(T)E D n=O,|,n n

with the notations of (|6), and the vector D
n

-1/2 TD M ((n’Sl) (n s ))n m

(21)

{ IRm has

n d<p,o>(At’u(’))n + O(T)(UR-U)(’)n
Hence, using the wO-projection of onto it is easily shown thatn

]]Dn < []d<0,(>(At,u(.))n + o(T)(uR-u)(-)n [[O
If the method <0,o> is consistent then 0() has the root I, i.e.,

P() ()( l) Accordingly,

Ilo(T)(UR-U)(.)nll0 --II(T)(T l’)(UR-U)(-)nll0
< 0At max ]](uR-u) (. t)l]

OnAt_t_ (n+k)At t

and

Dn < d<o,> (At u (-)
n I10 + OAtoz_t_(n+k)Atmax (u uR) t

(’’ t
0

But (U-UR) t
u
t (ut) R as (UR) t (ut)R in the present case of a time-homo-

geneous bilinear form a. We therefore obtain under Assumption A

liD < lid< (At u(-))II + <O<RAtAxllII utllll,n+kn 00> nO (22)

Ill u i111, n maxo_t_nAtllu(.,t II1 since u
t

can be viewed as solution of an el-



666 E. GEKELER

liptic problem, too.

Finally we can apply Theorem 2 to the error equation (2!) and estimate the

defect D by (22). Then, by means of (20) we obtain an error bound for the second
n

term on the right side of (19). We summarize our result in the following theorem.

THEOREM 3. If the spectral condition is satisfied and

Sp(AtM-!/2KM-!/2) c S > O, then

llUR(.) n uA(-)nll0 < _2(exp {-(/At)nAt Ek-!=ollUR(’)< uA(-)<llO
n+ Y.=kexp { -(IAt)(n-)At } _D

If the solution u of (!5) is sufficiently smooth, Assumption A is fulfilled,

and the method <0,o> is consistent of order q then

IIDII < col(<cAtq+I + <O<RAtAx
1

Ill u t ]ll
1 ))u/3tq+l Ill 0,)
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