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ABSTRACT. This paper deals with the problems of representing an arbitrary

double differential of the second kind, defined on a surface which is the

topological product of two curves, in terms of the products of simple dif-

ferentials of the second kind on the two curves. The curves are assumed to

be non-singular and irreducible in a complex projective 2-space.
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i. INTRODUCTION.

Our purpose in this paper is to prove a theorm, stated by Lefschetz,

concerning double differentials of the 2nd kind on an algebraic surface. We

will employ the Picard-Lefschetz technique as described in Lefschetz [i].
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This amounts to reducing the initial differential to a new one of the same kind,

but in a more suitable form for our purposes. A precise statement will be

given below. In all that follows, our ground field, denoted by K, will be

the complex numbers. Also, K(x, y, ...) or K[x, y, ...] will indicate the

field of rational functions or ring of polynomials, respectively, in the com-

plex variables x, y, with coefficients in K.

Suppose CI and C
2

are two distinct, irreducible, non-singular algebraic

curves, each in a complex projective 2-space. The product surface , i.e.,

the topological product CI C2, is then a non-singular surface in projective

4-space. If CI and C2 have affine equations (, 8) 0 and (*, 8*) 0,

respective, then an afflne model, S, of may be thought of as the surface

of pairs of points (, 8; *, 8*) in complex 4-space. We will deal pri-

marily with an affine model in this paper. "Our objective is to prove the

following: "Every double differential of the 2nd kind on is reducible,

modulo de, (where is a simple differential on ), to a linear combination

of products A * of simple differentials of the 2nd kind, where belongs

to CI and * belongs to C2 and neither are derived." See Lefschetz [2].

We point out that the last above statement can also be realized by

using modern techniques of algebraic topology. In particular, see page 80

of Hodge and Atiyah’s paper "Integrals of the 2
nd

Kind on an Algebraic

Variety" appearing in the Annals of Mathematics, Vol. 62, 1955. However,

we feel that the classical approach used here has merit in itself since tech-

nique ranks equally with results in algebraic geometry.

SECTION I.

Let R P( 8 * 8*)
Q(, 8, *, 8*)

be a rational function such that for fixed and 8 or fixed e* and 8", Q is
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not in the ideal generated by or . We assume that the double differential

2 Rde*d is of the 2nd kind on S. Here we employ the Lefschetz definition

[3], i.e., if Q QIQ2 Qk’ where the Q’s are distinct, irreducible poly-

nomials, then 2 is of the 2nd kind relative to Qh provided there exists a

simple differential on S such that 2 de is regular at the points of in-

tersection of Qh 0 with S. Such points generally form a curve on S, called

a polar curve of m2’ and we designate it by h" The simple differential

depends on the choice of h and we say that 2 is of the 2nd kind on S provided

such an exists for each polar curve of 2" As an analogy to Lefschetz’s

plane section, we employ the curve C
2

and its copies on S, the latter obtained

by varying and 8 on CI. First consider the intersection of h with such a

"general" C2. A suitable choice of affine co-ordinates will insure that none

of the polar curves pass through a point at infinity on a general C2. Also,

a non-singular linear transformation will guarantee that both and contain
d
I d2

8 and (*) where dI and d
2

are the degrees of and , respectively.

Such co-ordinate changes do not effect the kind of differential involved.

Treating and 8 as parameters, we designate by PI(, 8, el*’ 81")’

P2(, 8, 2’’ 82")’ Pm(’ 8, am*, 8m*) the intersection points of h
with a general C2. The el* and 8i*’s will depend on the choice of and 8.

Suppose h is a polar curve of order n. Then, in a neighborhood of P
i

on

our general C2, the following expansion of R is valid:

R ( 8, 8i*) (a, 8, 8 *)
-n i* R-n+l i* i

R= +

+ higher powers of (* .*).
1

We use (e* i* as parameter and all numerators are rational in their variables.
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LEMMA i. There exists a simple differential lh on S such that 2 + dlh
is regular on h"

m
PROOF. Define H(, 8, *, 8*) R (, .,)n. We first will obtain

1
i=l

an expression for R_n( 8, el*’ 8i*)" Let E1 be the resultant of Qh and

with respect to 8* and E2 the resultant of E
1

and with respect to 8. E2

may be considered as a polynomial in e* with polynomial coefficients in e and

as such, has the .*’s as its only zeroes. For e finite, this implies that

the elementary symmetric functions of the c.*’s are polynomials in a. Thus

(, .,)nl is a polynomial in and *. For simplicity, set (*-i*)
n

i=l i=l
n n

Xh (c, c*), where Xh may be thought of as the projection of h on the (c, c*)-

plane. It is evident that H(, 8, *, 8*) is of order zero on h" Also,

m
H(, 8, i*’ 8i*) =1 (i*- .,)n3 R_n(, 8, i*’ 8i*)" Hence

*)H(, 8 ei*’ 8i
R_n(, 8, i*’ 8i*) m

n
(.* .,)

j=l

(1.2)

Next we set

iV
n n- I

m R ( 8 8*)
-n i* i

i=l (, .,)n-i
(1.3)

1

Using R from (1.2), we see that V not only has h as a polar curve but can
-n n

have poles

i) at points of intersection of h with k’ k # h, for then H has poles

and their occurrence depends on and 8;

*=j* j # i;ii) at points where is such that i
iii) if or 8 is infinite.
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We can now show that 2 + d[Vnda] Rde*de + d[Vnde] behaves llke R on h but

with n replaced by (n i). First

619

R (e, 8 e * 8 *) 1 m R (e 8 8i*)-n i i
do*de + d

-n

(e* ei*)n n 1 (e* ei*)n-i
R (e, 8, 8 *)-n el*’ i 1de*de +

(e* ei*)n n I
,

d
-n

da
i=l (e* ei*)n-i

A typical element of the last sum can be written as

-n
d8 (n- i) -n

(e* e1.*)n-I 8e do + 88 (e* el,)n
do*.

Since not both e and 8 vanish, we can assume 8 # 0 and get d8

Then (1.4) can be written as

(1.4)

R (e, 8, 8")
-n ei* i

(e* el*)
n

do*de +

m DR e (n i) R
+ 1 { 1 IDR-n -n

de
-n

n 1 .,)n-i De de D8 8 (e*-ei*)
n

i=l (e* el
de* }de

The exterior product then gives

R m R
-n -n

de*de- de*de.
(e* e.*)n i--i (e* e.*)n

1 1

Thus, in a neighborhood of Pi’ Rde*de + d[Vnde] behaves like 2 but with n

replaced by (n- i). Next, we can define a Vn_1 of the same type as Vn with

(n i) in place of n and Rde*de + d[(Vn + Vn_l do] will begin, in some

R-n+2
neighborhood of P

i’
with the term n-2 Continuing in this manner,

(e* el*)
we will arrive at the differential Rde*de + d[Vn + Vn-i + + V2)de], a

double differential of the 2nd kind in which the corresponding n is one.
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iIf we still denote the coefficient of
e* ei*

by R_l then since 2 is of

the 2nd kind, its residue relative to any polar curve must be derived, i.e.,

dT
R-I d- where T(e, 8, el*, 8i*) is a rational function on h having poles

only of type i), ii), or iii), above. See Lefschetz [4]. If we set

dei*
m T(de*

lh (V2 + + V )de + de
n

i=l (e*

de)
(.5)

then we can immediately show that Rde*de + dlh is regular on h’ as follows:

From the above, it is evident that Rde*de + d[ (V
2 + + Vn)de] behaves like

2 relative to h but with the corresponding n i, so we need to look only at

dei*
m T(de* de)

i=l (e* e.*)

Then,

[ i=ml dT ] m fdei* ]dT (e*- ei*)
de*- d

T

i=l L de e* ei*
de

m (e* e.*)dT Td(e*

.,)
2 de*

i=l (e* a
m

dei* T T d de
i=l

de
d (e* el*)

+ (e* ei*) d’e

dT
.*)de*m

de
m T(de* de

1

i=l
(e* e

i i=l (e* e.*) 2
1

m dei*de I’(e* ei*)dT -.,)2Td(e* e.l*)Ii=l (e* e
dT (

m m T. .dei*
de [---J dede*,) dede* + 2

i;1
(e* e

i i;1 (e* e.*)
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m
de dr

i=l (e* e.*)
1

dei*
m L" ’d T

dede* +
i=l (e*

de*de2

dT
de

i=l e* .*
1

dede*,

since the third term in the last sum above is zero and the second and fourth

terms are negatives of one another. However,

dT
m m R_Ide

dde*
i=l e* ei* i=l e* el*

de*de.

This concludes the proof of Lemma i.

For brevity, we will write lh in (1.5) as

lh V(e, 8, e*, 8*)de- U(e, 8, e*, 8*)de*,

where V and U are rational on S. From Lemma i, V and U are infinite on the

intersection of Xh 0 with S, so that in addition to h’ they are infinite

on any other curve which projects onto Xh 0. We will designate this

residual intersection by Dh.

LEMMA 2. lh may be replaced with a similar differential but with

D
h

eliminated as a polar curve (or curves).

PROOF. For almost any non-singular affine transformation (e, 8, e*, 8*)

to (, , *, *), the projections of the transforms of h and D
h

on the

(, *)-plane will have at most a finite number of points in common.

Under such a transformation R de*de + d(Vde Ude*) becomes

where we set

R de*de + d(V de U de*),
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G(, 8, *, 8*)

A, B, m’d G polynomials. Here we have made use of the transformations

0(, 8) to (, g, *, g*) and ,(*, 8*) to (, g, a*, g*) in eliminating

d =d d*. We can also assume that neither nor are zero, due

to the absence of singularities. Let the resultant of and with respect

to " be denoted by I’ i.e., la + J I" Further, the resultant of i
and with respect to gves a second resultant, say G1, i.e.,

LI + N 1" us, LIa + LJ 1 N and in the transfoea surface

LI 1 since LJ and NO are ero. It follows that lh can be written as

ih

where

A LIA, B .LIB

and both are polynomials. If we call the projection of the transform of h’
in the (4, *)-plane, by h’ then GI hn(, *)h(, *), where h

n
and

h are relatively prime polynomials. Considering them as polynomials in

with coefficients in , there exist polynomials s(, *) and t(, *)

such that

nsxh + th
p().

Using this last equality, we can write

GI n
Xh Xh P () h P()Xh

n
P ()h

Therefore
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lh [Ad Bd*] t +
P()hn P()h

P ()h
n + S d- tn + p--*P(alh Ph

Atdfi- Btd* Asd- Bsdfi*+
P(a)hn P(a)h

It is evident that dfi*dfi + dlh is regular on the transform of h and this

is true even if we suppress the last term above, i.e.,

we replace lh with lh
td- td* dE- Bhd*

p()h
n

p()hn

sd- sd*
PXh

If

we have d*d+ dlh

a differential of the 2nd kind on the transformed surface, regular on h
transform and the transform of D

h is no longer a polar curve of lh"
SECTION 2.

The above reduction and replacement can be carried out for all polar

curves h of 2" Returning to the original notation and co-ordlnates, we

would then have a set of lh such that 2 + d( lh would be regular on
h

the h but would have poles for certain values of o and B. Let us write

2 + d(,lh in the form
h

W2 A(o, [3 o*,
S(o, 6, o*, B*)G(o)

where A, B, and G are polynomials and A/B is regular except possibly for

points of infinity.

Ado*doLEMMA 3. W
2 BG

where is a polynomial.

can be reduced to the form (O, IB *, B*) do*do(a)

PROOF. We begin by replacing the affine co-ordinates o* and * with

projective co-ordinates o0*, i*’ and o2" in both (o*, 8*) and B(o, 8, o*, B*)

where B is to be regarded as a polynomial in e0*’ l*’ 2" with coefficients
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in the field K(e, 8). By Kapferer’s Theorem [5], A is representable in the

form Y + ZB, Y and Z polynomials in s0* al* and a2*" This is true since

A must vanish at the simultaneous zeros of and B with a multiplicity at

least as great as B and any such zero of and B is a finite simple point

of . Thus, A Y + ZB and on the surface, A ZB, so that A/B Z, a

polynomial in s0* el* e2* with coefficients in K(e, 8). Returning to

affine co-ordinates, we see that the ratio A/B is a polynomial in e*, 8*

with rational coefficients in e and 8 so that we can write_
F(, 8, *, 8*)

B D(e, 8)

where F and D are polynomials. Let E be the resultant with respect to 8 of

D and (, 8), i.e., E y + 6D. Therefore,

E F F
D D E- y

and on the surface

D E E

If s0
is a zero of order r of E, then F must be divisible by ( 0)r

since A/B has no poles for finite. Thus, F/E is a polynomial

(, 8, *, 8*) on S. Finally, we can write

nd*d (2.1)W2 G(e)

and W
2 has poles only at the zeroes of G and possibly e . We have arrived

at our final reduced form for 2’ i.e., (/G)de*d (modulo dl), whose only

polar curves on S are C2 or its copies. Any double differential of the 2nd

kind may, by subtraction of a suitable dl, be reduced to one of the form

(2.1).

THEOREM. Any double differential of the 2nd kind on can be reduced,
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* where and m.* are simple differen-modulo dl, to the form ciji A j i 3

0
i * is derivedrials of the 2nd kind on C1 and C2 and no or -3PROOF We begin by writing 2 in the form (2.1), i.e.,

2 de*de.

If is of degree d in 8", we can write

Cd[, 8, e*](8*)d + Cd_l[e, 8, e*](8*)

+ + Cl[a, 8, *]8" + c0[a, 8, *],

d-i

where the c’s are polynomials. Also, each of the c’s can be written as a

polynomial in *. Let the degree of c
i

in e* be di. Then each c can be
i

written

d
i di-i

c b (e*) + b (u*)i i,d. i,d.-i
1 1

+ + bi,le* + b

where the b’s are polynomials in and 8. It is then clear that can be

written as a finite sum of terms of the form

(8*) q

where P is a polynomial and p and q are positive integers. Consider

P( 8) (*)P(8*) q

G() d*de. (2.2)

This is a double differential of the 2nd kind on S and can be written as

(0*) P(8*) qdo*] a() (2.3)

a product of two Abelian differentials, the first on C2 and the second on CI.

Each of them must be of the 2nd kind on their respective curves since,
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if not, the double differential would have non-zero residues on S. Let the

dgenus of CI be gl ad that of C
2
be g2 Also, let dl 2

d and
U2g

I

dgl, d2, d9 be bases for differentials of the 2nd kind on CI and C2,
2g2

respectively. Then

and

2g
2

(,)P(8,)qd,-- kdk
i

2gI
Pd_

cidG i’
i

where the c’s are constant. Thus,

where Cik cik.

theorem follows.

P(s, 8) p
G() (e*) (8*)qd*d

CikdVkd

Since each term in w/G da*de can be so written, the
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