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ABSTRACT. In this paper we investigate some structure properties of the tail

o-field and the invariant o-field of both homogeneous and nonhomogeneous Markov

chains as representations for asymptotic events, descriptions of completely

nonatomic and atomic sets and global characterizations of asymptotic o-flelds.

It is shown that the Martin boundary theor.y can provide a unified approach to

the asymptotic o-fields theory.
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i. INTRODUCTION.

The first result on the asymptotic events of a sequence of random variables

was the 0-i law given by Kolmogorov in 1933 [28]. In the years that followed
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the publication of Kolmogorov’s book, the 0-i law was extensively used by

P. Levy, W. Feller, etc. to obtain important properties of some variables

derived from sequences of independent random variables. It was therefore

natural to start the investigation of asymptotic events of other sequences of

random variables of interest and the next important results in this respect have

been the Hewitt-Savage 0- i law for symmetrical dependent sequences of random

variables [23] and Blackwell’s characterization of invariant events of Markov

chains [4](the invariant events constitute an important class of asymptotic

events).

Nowadays, there is a sizeable literature concerning asymptotic events of

random variables, especially for Markov chains. It seems to us that the time is

ripe for an account of the basic theory of asymptotic events of Markov chains

and the main aim of this paper is to attempt such an account.

Some of the approaches and results given here are new, others are extensions

of the known results to more general settings, but we shall also present many

known results which, in our view, are basic for the asymptotic events theory.

No applications are included here, although the general theory presented

draws heavily on ideas and methods occurring in papers dealing with asymptotic

events for various types of Markov chains. The applications, which are numerous

and important, will be taken up elsewhere.

In the early papers on Potential Theory it has been noticed that any

nonhomogeneous Markov chain can be thought of as a homogeneous one in the

modified context of a space-time chain. However, such an approach was not often

pursued, due probably to the fact that the state space of a space-time chain

seemed to be untractable. We intend to show here that, as far as the theory of

tail and invariant events is concerned, the space-time approach provides a unified

method of dealing with both homogeneous and nonhomogeneous chains.
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The connection between the invariant o-fleld and the Martin boundary theory

which appeared in Blackwell’s paper [4] was noticed by Doob [16]. Further Neveu

[33] and Jamieson and Orey [27] showed that some notions of Martin boundary

theory as space-time harmonic functions can be related to the tail o-field of a

Markov chain. The relation between the Martin boundary theory and asymptotic

(tall and invarlant) o-flelds will be shown here to go much further and the

Martin boundary theory will provide a unified approach to the asymptotic o-flelds

theory.

The paper is devided into five chapters. The first chapter is the

Introduction. The second chapter introduces some notions related to asymptotic

o-fields and basic properties to be used in the sequel are derived. The third

chapter contains representations for asymptotic events and random variables by

means of harmonic and space-time harmonic functions, as well as in terms of some

almost surely convergent sequences of sets. As consequences, criteria for

triviality of asymptotic o-fields are derived. The fourth chapter investigates

the connection between the Martin boundary theory and asymptotic o-fields. It is

shown that the basic almost surely convergence result of the Martin boundary

theory implies new results as well as most of the results previously obtained by

sundry methods in the asymptotic o-fields theory. The last chapter contains some

structure theorems for asymptotic o-flelds as descriptions of atomic and nonatomlc

events, and global characterizations of asymptotic o-flelds.

In the choice of the material presented here, I might have been biased by my

own interests and research and it is possible that insufficient attention has

been paid to some contributions to the asymptotic o-fields theory. I would llke

to emphasize that I did not intend to pass judgements on the importance of various

contributions to the field and that I am aware of the fact that the present survey

reflects my own viewpoint on some topics that have preoccupied me for many years.
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2. PRELIMINARY RESULTS.

2.1 DEFINITIONS AND NOTATIONS. Let (S,) be a measurable space, N= {0,i }

and , two finite measures on (S,). We shall denote by 4) the product

measure of % and on (S S, )) and by II- II the total variation norm of

A- i.e. ll-Ull (-U)+(S) + (l-u)-(S) where (l-)+ and (l-U)- are the

positive and negative part of - in its Hahn-Jordan decomposition. In the case

S=N and N) where (N) is the class of all subsets of N we get

II-II I I(i)-(i)l Further, Ac will stand for the complementary set of
ieN

A A
I
A A

2
for the symmetric difference of A

I and A
2

Z for the set of integers

and R for the set of real numbers. Two measures I and are called singular

with respect to each other (denoted I ) if there is a set B e such that

%(B) 0 and (Bc) 0 and will be said to be absolutely continuous with

respect to (denoted << ) if (B) 0 implies A(B) 0 Given every A

can be decomposed into a sum i + 2 where i<< and 2I Mo=eover, there

exists a set H in called Hahn set, such that %(B) I(B /% H) + %(BF%Hc)

where (. /% H) i (-) and (. ?% Hc) 2(.)
A kernel N is a mapping from S into (-,] such that

(i) for every x in S the mapping A/N(x,A) (denoted N(x,-)) is a measure on

(ii) for every A in the mapping x /N(x,A) (denoted N(-,A)) is a measurable

function with respect to (S,

A kernel N is said to be positive if its range is in [0,] it is said to be

proper if S is the union of an increasing sequence {S n > 0} of subsets of S
n

such that N(-,Sn) are bounded. A kernel for which N(x,S)= i for all x e S is said

to be a transition probability kernel.

Let S xS = (R) )... and for each (x0,xl,...,xn )

let X () x Then it is well known ([15]) that given a probability measure 9n n
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on and a sequence of transition probability kernels (P) there exists
n neN

a probability P on under which the sequence of random variables

{X (m) :n > O} forms a nonhomogeneous Markov chain and
n

P (X eA) (A)
o

P(Xn+I A IXn x) Pn (x,A)

The probability P is uniquely determined by its finite dimensional marginals

defined as follows

Pv(X eBo,XI eBI,...,XkBk)

Bo(dXo BIPI (Xo’ dXl) "BkPk (Xk-i ’dXk)
(2.2)

The measure 9 is called starting measure or initial probability distribution of

the chain If (x) where stands for the Dirac measure, we shall

abbreviate P for P
x (x)

Denote by n the o-algebra generated by Xo,...,Xn and by n the o-algebra

generated by Xn,Xn+l, The transition probability after n steps

Pm’m+n(x,B) denotes the probability that Xm+n is in B given that Xm x and is

defined inductively as

pm,m+l (x,B) Pm(X,B)

pm’m+n(x,B) IPm’m+n-l(x,dy)Pm+n_l(y,B)
pm,m+nIf P P for all n depends only on n and will be denoted by p(n)

n

S is countable we can easily check that p(n)= pn
ld’len

{Xn:n >. O} will be said to be a homogeneous Markov chain or a Markov chain

with stationary transition probabilities if for any integers m,n with m<n

and for any Be
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Pu (X
n

e BI _’-m) p n-mj (Xm, B) Pu a.s. (2.3)

n=o

measurable random variable (event in will be called tall variable (event).

We shall next consider the shift operator 8 which maps into by 8 a’

where (xo,xl,. ,Xn,. and ’ (xl,x2,...,xn+I, 8A will stand for

the set {8:eA}, 8-16 for {:8A} and 8o6 for A 8
n
will denote the nth

iterate of 8 If Y is a function on 8Y is defined by 8Y()=Y(8) and 8ny

as its nth iterate. A random variable Y for which 8Y()= Y() for all a will

be said to be Invarlant. It is easy to see that Xn(8) Xn+I(),Xn(Sp) Xn+p()
and 8-P{Xn EB} {Xn+p B} A set A ewill be said to be Invarlant if 8-1AffiA
The class of all invariant sets, denoted by is a o-fleld, called the invarlant

u-fleld.

A set A in a u-field is called atomic with respect to if Pg(A) > 0 and

does not contain two disjoint subsets of positive probability belonging to

A set A in is called completely nonatomlc with respect to if P (A) > 0 and

A does not contain any atomic subsets belonging to It is well known (see

e.g. [38] p. 81-82) that may be represented as An where Aj’s for J >. i
n--o

or A may be absent, but, if present, A is completely nonatomic and A1,A2O O

are atomic sets with respect to If A is present we shall say that iso

non-atomlc, whereas if A is absent we shall say that 9 is atomic. Further,o

will be said to be finite if A is absent and there are only a finite number ofo

atomic sets. Finally, if AI= will be said to be trivial.

Denote by 1A the indicator of A i.e. the function which takes on the value

Ac IAI IA
2

I for eA and 0 for e We shall say that AI=A2 a.s. if a.s. and

that llm An =A a.s. if llm 1A =iA a.s.
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2.2 0’s ACTION ON . It is easy to see that both 0 and 0-1 map sets of

into sets of and are countably additive. Also, we can easily check that 0-1

preserves the dlsJolntness of sets and commutes with complementatlon and

countable intersections. These properties of 0-1 unpossessed by e are

-i
probably accountable for the use of 0 in the definition and manipulations

involving invariant sets from the very beginning of the ergodic theory. However,

in all the examples available, the failure of such properties for 8 is due to the

relevance of the first coordinate of u which is removed by the action of 0

We shall now see that if we restrict our attention to the action of 0 on the sets

of we can show that all the properties of 0
-1

mentioned above are also

possessed by 0 We prove first

PROPOSITION i. 0 maps one-to-one and onto.

-i
PROOF. In view of the already mentioned properties of 0 we can easily show

that 0-I n n+l for all n D0 Further for any set A_ 8(8-IA)-A and

so it follows that 0n+l n and an upshot of these considerations is 8= .
.o ,h s

that there exist i E and 2 E such that 0i= 02 Because and A2 are

both in we can assume that Xo(l =Xo(2 Therefore the first coordinates

of I and 2 are identical and since 8Ul= 82 so are the other coordinates. We

get i 2 Thus = and the proof is complete.

PROPOSITION 2. (A Y eA =A}

PROOF. If A E then A and therefore for any integer n > 0

A e-nAn Thus A Furthermore, A- e(e-IA) eA which implies

{AE eA =A} The reverse inclusion follows directly from the assertion of

Proposition i that 0 is one-to-one over Y
The above given Propositions and 2 are due to Abrahamse [i].

PROPOSITION 3. Suppose that A,,A2,... belong to Then
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c c
(i) A (OA)

(ii) e An eA
n=l n=l

m+n m n
(iii) A = A for m, ns Z

PROOF. By Proposition i, and -i are interchangeable, when applied to the

sets of Let us apply e-i to both sides of (i); we get Ac= e-l(A) c

Since e-I commutes with complementation -I(0A) c= -leAc= Ac and we got an

equality. But O-IA’ O-IA" means A’= A" and the proof of (i) is complete. (il)

and (iii) can be proved in the same way.

Proposition 1-3 show that there is no reason to use e-i instead of in the

definition of an invariant set. Since the Markov assumption was not used in

the above proofs, such an observation holds for the invariant sets of a o-field

generated by an arbitrary sequence of random variables.

2.3 SMALL SETS. A set A in will be said to be a null set if P(A)=0
If for all n eZ, P(onA) =0 A will be called a smalland positive otherwise.

set (see [i]). Obviously, any small set is a null set, but not all null sets are

small sets. Indeed, if we take A= {x} S such that P,(Xo=X)=0 we get

Pv(A) =0 However eA= and therefore A is not a small set. Less trivial

examples can be given for sets A in in the case of an improperly homogeneous

chain which will be defined below.

Examples of small sets: (I) any set for which P (A)--0 for all x S
x

(2) any invariant null set (because TnA--A for all n Z).

We shall further identify a class of Markov chains, called properly

homogeneous, for which all the null sets of T are small sets.

Denote (B) =Pv(Xn gB) for B sB and let Hn_In
be the Hahn set occurring in

the Lebesgue decomposition of , with respect to A homogeneous Markov
n n-i

chain for which _+/- << and lim , (H -Hn+I)_ =0 will be said to be properly
o n nn-
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homogeneous and improperly homogeneous otherwise.

To justify this definition we need to elucidate the implications of the

conditions it imposes on the chain. Notice first that i << o implies

n << n-i for all n Indeed (B) 0 implies I(B) 0 But

91(B) fP(x,B) v(dx)

It follows that P(x,B) 0 for almost all x both with respect to and I
Since

2(B) /P(x,N)l(dX)
we get 2(B) 0 and so on.

Consider next the equality

(B) n(B +n(BH
c

n Hn-i n-I

where (Hn
c

I 0 The absolute continuity of with respect to 9n-In-i n

implies that (Hn
c

l
0 and (H

n I Hn n(Hn) If n-l(Hn l-Hn 0
n n

{Vn } are equivalent measures. Suppose that n_l (Hn-i -Hn) > 0 then

P (X
n
eHnlxn_ ev 1 Hn_I) I This implies

]H P(X,Hnln_l(dx) n-l(Hn-l) i

n-i

which yields P(x,Hn) i for almost all x with respect to Furthern-I

P(x Hn) I is also true for almost all x with respect to and this implies

P(Xn_I . HnlXn_2 e Hn_I) i Now we can easily deduce that

lim {X eH {X eHI a.s. with respect to P and therefore
n n+l o

lim {X eH -Hn+I} {X eH -HI
} a.s. with respect to P Thus if a chain is

n n o on
properly homogeneous Pv(lim sup{X

n
(H
n Hn+I) }) 0 Since

n+l(Hn-Hn+l) 0 implies n+k(Hn-Hn+l) 0 for any k >0 we can see that if

a chain is improperly homogeneous, i.e. if P(lim sup{Xn e (Hn Hn+l) }) > 0

then the temporary homogeneity of its transition probabilities is of no use for

the sequence of sets {H -H ;n=0 1 which are of no relevance to the
n n+l



chain after time n (n is the last time (Hn-Hn+I) occurs with positive

probability, i.e. n-sup{(-Hk+1) P(Hk-Hk+1) > 0))
k

The notion of a properly homogeneous chain for countable chains was

introduced in [11].

PROPOSITION i. If {Xn :n>. 0} is a properly homogeneous chain, then any null

set in is a small set.

PROOF. Suppose that A e’b and P (A) 0 Since

P (O-IAIXn x) P (AlXn_I- x) we can write

Pv(0-1A) I P(AIXn-I" X)Vn(dX)
But

Pv (A) I P (A X_ x)Vn- (dx) 0

and using n << n-I we get P (e-IA) 0 Inductively, we can prove that

P (0-hA) 0 for any n>.0 We show now that P (0A) 0 Indeed,

P (OA) I P(eAIXn-- x)n(dx)
Hn -Hn-i

v Hn+I
and since lira P (X

n e (Hn- Hn+I)) 0 P (CA) 0 and the proof can be easily
n.-o

completed.

Proposition 3(iii), 2.2 and the above Proposition i together imply

COROLLARY i. If {X :n.> 0} is a properly homogeneous chain and A is a
n

positive set, then p(enA) > 0 for all n e Z

The following result is due to Abrahamse [i].

PROPOSITION 2. Suppose that A 7 and that A A 0A is a small set. Then

A’ --U OnA is an invariant set and P (A’ A A) --0 for all starting probabilities

PROOF. One can easily check that U 8nA is invariant. Further, for any
n---
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n e Z

A A en (A CA) (A e2A) (on-lA A enA)

Applying Proposition 3, 2.2 we get em(A A CA) emA A em+iA for m O,l,...,n-i

It follows that P (enA A A) 0 for all n e Z and the proof is readily completed

on noticing that

P (A’ AA) P (U 0nAAA)-< 7. Pv(0nAAA) 0
n=- n=-

2.4 SPACE-TIME CHAINS. Denote by u the family of all subsets of N A

process {(X ,Tn) :n >.0} with T taking values in (N,) n--O,l is called
n n

a space-time chain (associated with {Xn :n >. 0}) if Tn+I Tn+ i In what

follows we suppose that {X :n >. 0} is a nonhomogeneous Markov chain and confine
n

our attention to the space-time chains for which T k for a certain k in N
o

i.e. the chain {(X ,n+k) n>.O}
n

Let (NxS) x (Nx S) x and (@J) x() The main

reason for the usefulness of the space-time chain concept is given by the

following:

PROPOSITION i. {(X ,n+k) :n >. O} for any k e N can be thought of as a
n

homogeneous Markov chain on the probability space (, ,PN) where P is

determined by the transition probability function

Pn(X,B) for xeS Be, m=n-1, n eN

P((x,m+k) B x {n+k})
0 otherwise

and the starting probability (k,-) (.)

PROOF. It is easy to see that the s step transition probability function

of the space-time chain is
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pm’m+S(x,B) for xeS, Be, n=m+s, m--0,1,...

(s) ((x,m+k); (B{n+k}))=IL 0 otherwise

(2.5)

Further

P ((Xn,n+k) e B x {n+k}lm pm’n(Xm, B P a.s. (2.6)

Now combining (2.5), (2.6) and taking into account the relationship between

P,.v and P we get

(n-m)((Xm,m+k) B {n+k}) P((Xn,n+k) e B {n+k} m P a.s.

Thus the formula (2.3) defining an homogeneous chain is verified and the proof

is complete.

Proposition i has been known for a long time in connection with the

Potential theory (see e.g. Doob [16]).

REMARK. The above Proposition asserts that a space-time chain turns a

nonhomogeneous chain into a homogeneous one. This is, however, done at the

expense of complicating the state-space of the chain. Also, since any state

(n,x) of this new chain appears only once (at time n-k) the absolute

probabilities () --P((Xn,n+k) e B) are mutually singular. Thus, such a chain
n

is improperly homogeneous in the sense of the definition given in 2.2.

However, we shall see further on, that there are still many properties of

homogeneous chains which applied to space-time chains yield relevant properties

of the original chain {X :n >. 0} even in the case when the original chain is
n

homogeneous. The following Proposition 2 is one of this kind.

PROPOSITION 2. The formulas

f
n (Xn’ Xn+l f (Xn’ n+k) (Xn+I n+k+l)

for n=0,1,.., with fn(Xn’Xn+l IA n=0,1,.., set up a one-to-one

correspondence between the events A of the tail o-field and the events
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A {f((Xn,n+k),(Xn+l,n+k+l),...} for n=0,1,.., of the invariant o-field

for any keN This correspondence preserves the probability, i.e.

P (A) P(%)

PROOF. Suppose that A Then there exists a real function f on
0

(S,) such that Y IA fo(Xo’Xl’’’’) If we further require that A

then there must exist a sequence of measurable functions on (S=, ) say

{f n>.0},such that
n

Y f (Xn,Xn+I ...) for n--0 1
n

If A e we have 0nY--Y for n--1,2,.., and in such a case there exists a

function f such that

Y f(Xn,Xn+I for n=O,l (2.8)

Reciprocically, if a set A satisfies (2.7) (or (2.8)) then A (or A ).
Suppose now that Y is the indicator of a set A in Then, according to

what we have seen before,Y can be represented as

Y f((Xn,n+k),(Xn+l,n+k+l),...) for n=0,1,...

But f((Xn,n+k),(Xn+l,n+k+l),...) fn(Xn’Xn+l n=0,1,.., and it is easily

seen that such equalities set up a one-to-one correspondence between and

Finally, P(A) P(A) follows easily from the definition of P

Proposition 2 is essentially due to Jamieson and Orey [27] (see also [36]).

3. REPRESENTATIONS FOR ASYMPTOTIC RANDOM VARIABLES AND EVENTS.

A transition probability kernel P defines a linear mapping on the set of

positive and -measurable functions into itself by

Pf(x) fP(x,dy)f(y) (3.1)
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If for any x e S Ph (x) h (x) h will be said to be a P-harmonic function.

Consider a sequence of transition probability kernels (P ;n >.i) h(x,n)
n

with x e S and n e N will be said to be a P-harmonic (or space-time harmonic)

function if P h(x,n)=h(x,n-l) for all x e S and n e N

We shall write h for h(n,.) and agree to suppress the qualifiers P and P
n

when referring to harmonic and space-time harmonic functions.

We notice easily that a state-space harmonic function is a harmonic function

corresponding to the space-time transition probability kernel P associated to

the space-time chain {(Xn,n) :n >.0} where the original chain {Xn :n >.0} is a

nonhomogeneous Markov chain with transition probabilities functions {P :n >. I}
n

In what follows we shall confine our attention to the bounded positive

harmonic (space-time harmonic) functions and we shall see that there is an

important connection between such functions and the invariant o-fields (tail

o-fields).

(X
n

:n>0}We notice first that whatever the starting measure {h )’
n

defines a martingale with respect to the probability space (, P Indeed

since h is positive and bounded,the. martingale property E(lh(Xn)l).. < is

satisfied, whereas the second property

E (h(Xn) n_I) h(X
n i

P a.s.

is a consequence of the Markov property and (B.I).

Since {h(X ), ;n 0} is a bounded martingale, the martingale convergence
n n

theorem ([31] p. 398) implies that

lim h(X X (3.2)
nn-

exists P a.s.. Thus, to each bounded and positive harmonic function there

corresponds a tail random variable X We can further check that X is P a.s.
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equal to an invarlant random variable (say) X’ Indeed, define X’()

llm inf h(X ()) Because 8h(Xn()) h(Xn+I()) we get that 8X() X() for
n

e { llm X ()--X()} whereas if belongs to the se{ llm inf X () #

X(m)} then %lim inf Xn () =lim inf Xn+l(m)=lim inf Xn (m) Hence X’(m) is

invarlant.

Reclproclcally, if X() is a bounded, positive and Invarlant random variable,

h(x) E (X) is a harmonic function. Indeed, the Markov property, the
x

measurability of X with respect to and the invariance of X yield

PE (X) fP(x,my)E (X)
x y

P(x,dy)E(e-iXIXl y)

fP(x,dy)E(XIXI y)

E (X)
X

for all x e S If we agree to call equivalent two invarlant variables X and X’

for which P (X # X’) 0 for any starting probability 9 then we can easily see

that to any variable Z from an equivalent class, there corresponds the same

harmonic function h On the other hand, if two harmonic functions h and h’

are not identical, i.e. there exists x in S such that h(x)#h’ (x) then the

variable X corresponding to h and X’ corresponding to h’ are not equivalent,

since taking 9 (x) we get E (X)# E (X’) Thus, we have proved the
X X

following basic result of Blackwell [4] (see also [8]).

THEOREM I. (i) Suppose that {X :n >.0} is a homogeneous Markov chain.
n

The formula

h (x) E (X)
X

set up a one-to-one correspondence between equivalent classes of positive,

bounded, invariant random variables X and positive, bounded harmonic functions
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h

(ii) {X
n
:n >.0 h and X are related by the formula

lira h(X X P a.s.
nn-

for any starting probability 9

Suppose that we associate to the coordinate variables {Xn} defined on

(,n) a nonhomogeneous Markov chain assuming the starting measure 9 and the

sequence of transition probabilities {Pk k >. n} Denote by pn the probability

measure on n determined by 9 and {ek: k>.n} We shall denote by E(YIXn=X)
the mathematical expectation of the random variable Y with respect to pn

x

where pn pnstands for with = (x) Two tail variables Y and Y’ will be said
X

to be equivalent if Pn(Y#Y’) =0 for n=0,1 and any starting probability

Theorem i has a parallel result for space-time harmonic functions and tail

o-fields, expressed by the following

THEOREM 2. (i) Suppose that {X :n>. 0} is a nonhomogeneous Markov chain.
n

The formulas

h(n,x) E(YIXn =x) n=0,1,.., xeS

set up a one-to-one correspondence between equivalent classes of positive,

bounded tail random variables Y and positive, bounded space-time harmonic

functions {h(n,x)

(ii) {P} {h(n,x)} and Y are related by the formula

lira h(n,X Y pm aoSo
n

for m-- 0,i,... and any starting probability v

PROOF. Consider the space-time chain {(X n+k) :n >.0} associated to
n

emthe chain {X :n >.0} assuming the probability measure Since according to

Proposition i, 2.4, {(X
n

n+k), n >. 0} can be thought of as a homogeneous chain

on a certain probability space (f,,Pm,)) h(n,x) is easily seen to be
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harmonic with respect to the transition matrix P defined by (2.4) and a

fortiori with respect to any transition matrix P associated to the measure
m

pm Further, the harmonicity of h(x,n) yields

h(n,x) E(h(n+l,Xn+I) IXn =x)

Thus {h(n Xn) n n >. m} is the convergent martingale corresponding to

{h(X :n>.0} in the previous Theorem i.
n n

Now Proposition 2 g2.4 and Theorem 1 given above provide the remaining part

of the proof.

Theorem 2 was given by Neveu [33] (p. 154). The proof given here is new.

COROLLARY I. Suppose that {X n >. 0} is a homogeneous Markov chain. Then
n

the following two conditions are equivalent

(i) All positive, bounded, harmonic functions are constant.

(ii) The invariant o-field is trivial under any starting measure 9

PROOF. Suppose that there exists a non-constant, positive, bounded,

harmonic function. Then there are two points xI
and x

2
such that h(xI) #h(x2)

Assume now that we take the starting measure to be 9 1/2(6(xI) +6(x2)) Then

according to Theorem 1 there exists a random variable X such that h(x)= E (X)
x

and E (X) # E (X) But if such a situation occurs, X cannot be P a.s.
xI x2

constant since in that case ExI(X) Ex2(X2) c where c is a constant with

P (X c) 1 and we would get a contradiction. The converse assertion is a

straightforward consequence of Theorem I.

Analoguously, Theorem 2 yields

COROLLARY 2. Suppose that {X n >. 0} is a nonhomogeneous Markov chain.
n

Then the following two conditions are equivalent

(i) All positive, bounded, space-time harmonic functions are constant.
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(ii) The tail o-field is trivial under any probability pn n-0 1

and any starting probability

Corollary 1 was proved by Blackwell [4]. Corollary 2 was given in

Jamieson and Orey [27] for homogeneous chains.

These Corollaries have some important consequences to Martin boundary

theory in connecting the harmonic (space-time harmonic) functions theory to

the theory of the asymptotic o-fields of the chain. This connection will be

more fully explored in the next chapter.

We shall next deal with representations for invariant and tail events. It

is assumed that 9 is fixed and we suppress the qualifier P when referring to

a.s. statements or null sets.

A set C in will be said to be almost closed if lim{X e C} exists a.s.
n

and P9(lim sup{XneC}) >0 B will be said to be a transient set if

lim sup{X e B} is a null set. Denote by the class of all almost closed and
n

transient sets by ’the class of all transient sets and by the class of

sets in which are null sets. It is easy to see that is a boolean algebra

and is an ideal in . Denote by /and / the quotient boolean

algebras obtained by factorizing and by and respectively. The

following result exhibits the relationship between the elements of / and

THEOREM 3. Suppose that {X :n > 0} is a homogeneous Markov chain. Then
n

to each invariant set A there corresponds a transient or almost closed set B

such that A lim{X B} a.s. according as A is a null set or not. This

correspondence is an isomorphism from / onto /
PROOF. Suppose that A is invariant and introduce the martingale

Since A Y the Markov property implies
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P (AI )--Px (A) a.s.. The martingale convergence theorem applied to
n

n

this bounded arttngale yields lira PX (A) 1A a.s.. The case P(A) can be

easily disposed by taking B-- Suppose that P (A)> O and define now

12 {x:P (A) 0.5} Then lira I{X e C} 1A a.s., which yields
x n n

lim{X EC} a.s.. Reclproclcally, suppose that llm{X eC} A existsn nn n-

a.s. for any starting measure Then llm inf{X C} U {X C} is an
n nn- n--o mln

invarlant event and P(IIm{XnC}_ a.s. A llm inf{Xn B}) 0
n+

The remaining part of the theorem is rather straightforward and will be

left to the reader as an exercise. Theorem 3 is due to Blackwell [4].

Theorem 3 llke Theorem i has an analogue for nonhomogeneous Markov

chains and tall a-fields which can be obtained by applying Theorem 3 to the

space-tlme chain.

Denote by the class of all sequences A= (Ao,AI, An’’’’ such that

iim{X eA exists P a.s. and P (llm sup{X A }) >0 and of all sequences
n n n nn->oo n->oo

A (Ao,AI,...,,...) such that lira sup{Xn CAn is a null set. Write for

the class of all sequences A (Ao,A1 ,An,...) such that lim sup{X e A
n nn-<=

is a null set andfor the class of all events in which are null. For

A (Ao,AI,...,An,...) and B (Bo,Bl,...,Bn,...) we shall define

oC c
A
cA

c
(A ,AI,... n,... ,AIB-- (AoBo, AliBI, Ank/Bn,...
(AI,A2,...,An+I___ ,...) and 8-1A (S Ao,...,An_l.. It is easy to8A

check that is a boolean algebra and is an ideal in Further/
and / will denote the quotent boolean algebras obtained by factorizing

randJ by and respectively.
THEOREM 4. Assume that {X :n >. O} is a nonhomogeneous Markov chain. Thenn



556 H. COHN

to each tail event A there corresponds a sequence (B ,B B
n

...) in
o i’

or - -" such that lim{X e B }= A P a.s. for any starting measure
n n u

n-

according as A is in or -. This correspondence is an isomorphism

from / onto

REMARK. The isomorphism stated by Theorems 3 and 4 as well as the one to

be considered in the sequel cannot be extended from Boolean algebras to

o-algebras,as can be seen from the following example: Suppose that {X :n >.0}

is a homogeneous Markov chain assuming only transient states. Then

P(X =i i.o)=O for any ieS whereas P(lim Inf{X S}) =P(lim sup{XnS}) =i
n

n-o
n

We next confine our attention to the tail o-field of a homogeneous Markov

chain and we shall show that an isomorphism of the type alluded to in Theorem

can be shown to commute with e for homogeneous chains if the null sets

considered in the statement of Theorem 4 are replaced by small sets.

A sequence A= (Ao,AI,...) will be said to be totally transient if

lim sup{X e A is a small set and totally non-transient if P (lim sup{X e A })
n n l# n n

> 0 and lira sup{X eA A lira inf{X eA is a small set. We shall say that
n n n n

A A lim{X e A a.s. is a small set if both A A lim inf{X s A and
n n n n

rr+ n-=
A A lim sup{X gA are small sets. Denote by the class of all sets in Y

n n

which are small sets, by ’and the classes of all totally transient and

totally transient as well as totally non-transient sequences respectively.

/and / will denote the quotent boolean algebra obtained by

factorizing and byand respectively.

The following Theorem 5 extends a result established by Abrahamse [i] for

countable chains.

THEOREM 5. Assume that {X :n >. 0} is a homogeneous Markov chain. Then
n
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to each set A in there corresponds a totally transient or a totally non-

transient sequence A= (Ao,AI such that A & lim{Xn eat a.s. is a small

set according as A is in or in- This correspondence is an

isomorphism from / onto / and commutes with 8

PROOF. We can easily check that is a boolean algebra and an ideal

in .on using elementary measure and set operations properties. Recall

n 0} used in the proof of Theorem 3further the martingale {P(A n :n >.

Under the assumptions of the theorem, we get that P(AIn =Px (snA) Thus
n

if we denote A {x P (snA) >0.5} then lim{X eA }= A a.s. Further, if
n x n_ n n

instead of A we consider the set 8A the same martingale argument as above

yields lim{Xn eAt+I}= 8A a.s. and thus the correspondence A / (Ao,AI,...)

commutes with But the same argument can be applied to kA for any k e Z to

}= 8kA a.s. and now using Proposition 3, 2.2 we get thatyield lim{X eA
n n+k

AAllm{X e A a.s. is a small set. Reciprocically suppose that
n n

(A ,AI
,...)e2. Take A=lim inf{X eA then AAlim{X eA a.s. is

O n n n nn- n-=

easily checked to commute with and to be a small set. Notice finally that

the totally transient sequences and the small sets if added or removed from the

and respectively, do not alter the above established correspondence

and the proof is now complete.

REMARK. The isomorphism stated in Theorem 2 is the restriction to the

subclasses and respectively of the isomorphism stated by Theorem 4

Indeed, to see this it is sufficient to notice that any null invariant set is

a small set and that for any C such that P(lim sup{X
n
eC})=0 lim{X eC} a.s.

n

is a small set.
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4. MARTIN BOUNDARY THEORY AND ASYMPTOTIC o-FIELDS OF MARKOV CHAINS.

Suppose that {X :n > 0} is a countable Markov chain assuming the state

space S and denote by pn(i,j) the n step transition probability from i to j.

Assume that the chain is transient and consider the Green function*

G(i,j) . pn(i,j)
n--o

where pO(i,j) i,j i,j
boundary kernel K by

being the Kronecker symbol. Define the Martin exit

K(i,j)
G(i,j)

(n) (j)
II=O

and consider the metric

d(xl,x21 . lK(i,x11 K(i,x2) 12-iui(l)
ies

where U. (i) is the probability that a path from i ever reaches i. The space S
1

is completed by adding limit points and so completed is a compact metric space.

Let S’ be the set consisting of the limit points of metrized S in the completed

space. The set S’ is called the Martin exit boundary of S. A harmonic

function h* is said to be minimal if for any harmonic function h such that

h(i) .<h*(i) for all i eS, there exists a constant c such that h=ch*. A point

in S’ is called minimal if K(.,E) is a minimal harmonic function.

The main object of the Martin boundary theory is the identification of the

class of all harmonic functions associated to a transition probability kernel

and for this it suffices to identify the minimal harmonic functions. Indeed,

if we denote by S the set of all minimal boundary points, then there is a
e

For clear surveys of Martin boundary theory for countable chains, the reader

can consult Neveu [34] or Kemeny Snell and Knapp [28].
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representation theorem for harmonic function, called the Martin-Doob-Hunt

integral representation, asserting that any harmonic function h can be

represented as

h(i) I K(i,)V(d)
S
e

V being a probability measure on the borelian subsets of S which is uniquely
e

determined by h

There is a useful criterion for minimality of a harmonic function, based on

examining the Martin boundary of the h-process associated to a harmonic function

h An h-process is a Markov chain assuming the transition probabilities

P(i,j)h(j)

Q(i,j)

0

if 0 <h(i) <=o

otherwise

If i is a minimal harmonic function for the h-process, h is minimal for the

original chain. Equivalently, if the only bounded, positive harmonic function

for the h-processare constant, h is a minimal harmonic function. According to

Corollary i, .3 this happens if and only if is trivial for the h-process and

therefore the identification of harmonic functions is essentially connected

with the structure of the invariant o-field.

If we consider the space-time chain derived from a nonhomogeneous chain

{Xn :n >.0} we get a rather simpler Green function:

G((m,i) (n,j)) pm’n(i,j)

where pm’n(i,j) P(Xn=JlXm=i) with i, j eS and m,neN and the same

arguments as before applied to the space-time chain, as well as the Corollary

2, 2 show that the identification of the space-time harmonic functions is
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essentially connected with the structure of the tail o-field T Thus

results concerning the Martin boundary theory for some types of chains as,

for example, those given by Lamperty and Snell [20] or Blackwell and Kendall

[5], etc. can be interpreted as assertions about the tail o-fields of the

chains.

The above mentioned results in the Martin boundary theory refer to

countable Markov chains. Some of these properties have been extended to more

general cases. However, the Martin-Doob-Hunt representation as well as the

most relevant properties of h-processes have not (at least not yet) been

extended beyond the countable case.

The connection between the Martin boundary theory and the theory of

invariant events developed by Blackwell in [4] has been remarked by Doob in

1959 [16 ]. The connection between the space-time Markov chains and the tail

o-field has been discovered only in 1967 by Jamieson and Orey [27] and

rediscovered by Abrahamse in 1969 [I]. Many authors of papers which appeared

in the meantime have been unaware of the fact that a result concerning the

Martin boundary of a particular chain was the same as a result formulated in the

language of the tail o-field in another paper and even recently some authors

seem unaware of this connection.

Moreover, there is more to gain by applying the Martin boundary theory to

asymptotic o-fields of a Markov chain and the object of the remainder of this

section is to point out some applications of this kind. Namelvo we shall

investigate some consequences of the basic almost surely convergence theorem

in the Martin boundary theory to the structure of the tail and invariant o-field

of a Markov chain.

Let % and be two probability measures. The Radon-Nykodim derivative of

the restriction of % to the sub o-algebra with respect to the restriction of



ASYMPTOTIC EVENTS OF A MARKOV CHAIN 561

to will be denoted by (dk/d)I Suppose that g(x,A) defined by

g(x,A) I Px(XneA)
n=o

is a regular kernel and define the measures

gB(A) . P(Xn eA)
n--o

and

gv(A) . P (X A)
n--o

Then both g and gv are o-finlte measures on Write now

g(dy) K(,y)gv(dy) + s(dy)

for the Lebesgue decomposition of g with respect to g Here s and g are

mutually singular on K(,x) is called Martin boundary kernel.

The basic almost sure convergence result in Martin boundary theory is the

following

THEOREM i. Suppose that {X :n O} is a homogeneous Markov chain. Then
n

dP
lim K,(,Xn) d--

Theorem I is basically due to Abrahamse [2] (see also Revuz [39]). It is

based on an idea used in the countable case by Hunt [24]. For an extension to

non-regular kernels based on Chacon-Ornstein ergodic theorem see Derriennic

[13]. Denote by F the set of all probability measures on We shall next

confine our attention to the case when is trivial with respect to any 9

in F

THEOREM 2. Suppose that {X :n >. 0} is a homogeneous Markov chain. Then
n

the following three statements are equivalent
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(i) is trivial with respect to any starting probability

(ii) The probability measures (Pv) e F agree on

(iii) lim K_(,Xn) =I P a.s.

for any U, 9eF
dP

PROOF Suppose that (i) holds. Then must be P a.s. constant

since it is -measurable. Assume that and are singular. Then there

exists a set H in such that P (H)=i and P (H)=0 If we consider the

starting probability I 1/2(+ 9) then P << P and P << P The only case

that does not contradict the singularity of P and P is when P (H) > 0 and

P%(Hc) >0 but such a situation is excluded by the triviality of with respect

to P% Thus (i) - (ii). Suppose now that (ii) holds. Then

dP
-i P a.s. and (iii) follows from Theorem i. Finally, assume that (iii)

dP

holds and is not trivial with respect to a certain starting probability

Then there would exist two disjoint invariant sets I
I

and 12 such that

Pg(I1) >0 and Pu(I2) >0 By the martingale convergence theorem

lim P_(Il.Ixn) iii P a.s. Thus there exists x in S such that
n-m

P (II) > P(II) But by (iii) one has P (II) Px(Ii) and this contradiction
x

completes the proof.

Write now

P(Xn edy) K(,y)Pv(Xn edy) + s(Xn edy)

for the Lebesgue decomposition of P with respect to P Here P and s are

mutually singular on It is easy to see that K ( y) is the Martin boundary

,n+’k nkernel of the Spac$-time chain (Xn" O} with k N Theorem i has an

analogue for the tail o-fields and nonhomogeneous Markov chains expressed by

the following
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THEOREM 3. Suppose that {X :n > 0} is a nonhomogeneous Markov chain. Then
n

lim K (,Xn) d P a.s.

The proof of this Theorem follows easily from Theorem I and Proposition 2 2.4.

The convergence of K (,Xn) in the countable case was proved by Doob [16]

[17] but the limit was not identified as in Theorem 3. The possibility of

extending Doob’s result to homogeneous chains with separable state space and

assuming transition probability densities was mentioned by Orey [36]. Theorem

3 contains all these results as particular cases and will be further seen to

yield a large number of results concerning the tail a-field of nonhomogeneous

chains.

Also, Theorem 2 has an analogue expressed by the following

THEOREM 4. Suppose that {Xn:n > 0} is a nonhomogeneous Markov chain. Then

the following three statements are equivalent

(i) is trivial with respect to any probability measure P with e r

(ii) The probability measures (P) e r agree on

(iii) lim K(,Xn) =I e a.s.
n->o

The proof of this Theorem follows easily from Theorem 3 and Proposition 2 2.4.

The following result gives a "0- 2 law" for nonhomogeneous Markov chains.

THEOREM 5. Suppose that {Xn:n > 0} is a nonhomogeneous Markov chain and

denote

Then

(i)

(x,y,m) limll pm’n(x, )-pm’n(y, )]I
n-

sup{liml pm,n pm,ng, II.. 9m’ m’ eF m=0,1,...}
n- m m

sup e(x,y,m) (0 or 2)
x, yeS,meN
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(ii) sup (x,y,m) 0 is a necessary and sufficient condition for the
x,ysS,meN

triviality of with respect to any probability measure m--0,1,.., and

PROOF. We shall apply Theorem 4 to the nonhomogeneous Markov chain

pmassuming the probability measure and take (y) Thus if is trivial
x

with respect to pm
X

lim K (y,X) I P a.s. (4.1)
n-

x n x

But

supIpm’n(x,A)-pm’n(y,A) .< sup[[ [I-KWx(y,z) IPx(Xn edz)
Ae AeJA

+ I [SY (Xnedz)[]
A

(4.2)

(4.1) together with Theorem 4ii) can be used in (4.2) to yield

limll pm,n(x, pm,n(y, )I[ 0

Thus u(x,y,m) =0 for x,yeS and meN. Notice now that

pm’n(A)-Pn(A) IP:’n(A)(dx) IP’n(A)’(dy)

which entails

liml[ m,nv pm,n[[, .< lim fill[ pm,nx em’n[ly (dx)]’ (dy) 0
n- n-

and the first part of the Theorem is proved.

Suppose now that there exists a probability measure v such that is not
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trivial with respect to P9 Then there would exist two disjoint sets in "
say TI and T

2 such that P(TI) >0 P(T2) >0 and P(TIU T2) =I Further,

by the martingale convergence theorem (see [31]) llm Pg(T21X2) IA2 P a.s..
n-

Assume now that e is a number with 0 < e < 1 and denote

Bln {x P(Tllxn x) >i- e 2 e} and Bn {x P(T21xn=x) >i- Then, we

can easily check that B1 and B
2

are disjoint for all n and that
n n

eBI}=T
1

P a.s. lim{X eB2}=T
2

P a.s.. Since{xlira
n n n nn- n-=

B
I

B21X x) P(T2Ixm x) for alllim e(x
n

e nlXm =x) P(TIIXm x) lim P(X
n

e
n m=

x eS we get for x EB1 and y eB
2

m m

limll pm,n(x pm,n(y, )ii >- lim sup(Pm’n(x BI) pm,n(y B)In

+ lim sup(pm’n(y,B2) pm’n(x Bn2))
> 2- e

and the proof is done.

As a corollary, we get the following "0-2 law" for homogeneous Markov

chains

COROLLARY. Suppose that {X :n >. O} is a homogeneous Markov chain and denote
n

8(x,y) limll pn(x, pn(y, )if
n-=

Then

(+/-) sup{liml pn pn
9 ,II 9 e F } sup 8(x,y) (0 or 2)

n+ x,yeS

(ii) sup 8(x,y) 0 is necessary and sufficient condition for the
x,yeS

triviality of Y with respect to any probability measure P with v e P

The equivalence between sup 8(x,y) 0 and the triviality of under any
x,yeS
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initial distribution was given by Jamieson and Orey [27] generalizing a result

due to Blackwell and Freedman [6 see also [20] and [35] For an

extension to a continuous parameter chain see Duflo and Revuz [18], and to the

nonhomogeneous Markov chains see Iosifescu [25 ], [26]. The remaining part of

the Corollary is due to Derriennlc [14] who used a combined martingale and

operator theory * approach to prove the entire Corollary. The proof given

here is new.

Let and be two sub u-fields of such that . We shall say

such that P(AAA’) =0

The following "0-2 law" gives a criterion for T P a.s. for any

THEOREM 6. Suppose that {X n >. 0} is a homogeneous Markov chain and

denote

(x) limll p(n)(x, p(n+l)(x, )II

Then

(i) sup{limll pn, _pn+l’II e F} sup y(x) (0 or 2)
n-= xeS

(ii) sup y(x) 0 is a necessary and sufficient condition for
xeS

a.s. with respect to any starting measure with e F

PROOF. If we proved that lira Kx(Px,Xn --i Px a.s. for any xeS then

as in the proof of Theorem 5 we can show that y(x)=0 for any xeS Also to

prove that we can replace x by an arbitrary measure 9 we can proceed as in the

proof of Theorem 5.

* For basic methods of the operator theory pertinent to Markov chains see

Foguel [19].
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Suppose that iim Kx_n_(Px’x) # I Px a.s. for some x and denote
n-+

dPPx IA { >I} Then, according to Theorem 3 we have P (A)>0 and
dP

x
x

Pp (A)>Px(A) which entails Px(8-1A) > Px(A) But = P a.s. for all
x

9 e r and therefore there exists an invariant set A’ such that P (AA A’)=
x

Pp (AA’) 0 Thus Pp (A) Px(e-IA) Px(A) and we have got a
x x

contradiction that proves the "0" part of the theorem.

Suppose now that there exist a starting probability ) and a set A in

such that P (A)> 0 and P (A 8-1A)> 0 We assume without loss of generality

that A and 8
-I

are disjoint, since otherwise in view of Proposition 2, 2.2

we can arrange to have such a situation by taking A % (8-1A) c
instead of A

Suppose now that we choose a number e with 0 < e < I and denote

An {x P(A Ixn=x) > i- } Then by an already familiar reasoning

lim{X eA A P a.s.. Further since P(8-1AIXn+I =x) =P(AIX =x) and in
n n 9 n

n-=

view of the dlsjointness of A and 8-1A one must have A /%
nA+I @ for all

n

n Finally, as in the proof of Theorem 5 we get

iiml p(n)(x, )-P(n+l)(x, )II >- iim(P(n) (n+l)
(x,An) -P (X,Anl)

n-> n->

+ lim(p(n+l) (X,An+l) p(n) (X,An+l))
n-o

> 2 e

and the proof is complete.

A result of the type of Theorem 6,called "0- 2 law" was first given by

Ornstein and Sucheston [37]. Theorem 6 was given by Derriennic [14]. A

related result was obtained independently by McDonald [32]. The proof given

here is new.
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There is yet another "0-2 law" due to Derrlennlc [14] which gives a

triviality of with respect to P for any e F namelycriterion for the

THEOREM 7. Suppose that {X :n > 0} is a homogeneous Markov chain andn

denote

6(x y) lim i__ II (p(1)(x p(i)(y,. ))IInn-= i=l

Then

i (i) ("(i) sup{iim E II L (P P ,i))II 9’ e r} sup 6(x,y) {0 or 2}
i=l x,yeS

(ii) sup 6(x,y)--0 is a necessary and sufficient condition for the
x,yeS

triviality of with respect to any probability measure P with v e F

At first sight, the assertion of Theorem 7 seems unexpected, since unlike

Theorems 5 and 6, the total variation property appearing in it does not look

like a consequence of a previously given almost sure convergence result.

However, we shall now see that Theorem 7 is related to Theorem i, as well as

to an almost sure convergence property based on Chacon-Ornstein ergodic theorem,

established by Derriennic in [13].

Theorem i was given under the assumption that g was a regular kernel.

However, under more general conditions (see Derriennlc [13]), it can be shown

(n) n (n) n
that if we denote g (A) [ P(XleA), g (A) [ P (X

i
cA) and write

i=o i=o

(n) (dy) Kn(,y) -(n) (dy) + s
(n) (dy)g g

(n)
thenfor the Lebesgue decomposition of g with respect to g(n)

llm K (,X)n_ lira Kn(,X) e a.s.. If is further assumed to be trivialn

with respect to P then lira K"(,X) i P a.s. and
n

n-o
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g U g9 (A))
n- i=l n-= AeB

llm I IKv(n) (V,y)-i
(n) (dy)g9

Here

(n)g
.< i and since llml K(n) (,Xn) -xl 0 P a.s. we can see that

n-oo

Theorem 7 is equivalent to an assertion that a certain integral converges to

0 when the integrand tends to 0 with respect to some measure P

(n)
Because K (n)

(,S)-- and the measure is not P but
g

such a result
n

is not a consequence of a theoretical result from the Integration theory,

although it is likely to be obtainable directly.

Suppose that for any x in S, P(x, is absolutely continuous with respect to

a measure m i.e. that P(x,dy)--p(x,y)m(dy) Then for any n >. i

(n) (n)p(n) (x,dy) p (x,y)m(dy) and Pg(Xn e dy) p

(n)
(y)m(dy) wherePU

(y)m(dy) P (X
n
dy)

(n) (y) | PP
(n) (x, y) x(dx)

and

n) I (n)
p (y) p (x,y)ti(dx)

n
(i) (i)Denote n(B y)= I P (Y)/P (Y)

i=l
Then it is easy to see that n(,y)=

Kn(tl y)

In [13] Derrlennic has proved a general result which can be applied to

n( y) to yield lim ( Xn) =i if is trivial with respect to P The
n-conditions of Derriennic’s result include both instances of the dissipative

case (when g is a regular kernel) as well as of the conservative case (when g
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is infinite with positive probability). Thus, such results are connected

with Theorem 7.

There is another aspect, worthwhile to be mentioned, in relation to

n(,y) If we apply the space-time chains considerations to n(,y) in the

same way as we did in the proof of Theorem 3, we get that

itm
n- p(n)(Xn)

--i P a.s. if and only if "5 is trivial with respect to P

Then, as in Theorem 6 this can lead to a "0-2 law" for expressions llke

II p(n) (x, p(n+l) (x, )II under the assumption that the densities

{p(x,y) x e S} exist. In other words the Chacon-Ornsteln ergodlc theorem [7]

used in [13] turns out to imply, in the long run, the Ornsteln-Sucheston

"0-2 law" [37]’.

5. STRUCTURE RESULTS FOR ASYMPTOTIC o-FIELDS.

We shall consider the vector chain {n n >0} with Xn= (Xn(1)’X(2))n n >0

^ (I)
defined on the probability space (, ,P) {X n > 0} and {X (2) n > 0}

n n

being two independent copies of {X :n O} and P P I P

Throughtout this section we shai1 assume that , ts separable, i.e. is

generated by a countable collection of sets AI,A2,
Let f be a real measurable function of 2n variables and define for anyn

x,y e S the set function

n(x’y;A) fn(P(x’A)’’’" ,P(n) (x,A) ,P(y,A),... ,P(n) (y,A))

In what follows we shall need the following Lemma (see e.g. [37]).

LEMMA. For any n=0,1,.., the total variation of n’ II nll is a

measurable function with respect to

PROOF. Denote bYk the o-fleld generated by the sets AI,A2 ,
k

k =1,2,... and by n(X,y .) the restriction of n(X,y: -) to the o-field
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k By a version of martingale convergence theorem ([31])

dnk(x,y; dn(x,y;
lim
k-= dln(x,y; )I dln(x,y; )I

a.s. with respect to ln(X,y; )I and Ll(ln(x,y; )I) Hence, the sequence

of measurable functions

n dln(x,y; )I
dln(x,y; )1

converges as k / to

II dn (X’y; ")

d[n(X,Y; )I
dln(X,Y; )1 II n(X,Y; )11

which is therefore measurable.

Let us now consider, for any nonnegative integers m and n the random

variable

= (=) II Pm’n(X_I)" pm’n(x(2)
m,n m

and denote by T the completely nonatomic set and by TI,T2,... the atomic sets
o

occurring in the P representation of corresponding to

Consider the following condition

CONDITION (C). Let {X :n >. 0} be a nonhomogeneous Markov chain. Then for

any m=0,1,.., and u=1,2,... {(x,y) IT is either atomic for or a null set
m u

with respect to pm I
((x) + (y))

REMARK. The separability of as well as Condition (C) are satisfied by

any countable nonhomogeneous Markov chain. Indeed, the separability of is

trivially satisfied, whereas Condition (C) is a consequence of the absolute

m (m)
continuity of the measuresP1/2((x)+(y)) with respect to whenever

(m) (m)(x) >0 and (y) >0
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The following result will give a characterization of the completely

nonatomic and atomic sets of by means of { ()}
m,n

THEOREM i. Suppose that {X :n 0} is a nonhomogeneous Markov chain

satisfying condition (C) and is separable. Then

(1) There exist the limits

lim e () a
m
()

m,n
n+

lim () ) P a.s.
m 9

n-

(ii) () 2 for P almost all eT T u T T
) o o uu u u

e() 0 for P almost all eT x T u=l,2,...
) u u

PROOF. We shall first show that for any fixed m x and y

II pm’n(x, )-em’n(Y,. )If fs nondecreasfng with respect to n Indeed, if we

denote ’ {AxBIAe, B e} then

II em,n+l(x, )-pm’n+l(y, )Ii "< Ae2s, IPmx ((Xn’xn+I) cA)

P (X
n ,Xn+I) e A)

Ae’ B B

..< 2sp [pm,n(x,A) -pm’n(y,A)] [I pm,n(x, -pm’n(y, )[i
Ae5’

implies that llm () () exists for all The existence of a()This
m

will be proved in the course of the proof of (ll).

Since T is completely nonatomlc, for any e >0 we can find n(e) disjointo

sets T(1),...,T(n(e)) In such that T --T(1)VT(2)%2 VT(n(e)) and
o

0 <P(T(s)) < e/4 for l.<s.<n() (see e.g. [38] p. 81). Let

B (s) {x:P(T(.s)]X s >i-e/4} As we have seen before (in the proof ofn n

Theorem 2, 3) we can get that llm{X e B (s)}--T(s) a.s. with respect to P
n n )

n-+
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for s =1,2 n(e) Since for m sufficiently large B (s) and B (s’) with
m m

s#s’ are not empty we can find xeB (s) and y eB (s’) such that
m m

liml pm,n(x, pm,n(y, )II >-
n-o

lim(pm’n(x,B (s)-pm’n(y,B (s))+
n n

lim(Pm’n(y,B (s’) -pm’n(x,B (s’))
n n

n-o

P(T(s) IXm x) P(T(s)IXm y) +

P(T(s’) IXm =y) -P(T(s’)IXm =x)

>. i- el4 el4 + I- el4 el4

Since by the above Lemma {a () are random variables, lim inf () is also
m,n m-=

m

a random variable and lim inf () >. 2- e for P almost all eI(s) xI(s’)
mn-m

However, we can split each of the sets T(s) s =1,2 ,n(e) into disjoint

subsets whose probabilities are smaller that e’/4 for any preassigned e’

smaller than e Using the same reasoning as above we get, in particular,

that lira inf (m)> 2-e’ for P almost all m eT(s)T(s’) and because we can
n

apply this to any subset of T(s) s =I ,n(e) we deduce that (m)=2 for

P almost all eT T
o o

The proof of ()=2 for e almost all e U,T x r
u

is easier and will
UU U

be left to the reader as an exercise.

We shall now prove that ( =0 for P almost all T x T u =1,2,...
u u

Denote A {(x,y)IT is atomic in or null, with respect to
m u

pm. and notice that for any (x y)A
m

dpm/ =c (x y) is
((x) + (y)) x dpm n

y T
u

a constant and 0 < c (x,y)< Indeed T must be atomic or null with respect
m u
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pm pmto and since these two probability measures are absolutely continuous
x y

with respect to pm pmFurther, if Cm(X,y) were 0 or
x

and((x) + (y))
pm would be singular on T i.e. there would exist a set H T with He
y u u

such that pm(H)=0 and pm(H)=i But in such a case H and H
c
would be sets

x y

in with pm m
(H) > 0 and P1/2((x) + (y)) (Hc) > 0 which contradicts((x) + (y)

^ dP
m pm(T

assumption that (x y) e A Thus c (x,y) --x x uthe Define
m m dpm T

u pm(T
y y u

further A (u) {x :P(T _IXn=X) > i-} and take (x y) (A_(U)n x A_(u))n A
n u n

Making use of Theorem 3, we get

pmlim m(x,X c (x,y) a.s. on T
n-o Y n m y u

Since for any A in

I mpm,n(x,A) -pm’n(y,A) .< [l-Kv(X,z) IPy(Xn edz)
A

we are led to the inequalities

lim sup sup (pm,n(x,A) pm,n(y,A))
n- Ae

tim In-o A (u)
n

Ii m(x Xn) IP (X edz)
y y n

+ lim sup pm,n(x Ac(u))
n

n-+oo

Ii Cm(X,y)IP(Tu) + e

(5.2)

pmIf we take into account that pm(T >I- (T) >i- and i- e <c (x,y) <
x u y u m

1
I- e (5.2) yields

I pm n pm,nlim II (x, (Y, )II -< max(e i:)P(T +e
U

Since the quantity on the right side of (5.1) can be made arbitrarily small
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by choosing e sufficiently small we get (m)= 0 for P almost all

eT T u=l,2,.., and the proof is complete.
u u

characterization of completely nonatomic sets of for a countable chain

was given in [i0].

Define now for any nonnegative integers m and n, the random variable

(m) i
i (n)

(.) pm,n(Xn, II
The following result gives a characterization of the tail o-field

structure by means of the sequence {8m,n(m)}
THEOREM 2. Suppose that {X :n >. 0} is a homogeneous Markov chain

satisfying Condition (C) and is separable. Then

(i) There exists the limits

lim 8m, n(m) 8m (m)

lim (m) (m) P a.s.
mm-=

(ii) 8(m) 0 for P almost all m eT
9 o

8(m) P(T for P almost all m eT u>.lu u

PROOF. As in the proof of Theorem 1 we can use simple inequalities to

prove that llg(n)(-)-pm’n(x,- )II is nondecreasing with respect to n

Indeed, we can start off by writing

(n+l) pm,n+l (x,.)If .< esup IP((xn,Xn+I) eA)

Pxm( (Xn,Xn+I) e A)

A B A B

and complete the proof in the same way as in the proof of Theorem i. Here A

and ’ are the same as defined in the proof of Theorem i. Thus

lim B (m) B (m) exists for all m fl The existence of B(m) will be provedm,n mn-oo
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in the course of the proof of (ii).

Notice now that we can write

(n) n I n pm,n (m)
v (A)-Pm’ (x,A)= (pm, (y,A) (x,A)) (dy)

for any A in . Thus

(m)(m) 1 sup (pm,n (y,A) pm,n (x,A)) (dy)8m’n Ae
Choose further a sequence {B (u) n >.0} such that lim{X e B (u)} =T

n n n u
n+

for u 0,I and write 8 as
m,n

(m)
8m, n () i Aesup B

m
(u)

(pm,n (y,A) pm,n (Xm,A)) (dy)

(m)+
Bc(u)

(pm,n(y,A) pm,n(Xm,A))9 (dy)

m

If we take into consideration that

lim lim I pm,n(y,Bn(C)(u))
n-= B (u)

m

(m)(dy) lim lim In+ B
c (u)
m

pm,n(y,B (u))9

=0

we get that

8(m) lim lim 8m,n
n-o

(m) =l-lim lim sup
m-= n+ AgBm(U) B

m
(u)

(pm,n(y,A) pm,n (Xm,A))

P

lim lim sup |

m-= n+ ABC(u) JBmcm
(u)

(pm,n (y,A) pm,n (Xm,A))9
(m)

(dy)

a,So

(m) (dy)

(m)
(dy)

(5.3)

P a.s. provided that the limits appearing on the right side of (5.3) e.xist

P a.s. But a scrutiny of the proof of Theorem i above reveals that

these limits exist and that
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lim lim sup
m- n- AB (u) B (u)

m m

(pm’n(y,A) -pm’n(x ,A))(m)(dy)
m

P(Tu) P a.s. if u =0

0 if u>l

and

lim lim sup
c Jm-= n-= AB (u) Bc(u)
m m

(m)(pm,n(y,A) -pm’n(x ,A)) (dy) I-P (T)
n u

P a.s. for u=0,1,.., and the proof is complete.

A result of the type of Theorem 2 as well as the Corollaries given below

were given by Cohn [9],the transition probabilities appearing in it being

replaced by the backward transition probabilities. Griffeath has used a

"coupling" method in [21] to show that a dual result can be obtained using

instead the forward transition probabilities. For a martingale proof of this

result see [i0]. Further Griffeath has extended this result to the case when

is polish in [22]. Here we have used a different approach to frther extend

this result to the case when is only assumed to be separable.

COROLLARY i. (i) 8(m) 1 P a.s. if and only if is trivial with

respect to P
I

(ii) B(m) > Pv a.s. with O< .< if and only if is

finite with respect to P
(iii) B(m) > 0 P a.s. and (i) and (ii) do not hold if and

only if is atomic with respect to Pv
(iv) P(() 0) > 0 if and only if is nonatomic with

respect to P
PROOF. The Corollary is an immediate consequence of Theorem 2 the only
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I
point needing a proof being that if B(m) > P a.s., then B(m) i P a.s.

Indeed, if B(m) > P a.s.. with >O is at most finite and in such a

1
case there must exist an atomic set T such that P (Ti) .<

i

Conditions for the finiteness of were previously given by Bartfai and

Revesz [3] and losifescu [26].

COROLLARY 2. If P (B(m) > O) > 0 and we denote the probability

distribution of B by

0 xI x
2

B

P1 PPO 2

then contains Pi/x. atomic sets having probability x
i

i >. I
1

iPROOF. Let us denote by {T
k

k= l,...ki the atomic set of J which have

the same probability. Then by Theorem 2, P (T)=xi
k=l,.., k

i
Thus

the number k. is equal to Pi/x and the proof is complete.
1

1

The following result is a straightforward consequence of Theorem 2.

COROLLARY 3. The tail o-field of the sequence {X :n O} has the same
n

structure as the tail o-field of any of its subsequences {X kO}
n
k

We shall further show that we can establish results analogous to Theorems

1 and 2 given above for the invariant o-field of a homogeneous Markov chain.

In analogy to Condition (C) we shall consider

CONDITION (C’). Let {X :n O} be a homogeneous Markov chain. Then for
n

any m=O,l and u=1,2

%{(x,y) ll is either atomic for or null with respect to
U

P1/2((x) + (y))} 1

Let us define, for any integers m and n the random variable
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and denote by I the completely nonatomic set and by 11,12,... the atomic
o

sets occurring in the P -representation of corresponding to

The following result will give a characterization of the completely

nonatomic set and atomic sets of by means of {Ym,n ()}
THEOREM 3. Suppose that {X n O} is a homogeneous Markov chain

n

satisfying Condition (C’) and is separable. Then

(i) There exist the limits

lira Ym,n() ym()
n-

lim ym([) y() P9 a.s.
m-

(ii) ^y() 2 for P almost all I x I I xl
o o uu u u

y(m) 0 for P almost all el I u =1,2
u u

PROOF. It is easy to see that
i II (p(i)(x, -P(i)(y, ))II converges

i=l

for any x and y fixed, as n goes to (see e.g. [14] p. 115) since if we

n
denote f(n) II . (P (i)(x, -P (i)(y, ))ii then f(n) can be shown to be a

i=l

subadditive function i.e. f(m+n).< f(m)+f(n) for all m n N and therefore

inf f(n)/n Hence lim Ym,nlim f(n)/n () =Ym() exists for all e
n- n>.l n-

The existence of "(m) will be proved in the course of the proof of (ii).

Since I is completely nonatomic, for any e > 0 we can find n(e) disjoint
o

sets l(1),...,l(n()) in such that I =I(I) UI(2)7... dl(n(e)) and
o

0 <P(l(s)) < e/4 for i.< s.<n(e) Let C(s) {x P (l(s)) > I- s/4} As we
x

have seen in the proof of Theorem 3, 3, we get lim{X e C’(s)} l(s) P a.s.
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for s=l 2, n(g) It follows that lim P(n)(x C(s))=P (l(s)) Take now

n.->.oo

x C’(s) and y C’(s’) with s# s’

Then

lim _I II n (P(i)(x -P(i)(y, )II >-
nn-= i=l

lim
I (p(i)(x C(s)) -P(i)(y,C(s))) +

n- i=l

lim _i (p(i)(y,C(s,)) _p(i)(x,C(s,)))
n-o i=l

>.2-s

Thus lim inf v(m) >2- for P almost all m sI(s) XI(s,) and as in the proof

of Theorem 1 we can conclude that 2 for P almost all m el I
O O

The proof of ’()-2 for Pu almost alI 0e I xi is easer and [11

UU U U

be left to the reader as an exercise

e shall now prove that ( 0 for almost all meI xi u1,2,...
U U

According to eorem 1 of [14] for any x y e S

lim
i II

n
(p(i)(x )_p(i)(y,. ))II-< 2 sup (P CA)-P CA

n Ae (x y) x y
n-o i=l

where (x,y) is the invariant o-field of the Markov chain assuming the

starting measure 1/2((x) + (y))

According to Condition (C’) there is a set A of points (x,y) with
m

(Am) i such that lu is atomic or null with respect to P((x)+ (y))

m=O,l Further (5.4) implies

(5.4)

for

lim
i II n. (P(i)(x P (i)(y, ))ll
nn- i=l

(5.5)
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.< 21P (I) P (I))I + 2 sup (P (A) P (A))
x u y u Ae..-(x,Y) x y

AIc
u

Choose now Cu(S)= {x Px(lu) >I- s/4} and take x y SCu Then (5.5)

implies

lim in II (P(i)(X(1)=xm )-P(i)(x 2)=x, ))II .< 2 + 2 s
n-o i=l

for any (x y) SAm(U) (C (s) xC (s)) But
u u

lim Pv{(X l),x(2))m SAm(U)/(Cu(S) XCu(S))} p2(lu)
m+oo

and the proof is complete.

Define now, for any nonnegative integers m and n the random variable

, (o) 1-
1

n (i+rn)
m,n n II (

i=l
(.) _p(i)(Xm, ))II

The following result gives a characterization of the invariant o-field

structure by means of the sequence {8 ()
m,n

THEOREM 4. Suppose that {X :n >. 0} is a homogeneous Markov chain
n

satisfying Condition (C’) and Ois separable. Then

(i) There exist the limits

lim () ()
m,n m

lim (m) () P a.s.
m v

m+

(ii) (m) 0 for P almost all m sl
x) o

(m) P(I for P almost all m sl u=1,2
u M u

PROOF. As in the proof of Theorem 3 the convergence of the quantity

i II ((i+m)(.)_p(i)(x )II for any x fixed is a consequence of then
i=l

n
(i+m) (i)

subadditivity of I[ ( (.)-P (x,’))II which can be shown to be
i=l
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entailed by the triangle inequality and the inequality

n+l (i)II . (,(i+m)(.)_p (x,-))II-<
i=2

n

2sup I [Pv (Xi+m,Xi+m+I) s A) Pu (Xi+m,Xi+m+I) e AIXm x)
Ae’ i=l

n
(i+m) (i)

-< II . ( (’) P (x, ))II
i=l

has a proof analogous to the parallel result for {Sm,n given at the

beginning of the proof of Theorem 2. In rest the proof can be carried out as

in the case of Theorem 2, if one takes into account the changes occurring when

considering invariant sets rather than tail sets which were manifest in the

proof of Theorem 3. Theorems 3 and 4 extend the results established for

countable chains in [ii].

COROLLARY i. (i) (m) i P a.s. if and only if is trivial with

respect to P

finite to P

i(ii) (m) > P a.s. with 0 < ,< if and only if is

(iii) (m) > 0 P a.s. and (i)and (ii)do not hold if and

only if is atomic with respect to P
(iv) P(() 0) > 0 if and only if is nonatomic with

respect to P

COROLLARY 2. If P ((m) > 0) > 0 and we denote the probability distribution

of by

0 xI x
2

P0 PI P2
atomic sets with respect to P having probability x

i
then tains Pi/x.con

1
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i>.l

The proof of these Corollaries can be carried out as those of the

corresponding Corollaries after Theorem 2.

We notice that Corollary 3 after Theorem 2 does not have a counterpart

for invariant o-fields following from Theorem 4. In fact a result of this

type does not hold for the invariant o-field.

We shall next consider another characterization of the atomic sets of the

tail o-field of a homogeneous Markov chain.

Suppose that T is an atomic set of Then for any kl P (T@kT)
is either 0 or equal to P (T) We are therefore led to consider the

quantity d defined as

@kd=inf{k >0 T=T a.s. with respect to P

and agree to take d== if there is no integer k such that kT=T P a.s.

d will be said to be the asymptotic period of the set T

THEOREM 5. Suppose that {X :n >. 0} is a properly homogeneous Markov chain
n

and d the asymptotic period of the atomic set T of Then

(i) If d=,then there exists a sequence {B :n >.0} of mutually disjoint
n

sets of such that lim{X eB }=T P a.s.
n n

(ii) If d <= then there exists a sequence {B n >. 0} of sets of with
n

Bnd=Bo Bnd+l=B1,...,B(n+l)d_l=Bd_l for n=0,1, where

{Bo,B1 Bd_1} are mutually disjoint sets, such that lim{X eB }=T P a.s.
n nn-+.

d
(iii) In either case Bk

is an atomic set of
k=o

PROOF. A consequence of Proposition i, 2.3 is that if A is a set in T
with P(T) >0, then P(kA) >0 for all k eZ Further if T is an atomic set of

then the sets kT with k eZ will also be atomic sets of Indeed
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P -(0kT) > 0 for all k eZ and if we suppose that 0kT for a certain k is not

atomic then there would exist two disjoint sets in say, T’ and T"

P (T’) >0 P (T") >0 and 0kT=T’ U T" But according to Proposition 3 2.2

we get 0-k(0k T) T 0
-k T’ U 0-k T" Since 0-k preserves the disjointness

-kof sets and by Corollary i after Proposition i 2.3 we get P (0 T’) > 0

P (0-kT’’) > 0 and the atomicity of would be contradicted. Thus 0kT with

k Z are all atomic sets of and are either such that P (0mT fI0nT) =0 for

m#n with m, n eZ in which case d= or there exists a number k with

T= 0kT P a.s. in which case d <

Suppose now that we choose the sets {B such that lim{X eB }=T P a.s.

as defined in the proof of Theorem 5, 3 i.e. B {x:P(T X =x) >1/2} forn n

n=O,l We have lim{X eB }= 0kT P a.s. on applying Theorem 5, 3.
n n+k

Since P (Tr30kT) =0 we get

I>.P (Tu0kTIx =x)= P (TIX =x)+p(0kTIx =x)

P(TIXn x) + P(T IXn+k x)

If we assume that there exists x in BnfBn+k then (5.6) yields

i >.e(rIXn=X)+P(rIXn+k=X)>1/2+1/2--I which is absurd. Thus P(T0kT) =0

implies the disjointness of Bn and Bn+k for all n and k and (i) and (ii)

are proved.

To prove (iii) it will suffice to show that

0nT= lim{Xn e k__oBk P a.s.

It is clear that I 0nT belongs to In addition, we can prove that
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I is an atomic set of - Indeed, if we admit the contrary,since T is an

atomic set of and I can be expressed as a union of mutually disjoint sets,

we would get that a subset of I (say) I’ in with 0<P (I’)<P(I) will

of T (say), T’ in with 0 <P (T’)<P(T)entail the existence of subseta

which is absurd.
d

the set C={x :P(llX =x)>1/2} Then C .-Bk This entailsConsider. now
o k=o

d
I={X e{ Bk

i.o.} Furthermore

P (I)=P( k{x e B all large n})
k=_

n n

=P(Xn eBn+k all large n some k)

.< Pv (X
n

e koBk= all large n)

and the proof is complete.

Theorem 5 was established by Abrahamse [I] in the case of a countable

chain assuming a restriction on the chain which is satisfied by the properly

homogeneous chains considered above.
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