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We propose and study an appropriate analog of normal Lie subgroups in the supergeo-
metrical context. We prove that the ringed space obtained taking the quotient of a Lie su-
pergroup by a normal Lie subsupergroup, is still a Lie supergroup. We show how one can
construct Lie supergroup structures over topologically nontrivial Lie groups and how the
previous property of normal Lie subsupergroups can be used, in order to explicitly obtain
the coproduct, counit, and antipode of these structures. We illustrate the general theory by
carrying out the previous constructions over the circle, which leads to non-abelian super
generalizations of the circle.
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1. Introduction. We can associate to any differentiable manifold M the commu-

tative algebra C∞(M) of all smooth functions on M . Reversing the emphasis, we

may regard C∞(M) as the primary object, since all of the fundamental concepts of

differential geometry (tangent vectors, vector bundles, differential forms, etc.) involve

constructions directly related to C∞(M). Seeking for generalizations of the notion of

manifold, it is natural to remove the commutativity property of C∞(M) and consider

appropriate generalizations of the sheaf structure of C∞-functions, thus preserving

a rich geometrical content related to the differentiable structure of the manifold M .

In particular, the approach of [2, 3, 9, 11], which led to supermanifold theory, is of

interest for us.

Supermanifolds and Lie supergroups are of particular interest in modern physics

and mathematics as well. Indeed, they provide the natural mathematical context for

supersymmetric field theory and supermechanics (see [1, 4, 5, 7, 9, 12, 17]) and on the

other hand, they have interesting applications in geometry, analysis, and representa-

tion theory (see [2, 6, 9, 11, 13, 14, 15]). In particular, recognizing the Lie supergroups

as symmetry groups for Hamiltonian supermechanics [1, 8, 9] and supergauge theory

[7, 12, 17], opens an exciting interaction between the physics of systems with spin

and the representation theory of Lie groups. Taking into account that, usual symme-

try groups (as, e.g., the circle S1 of electromagnetism) have no uniquely defined super

generalization, as we will explain, the situation becomes even more interesting.

Our aim in this paper is to discuss the supergeometrical analog of the notion of

normal subgroup and to apply the results in the construction of Lie supergroups.

Normal Lie subsupergroups are introduced in Definition 3.1. This definition is nat-

ural and preserves, in the setting of supergeometry, the basic property of normal

subgroups: quotients by normal Lie subsupergroups are still Lie supergroups (see

Proposition 3.2).
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Using this property, we show in Proposition 4.1 that each Lie supergroup (G,�)
can be obtained as a quotient of its universal covering supergroup by its fundamental

group. The consequences of this statement in supergeometry are immediately visible:

if we can find Lie superalgebra structures on g = Te(G,�) other than the one defined

by the Lie supergroup (G,�), then we can integrate these Lie superalgebra structures

to Lie supergroup structures on the universal covering of (G,�). If, for some of these

structures, the fundamental group ofG is a normal Lie subsupergroup, then we obtain,

by taking the quotient, Lie supergroups isomorphic to (G,�) only as supermanifolds

(not as Lie supergroups). Thus, given a topologically nontrivial ringed space with a

Lie supergroup structure on it, we have a method to construct explicitly other Lie

supergroup structures nonequivalent to the given one.

Another consequence of Proposition 4.1 is that a Lie superalgebra g does not neces-

sarily integrate to a Lie supergroup (G,�) when the underlying Lie group G is not sim-

ply connected. Indeed, the Lie superalgebra integrates uniquely to a Lie supergroup on

the corresponding simply connected ringed space (Ĝ,�̂), but if the fundamental group

π1(G) is not a normal Lie subsupergroup of (Ĝ,�̂), the quotient (Ĝ/π1(G),�̂/C∞),
which is isomorphic as a supermanifold to (G,�), does not have a Lie supergroup

structure with Lie superalgebra equal to g. More specifically, we propose an algorithm

for classifying all the Lie supergroup structures having as base manifold a given Lie

group (see the remarks after the proof of Proposition 4.1).

We finally apply this algorithm in order to find all possible supertoruses of dimen-

sion (1,n). The results are summarized in Theorem 5.4 and, as one may expect, a

Lie superalgebra of dimension (1,n) does not necessarily integrate to a supertorus.

Explicit formulas for the coproduct, counit, and antipode on these supertoruses are

also presented. Note here that our explicit constructions of Lie supergroups are based

on the techniques of [10].

2. Preliminaries. A Lie supergroup is a supermanifold (G,�) for which G is a

Lie group and �(G) a Hopf superalgebra with antipode, such that the projection

ρ : �(G)→ C∞(G) is a morphism of Hopf superalgebras [9, 12]. For a Lie supergroup

(G,�), the tangent space at the identity g = Te(G,�) inherits a Lie superalgebra struc-

ture by the coproduct on �(G); we call g Lie superalgebra of (G,�). The vector space

g coincides with the set of primitive elements, with respect to the identity, of the finite

dual �(G)◦. The space �(G)◦ is defined [9] as the subspace of the full dual of �(G)
whose elements have kernels containing an ideal of finite codimension. We denote by

∆�, ε�, and s� the coproduct, counit, and antipode for �(G) and by ∆◦�, ε◦�, and s◦�
the corresponding maps of �(G)◦.

By a left action of the Lie supergroup (G,�) on the supermanifold (Y ,�) we mean

a supermanifold morphism Φ : (G,�)×(Y ,�)→ (Y ,�), such that Φ∗ : �(Y)→�(G)⊗
�(Y) defines a left �(G)-comodule structure over �(Y). Similarly, we define a right

action. The sheaf �/� of the quotient ringed space (Y/G,�/�) is defined by

(
�/�

)
(U)= {f ∈�(V) | Φ∗f = 1⊗f}, V =π−1(U), (2.1)

where π : Y → Y/G is the projection.
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If � is the algebra product of �(G)◦ and ∆◦�(a) =
∑
i a′i ⊗a′′i , the map a⊗ b �∑

i(−1)|b||a
′′
i |a′i �b� s

◦
�(a′′i ), a,b ∈ �(G)◦, is a smooth morphism of superalgebras

in the sense of [9], that is, there exists a morphism of supermanifolds AD : (G,�)×
(G,�)→ (G,�) such that

AD∗(a⊗b)=
∑
i
(−1)|b||a

′′
i |a′i �b�s

◦
�

(
a′′i
)
. (2.2)

This morphism has the properties of a left action and it is called adjoint action of

(G,�) on itself. We set AD∗a(b)=AD∗(a⊗b).
Now let R(G) be the group algebra of G over the real numbers and E(g) the uni-

versal enveloping algebra of the Lie superalgebra g. Then, it is a standard fact [9]

that �(G)◦ = R(G) � E(g), where � is the smash product between R(G) and E(g)
with respect to the representation π : G → Aut(g) given by π(g)v = δg �v �δg−1 ;

here, δg : �(G)→R is the superalgebra morphism δg(f)= ρ(f)(g), for all f ∈�(G).
Given a Lie group G and a Lie superalgebra g with Lie (G)= g0, we have a sheaf Fg of

supercommutative superalgebras defined by Fg(U) = HomE(g0)(E(g),C∞(U)), U ⊂ G,

the space of E(g0)-linear homomorphisms E(g)→ C∞(U); (G,Fg) satisfies the require-

ments in the definition of a supermanifold [3, 11], the product and the unit on Fg(G)
being given by

m
(
φ1⊗φ2

)=mC∞ ◦
(
φ1⊗φ2

)◦∆E(g), ∀φ1,φ2 ∈ Fg(G),

1(u)(g)= εE(g)(u), ∀u∈ E(g), g ∈G, (2.3)

where mC∞ is the multiplication in C∞(G), and ∆E(g) and εE(g) are the coproduct and

the counit in E(g), respectively. We have similar definitions when G is replaced by an

open subset U . Here, the E(g0)-module structure over C∞(U) is given by the infini-

tesimal generators of the left multiplication on G [10]. The following theorem is very

useful in what follows.

Theorem 2.1 (see [10]). The supermanifold (G,Fg) is a Lie supergroup if there exists

a representation Ad1 : G → Autg1 such that Ad1(exp(ta))b = b+ t[a,b]+··· , for all

a∈ g0, b ∈ g1.

The explicit formulas for the coproduct ∆, antipode s, and counit ε of Fg(G) are the

following (see [10, 16]):

∆φ(u⊗v)(g,h)=φ(u·Ad(g)v
)
(gh),

sφ(u)(g)=φ(Ad
(
g−1)sE(g)u)(g−1),

ε(φ)=φ(1)(e), ∀φ∈ Fg(G),

(2.4)

for all u,v ∈ E(g), g,h∈G, φ∈ Fg(G). In the previous equations, sE(g) is the antipode

of E(g), while Ad coincides with the adjoint representation of the Lie group G on g0

when applied to even elements, and with Ad1 when applied to odd elements.

We will say that (H,�) is a Lie subsupergroup of (G,�) if �(H)◦ ⊂�(G)◦ and the

inclusion map �(H)◦ ↩ �(G)◦ is a smooth morphism of Hopf superalgebras. Then

we have a unique morphism i : (H,�) → (G,�) such that i∗ : �(H)◦ → �(G)◦ is the

inclusion map.
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3. Normal Lie subsupergroups. We propose in this section an appropriate gener-

alization of normal Lie subgroups in the context of supergeometry.

Definition 3.1. The Lie subsupergroup (H,�) of (G,�) is a normal Lie subsu-

pergroup, if the coalgebra �(H)◦ is invariant under the adjoint action AD : (G,�)×
(G,�)→ (G,�).

In other words, for every a ∈�(G)◦, b ∈�(H)◦, we must have AD∗a(b) ∈�(H)◦.
Using the fact that �(G)◦ =R(G)�E(g) and AD∗(a1�a2) =AD∗a1 ◦AD∗a2 , it is clear that

the condition of invariance for �(H)◦ is equivalent to the condition AD∗a(b)∈�(H)◦

for every a∈�(G)◦ group-like or primitive with respect to δe.
By (2.2), (H,�) is a normal Lie subsupergroup of (G,�) if and only if the following

conditions are satisfied:

∀g ∈G, b ∈�(H)◦, ∃b̄ ∈�(H)◦ : δg�b = b̄�δg, (3.1)

∀a∈ g, b ∈�(H)◦, ∃b̄ ∈�(H)◦ : a�b = (−1)|a||b|b�a+ b̄. (3.2)

Note that we have ε◦�(b)= ε◦�(b̄) in (3.1) and ε◦�(b̄)= 0 in (3.2).

Proposition 3.2. If (H,�) is a normal Lie subsupergroup of (G,�), then the quo-

tient (K,�)= (G/H,�/�) possesses a natural structure of Lie supergroup. In particular,

if π : (G,�) → (K,�) is the projection, then the coproduct ∆�, the counit ε�, and the

antipode s� on �(K) are given by the following relations: (π∗ ⊗π∗)◦∆� = ∆� ◦π∗,

ε� = ε� ◦π∗, and π∗ ◦s� = s� ◦π∗.

Proof. We observe that if (H,�) is a normal Lie subsupergroup of (G,�), then H
is a normal Lie subgroup of G, and therefore K =G/H is a Lie group.

Then consider two elements a,a′ ∈ �(G)◦ and let c = π∗(a), c′ = π∗(a′). We put

c�c′ =π∗(a�a′). We show that the operation between c and c′ defines a superalgebra

law on �(K)◦ with unit ε� = δe, e ∈ K being the unit of K. It is sufficient to show

that the multiplication on �(K)◦ is a well-defined operation. It is therefore necessary

to study in detail the projection π∗ : �(G)◦ → �(K)◦ in this particular case. If f ∈
�(K), a ∈ �(G)◦, b ∈ �(H)◦, and Φ is the right action of (H,�) on (G,�), we take

Φ∗(a⊗ b)(π∗f) = (−1)|b||f |a(π∗f)b(1�), so π∗Φ∗(a⊗ b) = (−1)|a||b|ε◦�(b)π∗(a).
The right action of (H,�) on (G,�) is built up from the coproduct ∆� and we have

Φ∗ = (id⊗i∗)◦∆�, i : (H,�)↩ (G,�) being the canonical inclusion; we thus find the

following relation:

π∗(a�b)= (−1)|a||b|ε◦�(b)π∗(a). (3.3)

Suppose now that b,b′ ∈ �(H)◦ are such that ε◦�(b)ε◦�(b′) = 1, so |b| = |b′| = 0. In

this case π∗(a�b)�π∗(a′�b′) = π∗(a)�π∗(a′) = c �c′. To have a well-defined

operation between c and c′, we must also have π∗(a�b�a′�b′) = π∗(a�a′). It

is sufficient to examine the case where a′ = δg �v , g ∈ G, v ∈ g. Using conditions

(3.1) and (3.2), we obtain that b �a′ = b �δg � v = δg � b̄ � v = δg � (v � b̄+ b̂),
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where ε◦�(b̂) = 0 and ε◦�(b̄) = ε◦�(b). Using (3.3) and the fact that ε◦� : �(H)◦ → R is a

morphism of superalgebras, we find that

π∗
(
a�b�a′�b′

)=π∗(a�a′�b̄�b′)+π∗(a�δg�b̂�b′)=π∗(a�a′). (3.4)

This means that indeed �(K)◦ possesses a superalgebra structure.

We finally define the antipode s◦� : �(K)◦ →�(K)◦ by s◦�(π∗(a))=π∗(s◦�(a)). Using

the previous argument as well as the identity ε◦�◦s◦� = ε◦�, we can easily prove that s◦�
is well defined. We observe now that with the previous structure on it, �(K)◦ is a Hopf

superalgebra. Furthermore, the morphisms ∆� : �(K)→ �(K)⊗�(K) and s� : �(K)→
�(K), defined by the relations(

π∗⊗π∗)◦∆� =∆� ◦π∗, π∗ ◦s� = s� ◦π∗, (3.5)

are such that the restrictions of their duals (transpose maps) on �(K)◦ ⊗�(K)◦ and

�(K)◦, respectively, coincide with the algebra product and the antipode on �(K)◦. We

conclude that (K,�) is a Lie supergroup.

Finally we consider two examples of normal Lie subsupergroups.

Kernel of a morphism. Let φ : (G,�) → (K,�) be a morphism of Lie super-

groups, that is, a morphism of supermanifolds such thatφ∗ : �(G)◦ →�(K)◦ is a mor-

phism of superalgebras [9]. First we define an appropriate notion for the kernel and

the image of the morphism φ. To this end, we set H = ker(φ∗|G) and h = ker(φ∗|g).
Then, H is a Lie subgroup of G and h a Lie subsuperalgebra of g, whose even part

coincides with the Lie algebra of H, h0 = TeH. Furthermore, H and h satisfy the hy-

pothesis of Theorem 2.1 (indeed, it is sufficient to choose Ad1(h)b = δh �b�δh−1 ,

where � is the product in �(G)◦; obviously, Ad1 preserves h and in particular h1 be-

cause h ∈ ker(φ∗|G)) and one can construct a Lie subsupergroup (H,�) of (G,�)
with h = Te(H,�); (H,�) is the kernel of the morphism φ. Similarly, the image of

φ is the Lie supergroup defined by the subsupergroup im(φ∗|G) of K and the Lie

subsuperalgebra im(φ∗|g) of k= Te(K,�).
Proposition 3.3. The kernel (H,�) of a morphism of Lie supergroupsφ : (G,�)→

(K,�) is a normal Lie subsupergroup of (G,�) and the quotient (G/H,�/�) is isomor-

phic to the image of φ.

Proof. We have already explained why the kernel of a morphism of Lie super-

groups is a Lie subsupergroup. Now, if we take b = δh, h∈H, or b = v ∈ h, then (3.1)

holds for b̄ = δg �b�δg−1 . Note that b̄ ∈ �(H)◦ because φ∗(δh) = δe and φ∗(v) =
0. A similar argument applies to (3.2): if b = δh, h ∈ H, then the difference b̄ =
a� δh − δh � a is a primitive element with respect to δh and φ∗(b̄) = 0 because

φ∗(δh) = δe, so b̄ ∈ �(H)◦. On the other hand, if b = v ∈ h, then the element

b̄ = [a,v] = a�v − (−1)|a||v|v �a belongs to g and φ∗(b̄) = 0 (since φ∗(v) = 0),

so again b̄ ∈�(H)◦. Consequently, by the decomposition �(H)◦ = R(H)�E(h), (3.1)

and (3.2) hold for the subsupergroup (H,�).
Now the isomorphism between the image of φ and the quotient (G/H,�/�) fol-

lows easily from the results of [9] since G/H is isomorphic to im(φ∗|G) and g/h is

isomorphic to im(φ∗|g).
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General and special linear supergroups. We consider a vector superspace

V = V0⊕V1. The space gl (V) = End(V) has the structure of a Lie superalgebra with

even and odd parts given by gl (V)0 = gl (V0)⊕gl (V1) and gl (V)1 = L(V0,V1)⊕L(V1,V0),
where L(Vi,Vj) is the space of linear maps of Vi into Vj , i,j ∈ {0,1}. We have the

following matrix representation for the elements of gl (V):(
A B
C D

)
, A∈ gl

(
V0
)
, B ∈ L(V1,V0

)
, C ∈ L(V0,V1

)
, D ∈ gl

(
V1
)
. (3.6)

Now the Lie group G = GL(V0)×GL(V1) has Lie algebra gl (V)0 and the representation

Ad1 :G→Autgl (V)1 defined by[
Ad1

(
M 0

0 N

)](
0 B
C 0

)
=
(

0 MBN−1

NCM−1 0

)
(3.7)

satisfies the assumptions of Theorem 2.1. The corresponding Lie supergroup (G,Fg)
is called general linear supergroup. The Lie subsuperalgebra

h=
{(

A B
C D

)
∈ gl (V) | trA= trD

}
(3.8)

of gl (V) has even part equal to the Lie algebra of the Lie group

H =
{(

M 0

0 N

)
∈ GL

(
V0
)×GL

(
V1
) | detM = detN

}
. (3.9)

Using again Theorem 2.1 with the representation Ad1 previously defined, (3.7), we

obtain a Lie supergroup (H,Fh), the special linear supergroup. This is a normal Lie

subsupergroup of (G,Fg) and the quotient (G/H,Fg/Fh) is a one-dimensional (ordi-

nary) Lie group isomorphic to the multiplicative group of nonzero real numbers.

4. A criterion for the construction of Lie supergroups. We observe that if (H,�)
is a normal Lie subsupergroup of (G,�) of dimension (0,0), then (K,�)= (G/H,�/�)
has dimension equal to dim(G,�) and the Lie superalgebras of (G,�) and (K,�) co-

incide. In particular, we prove the following proposition.

Proposition 4.1. Let (G,�) be a Lie supergroup, where G is a connected Lie group,

and let g = Te(G,�)= g0⊕g1. If π1(G) is the fundamental group of G and Ĝ its univer-

sal covering group, then there exists a Lie supergroup structure on (Ĝ,Fg) for which

(π1(G),C∞) is a normal Lie subsupergroup of (Ĝ,Fg), such that

(
Ĝ/π1(G),Fg/C∞

)� (G,�). (4.1)

Proof. If (G,�) is a Lie supergroup, then there exists a representation Ad1 : G→
Autg1, such that Ad1(expta)(b)= b+t[a,b]+··· , for all a∈ g0, b ∈ g1. Ifπ : Ĝ→G is

the projection, then Âd1 =Ad1 ◦π : Ĝ→Autg1 is a representation of Ĝ with the same

property. By Theorem 2.1, the supermanifold (Ĝ,Fg) is a Lie supergroup. It remains

to show that (π1(G),C∞) is a normal Lie subsupergroup of (Ĝ,Fg) (then it is not
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difficult to see that (Ĝ/π1(G),Fg/C∞) � (G,�)). Taking into account the fact that

dim(π1(G),C∞) = (0,0) and that π1(G) is a normal subgroup of Ĝ, it is sufficient to

prove that

∀a∈ g, h∈π1(G), ∃b̄ ∈ C∞(π1(G)
)◦

: a�δh = δh�a+ b̄. (4.2)

We first observe that this condition is satisfied for b̄ = 0 when a ∈ g0. For the case

a∈ g1 we proceed as follows. If φ∈HomE(g0)(E(g),C∞(Ĝ)) is an odd element, let φ̂∈
C∞(Ĝ)⊗Λg∗1 be the corresponding element under the isomorphism HomE(g0)(E(g),
C∞(Ĝ)) � C∞(Ĝ)⊗Λg∗1 . We obtain (a�δh)(φ̂) = −∆φ̂(a⊗δh) = −∆φ(a,1)(e,h) =
−φ(a)(h) and (δh �a)(φ̂) = −∆φ̂(δh⊗a) = −∆φ(1,a)(h,e) = −φ(Âd1(h)a)(h) =
−φ(a)(h), becauseπ(h)= e, for allh∈π1(G). This completes the proof of the propo-

sition.

Proposition 4.1 provides a constructive method to obtain all the possible Lie su-

pergroups from a given Lie group G and a vector superspace g, because in combi-

nation with Proposition 3.2 we have explicit formulas for the coproduct, counit, and

antipode of the superalgebras �(G) corresponding to these Lie supergroups. We pro-

ceed through the following steps:

(1) Find first all possible Lie superalgebra structures on g such that g0 = Lie(G).
(2) Construct the Lie supergroup (Ĝ,Fg) for each of the previous Lie superalgebras

g (recall that, for each Lie superalgebra structure on g, this Lie supergroup is unique).

(3) Find for which (Ĝ,Fg), the group (π1(G),C∞) is a normal Lie subsupergroup. The

following observation simplifies very much the normal subgroup test: (π1(G),C∞) is

a normal Lie subsupergroup of (Ĝ,Fg) if and only if the representation Âd1 is π1(G)-
invariant ; this easily results from the proof of Proposition 4.1. For these cases, the

quotient (Ĝ/π1(G),Fg/C∞) is a Lie supergroup whose underlying Lie group is G. In

this way, we obtain all Lie supergroups of dimension (dimG,dimg1) with underlying

Lie group equal to G.

It is clear that the main difficulty is to find all the Lie superalgebras g with g0 =
Lie(G). But even in the case where it is impossible to accomplish this task, the previous

technique provides a method to construct explicitly certain Lie supergroup structures

over topologically nontrivial Lie groups.

5. Non-abelian supercircles. We are interested in applying the method of the pre-

vious section to the study of the Lie supergroups (G,�), with the circle as underlying

Lie group and of odd dimension equal to n. We first have the following classification

scheme.

Lemma 5.1. Let g =R⊕E, g0 =R, g1 = E, where E is a vector space of dimension n.

Then, all possible Lie superalgebra structures on g are classified as follows:

(1) abelian structure: [u,v]= 0, for all u,v ∈ g;

(2) symmetric structure: [r ,s] = [r ,u] = 0, for all r ,s ∈ R, u ∈ E and [u,v] =
g(u,v), where g : E×E→R is a symmetric bilinear form;

(3) exponential structure: [r ,s] = [u,v] = 0, for all r ,s ∈ R, u,v ∈ E and [r ,u] =
r(λ·u), for all r ∈R, u∈ E, λ∈ EndE.
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The proof of the above lemma is based on simple arguments of linear algebra and

is therefore omitted.

We want now to classify all the Lie supergroups (G,�) with G = S1 and dim(G,�)=
(1,n). Thus, it is sufficient to take G = S1 and g =R⊕E with E = (Rn)∗ and apply the

three steps of the previous section (all the information concerning Lie superalgebra

structures on g is now gathered in Lemma 5.1).

Now, let (R,Fg) be the supermanifold constructed out by the Lie groupR and the Lie

superalgebra g with E = (Rn)∗, and let (t,τ1, . . . ,τn) be the canonical supercoordinates

on (R,Fg). In other words, t :R→R is the canonical coordinate on R and τi ∈R is the

basis of R dual to t, i= 1, . . . ,n. We have the following proposition.

Proposition 5.2. There exist three families of Lie supergroup structures on (R,Fg)
which correspond to the three families of Lie superalgebra structures on g. More pre-

cisely,

(1) abelian structure:

∆t = t⊗1+1⊗t, ∆τi = τi⊗1+1⊗τi, ε(t)= ε(τi)= 0,

s(t)=−t, s
(
τi
)=−τi; (5.1)

(2) symmetric structure:

∆t = t⊗1+1⊗t− 1
2

∑
i,j
gijτi⊗τj, ∆τi = τi⊗1+1⊗τi, ε(t)= ε(τi)= 0,

s(t)=−t, s
(
τi
)=−τi; (5.2)

(3) exponential structure:

∆t = t⊗1+1⊗t, ∆τi = τi⊗1+
∑
k

(
eλt
)
ki⊗τk, ε(t)= ε(τi)= 0,

s(t)=−t, s
(
τi
)=−∑

k

(
e−λt

)
kiτk.

(5.3)

Proof. For simplicity, we will consider only the case n= 1. We construct on Fg(R)
coproduct, counit, and antipode using Theorem 2.1 with Ad1(r) = id for the abelian

and symmetric structures and Ad1(r) = eλr for the exponential one (now the endo-

morphism λ and the symmetric bilinear form g reduce to real numbers). In what

follows, we set a= δ0 ◦∂/∂t and b = δ0 ◦∂/∂τ .

Consider the symmetric structure. If φ ∈ HomE(g0)(E(g),C∞(Ĝ)), we have the fol-

lowing relations for the coproduct and the antipode:

∆φ(u⊗v)(r1,r2
)=φ(uv)(r1+r2

)
, sφ(u)(r)=φ(sE(g)u)(−r). (5.4)

If φt,φτ ∈ HomE(g0)(E(g),C∞(Ĝ)) correspond to t,τ ∈ C∞(R) ⊗ ΛR, we find that

sφt(1)(r)=φt(1)(−r)=−t(r) and if v ∈ g1, sφτ(v)(r)=−τ(v)1C∞(r). The formu-

las for the antipode in the symmetric structure are now immediate from the isomor-

phism HomE(g0)(E(g),C∞(Ĝ)) � C∞(Ĝ)⊗Λg∗1 . As for the coproduct, an easy calcula-

tion shows that∆φτ(1⊗v)=∆φτ(v⊗1)= τ(v), for all v ∈ g1 = E. But these relations

are sufficient to completely determine ∆φτ and the result is ∆φτ =φτ⊗1+1⊗φτ .
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Now, in order to calculate the element ∆φt , we first observe that it is sufficient to

evaluate it on 1⊗1 and b⊗b. We easily see that ∆φt(1⊗1)= t⊗1+1⊗t. On the other

hand, ∆φt(b⊗b)(r1,r2) = (g/2)[(L∗)aφt(1)](r1 + r2), where (L∗)a is the induced

derivation, for a∈ g0, through the left action of R on itself given by left translations.

Now, it is not difficult to see that ∆φt =φt⊗1+1⊗φt−(g/2)φτ⊗φτ which proves

our assertion for the symmetric structure.

The verification of the formulas for the abelian and the exponential structure is

based on similar arguments and it is left to the reader.

Remark 5.3. The subcase n = 1 of the previous proposition appears also in [13],

but here we discuss the method by which one constructs explicitly such structures. In

the present case G = R, this method can be directly adapted for n > 1 and shows at

the same time clearly how one should proceed for more general connected and simply

connected Lie groups.

We first turn our attention to Lie supergroups (G,�) with G = S1 and dim(G,�) =
(1,1). We will use Propositions 4.1 and 5.2 with (G,�) = (S1,Fg). In this case we

have π1(G) = Z and Ĝ = R and the representation Ad1 is trivial for the abelian and

symmetric structure and Ad1(r)= exp(rλ), for all r ∈R for the exponential structure.

It is now clear that, for arbitrary odd dimension, the abelian and symmetric structures

pass to the circle through the procedure described in Proposition 4.1. Finally, the

condition for (Z,C∞) being a normal Lie subsupergroup of (R,Fg) in the exponential

case, takes the following form: exp(zλ)= 1n, for all z ∈ Z, where 1n is the unit n×n
matrix.

We have thus proved the following theorem.

Theorem 5.4. On the supermanifold (S1,Fg) there exist three families of Lie super-

group structures:

(1) the abelian structure, obtained as in Proposition 4.1 taking the representation

Ad1 trivial;

(2) the symmetric structure, obtained as in Proposition 4.1 taking the representation

Ad1 trivial and parametrized by the space of symmetric bilinear forms on E = g1;

(3) the exponential structure, obtained as in Proposition 4.1 taking the representa-

tion Ad1 as Ad1(r)= exp(rλ) and parametrized by the space of endomorphisms

λ∈ EndE for which exp(λ)= 1n. In particular, there is no exponential structure

in odd dimension 1.

More specifically, combining the formulas of Propositions 5.2 and 3.2, we find the

following expressions for the coproduct, counit, and antipode on Fg(S1). Note that

in the expressions below we have f ∈ C∞(S1) viewed as a periodic function on R
with period 1, τi ∈R are the same as in Proposition 5.2, while ∆∞, ε∞, and s∞ are the

coproduct, counit, and antipode for the differentiable Lie group structure on S1.

(1) Abelian structure:

∆f =∆∞f , ∆τi = τi⊗1+1⊗τi,
ε(f )= ε∞(f ), ε

(
τi
)= 0,

s(f )= s∞(f ), s
(
τi
)=−τi.

(5.5)
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(2) Symmetric structure:

∆f =∆∞f +
n∑

i,j,p=1

(−1)p
1

2pp!

(
gijτi⊗τj

)p∆∞(dpfdtp
)
, ∆τi = τi⊗1+1⊗τi,

ε(f )= ε∞(f ), ε
(
τi
)= 0

s(f )= s∞(f ), s
(
τi
)=−τi.

(5.6)

(3) Exponential structure:

∆f =∆∞f , ∆τi = τi⊗1+
∑
k

([
eλt
])
ki⊗τk,

ε(f )= ε∞(f ), ε
(
τi
)= 0,

s(f )= s∞(f ), s
(
τi
)=−∑

k

([
e−λt

])
kiτk.

(5.7)

Here, [eλt] : S1 → Aut(E) is the automorphism-valued function on S1 defined by eλt

when exp(λ)= 1n.
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