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ADJOINT REGULAR RINGS
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Let R be a ring. The circle operation is the operation a◦b = a+b−ab, for all a,b ∈ R. This
operation gives rise to a semigroup called the adjoint semigroup or circle semigroup of R.
We investigate rings in which the adjoint semigroup is regular. Examples are given which
illustrate and delimit the theory developed.
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1. Introduction. This paper continues the authors’ investigation of adjoint semi-

groups of rings [13, 14]. Here R will always denote a ring (not necessarily commuta-

tive and not necessarily with unity). The Jacobson circle or adjoint operation, a◦b =
a+b−ab, for each a,b ∈ R, yields a monoid (R,◦), the adjoint semigroup of R. Here

we primarily consider the situation where R is a (von Neumann) regular ring or where

(R,◦) is (von Neumann) regular. Previous work along these lines has been done by Du

[7] and Clark [3]. Our viewpoint is that of the interplay between semigroup properties

of (R,◦) or (R,·) and ring properties of R.

For x ∈ R, we use lR(x) and rR(x) for the left and right annihilator sets of x in R,

respectively. When no ambiguity will arise, we use simply l(x) and r(x). The Jacobson

radical of R is denoted by �(R).
Let S be a semigroup. We use E(S) for the set of idempotents in S and Z(S) for the

center of S. Frequent use will be made of the fact that E(R,·)= E(R,◦) and Z(R,·)=
Z(R,◦). Consequently we use E(R) and Z(R) for these sets, respectively.

Of particular interest here are the following types of regular semigroups. Let T be a

regular semigroup. If the idempotents of T commute among one another, T is said to

be inverse; this is equivalent to the condition that the von Neumann inverse of each

element in T is unique, [5, Theorem 4.11]. If the idempotents of T are central, then T
is said to be Clifford. It is well known that a Clifford semigroup is a union of groups,

[5, Theorem 1.17]. If the idempotents form a subsemigroup, then T is called orthodox.

If each element commutes with one of its von Neumann pseudoinverses, then T is

completely regular. This last condition is equivalent to the condition that T is a union

of groups, [19, Theorem II.1.4].

Let � be a semigroup property (or from another vantage point, � could be thought

of as a class of semigroups closed under isomorphism). If (R,·) has property � we

say R is a �-ring, and if (R,◦) has property � we say R is an adjoint �-ring. Exemplary

of such properties are regular, completely regular, or Clifford. It is worth noting that

what here is called an adjoint completely regular ring is called a generalized radical

ring in [3, 8]. (For terminology and basic facts on semigroups, see [5] or [19].)
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2. Preliminaries. In this section, we present some preliminary results. Let R1 be

the standard Dorroh extension of a ring R to the ring R1, which has unity. Recall

that this embeds R as an ideal of R1, so we can identify R as the ideal R̄ in R1. We

will at times use R1 in conjunction with R in order to make use of the simplifying

attributes of having an identity for calculation. Recall that the mapping φ : x→ 1−x
is an isomorphism from (R1,◦) onto (R1,·), and φ restricted to R yields an injective

homomorphism. Observe that if R has identity, then this same mapping, x → 1−x,

yields an isomorphism from (R,◦) onto (R,·). This observation makes the next result

immediate. (See also [9, Lemma 20].)

Proposition 2.1. Let a,b ∈ R. Then

(a) a◦b ∈ E(R) if and only if (1−a)(1−b)= 1−(a◦b);
(b) a◦b◦a= a if and only if (1−a)(1−b)(1−a)= (1−a);
(c) a◦R = b◦R if and only if (1−a)R1 = (1−b)R1;

(d) a is adjoint regular in R if and only if 1−a is a regular element in R1.

The next result is immediate, but it is useful enough to warrant stating.

Proposition 2.2. An element a ∈ R is adjoint regular if and only if there exist

b ∈ R, e= e2 ∈ R such that a+b−ab = e and ea= e.

Note that a quasi-regular element satisfies the conditions of Proposition 2.2 with

e = 0. Hence, the conditions for adjoint regularity are a natural generalization of the

condition for quasi-regularity.

Du [7, Theorem 1] has shown that if R is a regular ring, then (R,◦) is a regular

monoid. We next give a different proof of that result.

Proposition 2.3. If R is a regular ring, then (R,◦) is a regular monoid.

Proof. There is an injective ring homomorphism,φ : R→ R∗, that embeds R as an

ideal, R̂, in the regular ring R∗ which has identity [10, Theorem 1]. Consequently, φ :

(R,◦)→ (R∗,◦) is an isomorphism. Since R∗ has identity we have that (R∗,·)� (R∗,◦)
and that each ideal of (R∗,·) is regular. So each ideal of (R∗,◦) is regular. Hence (R̂,◦)
is regular and so is its isomorphic image (R,◦).

Since every ideal of a regular semigroup is regular, we immediately have that if R
is a regular ring and X is an ideal of (R,◦), then (X,◦) is regular.

By using the powerful Fuchs-Halperin result, this proof completely bypasses the

calculations used in Du’s proof [7]. Also, using similar methods, we can obtain analo-

gous results by replacing the term regular in Proposition 2.3 by orthodox or inverse.

Finally, note that the converse of Proposition 2.3 does not hold, as any example of a

Jacobson radical ring will illustrate.

3. Equivalent conditions under regularity. In this section, we discuss various

equivalent conditions to R strongly regular and to R adjoint completely regular. Exam-

ples are given which illustrate these results and show limitations to extending them.

It is well known that the following conditions are equivalent for a ring R:

(1) for each a∈ R there exists b ∈ R such that a= a2b;
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(2) for each a∈ R there exists c ∈ R such that a= c2a;

(3) R is regular and E(R)⊆ Z(R).
A ringR satisfying any of (and hence all of) these conditions is called a strongly regular

ring, [6]. Note that these conditions are not equivalent for semigroups, [19, Theorem

II.1.4]. The next proposition ties strongly regular with several other conditions on the

multiplicative semigroup of a ring. The proposition is a compilation of results from

various sources. First some terminology is needed.

Following [17] we say that a semigroup S is E-solid if, whenever e,f ,g ∈ E(S) such

that e�f�g, there exists h∈ E(S) such that e�h�g. (Here � and � are the standard

Green’s relations, [5, page 47].) Recall that the core of S, denoted by C(S), is the

subsemigroup of S generated by E(S), [19, page 89]. So S is orthodox if and only if S
is regular and E(S)= C(S). Let � be a semigroup property. Then S is locally-� if eSe
has property � for every e∈ E(S).

Proposition 3.1. Let R be a regular ring. The following are equivalent:

(a) R is strongly regular;

(b) R is orthodox;

(c) R is completely regular;

(d) R is inverse;

(e) R is Clifford;

(f) R is locally inverse;

(g) R is E-solid;

(h) R is locally E-solid;

(i) C(R) is completely regular.

Proof. As mentioned above, (a)�(e). So (e)⇒(b) is trivial, while (b)⇒(e) follows

from [22, Remark 15]. It is known that (a)�(c), even for semigroups [19, page 58].

Next, (d)�(e) comes from [13], while (d)�(f)�(g)�(h) comes from [17], and (g)�(i)

comes from [12, Theorem 3]. This completes the logical circuit.

This by no means exhausts the vast number of known equivalent conditions to R
strongly regular, but it suffices for our purposes and gives a good sample of what is

known. For more equivalent conditions to R strongly regular see [5, 6, 11, 16, 18, 19,

21, 22].

We next consider various equivalent conditions on the adjoint semigroup of a reg-

ular ring.

Proposition 3.2. Let R be regular. The following are equivalent:

(a) R is adjoint completely regular;

(b) R is adjoint Clifford;

(c) R is strongly regular.

Proof. Assume (a). Du [8, Lemma 11] has shown that (R,◦) completely regular im-

plies that E(R) is closed under the ring multiplication. Since R is regular, this yields

that R is orthodox. Thus R is Clifford and by Proposition 3.1R is strongly regular. Con-

sequently, R is adjoint regular. Conversely, R regular and adjoint Clifford implies that

R is Clifford, and hence R is strongly regular. We have established (a)⇒(c)�(b). Since
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a Clifford semigroup is a union of groups, (R,◦) Clifford implies (R,◦) completely

regular, yielding (b)⇒(a) and finishing the logical chain.

It is known [13] that R is adjoint inverse if and only if R is adjoint Clifford. Recently

Du [9] has shown that adjoint orthodox implies adjoint completely regular. However,

an adjoint completely regular ring need not be adjoint Clifford, as the next example

shows.

Example 3.3. Let S be a right zero semigroup with more than one element and

let R be the semigroup ring Z2[S]. So every nonzero element of R has the form x =
e1+···+ en, for some distinct e1, . . . ,en ∈ S. Let y = f1+···+fm, where f1, . . . ,fm
are distinct terms from S. Then xy = ny . So xy = 0, if n is even, and xy = y ,

if n is odd. Then x is an idempotent if and only if n is odd, and if y is also an

idempotent, then xy = y . Consequently E(R) is closed under ring multiplication.

Observe that R = N(R)∪E(R); hence R is adjoint orthodox. Since elements in E(R)
are completely regular in (R,◦), and since elements in N(R) are quasi-regular in R,

and hence are completely regular in R, we have that R is adjoint completely regular.

However, since (e1+e2)y(e1+e2) = 0, for each y ∈ R, we see that R is not regular.

Also, R is not a Jacobson radical ring. Since e1e2 ≠ e2e1, for distinct e1,e2 ∈ S, we see

that e1 ◦e2 ≠ e2 ◦e1, and hence R is not adjoint inverse.

Having R regular implies that R is adjoint regular, as we have seen. However, R
being regular does not imply that R is adjoint inverse, adjoint completely regular, nor

adjoint orthodox, as the next example illustrates.

Example 3.4. Let A be a regular ring with identity and let R =M2(A), the ring of

2×2 matrices over A. So R is regular and hence R is adjoint regular. But there are

noncommuting idempotents in R; so R is not adjoint inverse, and hence not adjoint

completely regular by Proposition 3.2. By [9, Theorem 14], R is not adjoint orthodox.

4. Decomposition. Let R be a ring, and let S1, . . . ,Sn be subrings of R. If R = S1+
··· + Sn and whenever si ∈ Si, i = 1, . . . ,n such that s1 + ··· + sn = 0, then si = 0,

i = 1, . . . ,n, then we say that R is a supplementary sum of the Si, i = 1, . . . ,n, [1].

This is equivalent to R+ = Σni=1 ⊕ S+i , as a direct sum of abelian groups. We write

R = S1
···
Sn for such a supplementary sum. We next state as a lemma the well-

known two-sided Peirce decomposition, given here without using an identity in the

ring. (See [1, 15].)

Lemma 4.1. Let e∈ E(R). Then R = eRe
e· lR(e)
rR(e)·e
rR(e)∩ lR(e).

Recall [2] that e ∈ E(R) is said to be a left semicentral idempotent in R if eRe = Re,
(equivalently, ere = re, for each r ∈ R). It is well known that in this case lR(e) is an

ideal of R and R/lR(e)� eRe.

Proposition 4.2. Let e be a left semicentral idempotent in R.

(a) eRe = Re is a left ideal of R; lR(e) = lR(Re) is an ideal of R; and e · lR(e) is a

right ideal of R;
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(b) R = Re⊕l lR(Re) as a direct sum of left ideals of R and R/lR(e) � eRe, a ring

with unity e;
(c) eR = Re
e·lR(Re).

Proof. By definition, Re= eRe. The rest is routine.

In a strictly analogous fashion, we define right semicentral idempotent and obtain

a dual result. For a central idempotent we naturally obtain a stronger result.

Corollary 4.3. If e is a central idempotent in R, then R = eRe⊕AnnR(eRe), as a

direct sum of ideals of R.

Following Clark and Lewin [4], e ∈ E(R) is said to be a principal idempotent in R if

the homomorphic image of e in R̄ = R/J(R) is the identity in R̄. This implies that if

u∈ E(R) such that eu= 0=ue, then u= 0. (The latter condition, together with e≠ 0,

is what Albert used in defining the principal idempotent [1, page 25].)

Principal idempotents play a key role in our next decomposition, whose proof makes

use of the following result due to Du [7, Corollary 2].

Lemma 4.4. If R is adjoint regular and e is a principal idempotent in R, then R =
eRe
J(R), as a supplementary sum of subrings.

We are now ready to give a much shorter proof of the main result in [3, Theorem B].

Proposition 4.5. Let e be an idempotent in a ring R. The following are equivalent:

(a) R is adjoint completely regular and e is a principal idempotent in R;

(b) R = eRe
J(R) and eRe is a strongly regular ring.

Proof. Assume (a). By Lemma 4.4, R = eRe
J(R); so R/J(R)� eRe. Since the ring

eRe inherits the adjoint completely regular condition from R and eRe is regular, by

Proposition 3.2 we have that ring eRe is strongly regular.

Assume (b). Then eRe is adjoint regular, so by [7] the ring R is adjoint regular. Since

all the idempotents of R are central, R is adjoint completely regular. Clearly e is a

principal idempotent of R.

In view of Proposition 4.5 and the results of Section 3, we immediately have a

plethora of conditions equivalent to part (a) of Proposition 4.5.

Proposition 4.6. Let R =A⊕B as a direct sum of left (right) ideals. If R is adjoint

regular, then A and B are adjoint regular rings.

Proof. Let a∈A. Then there exist a1 ∈A, b1 ∈ B such that a= a◦(a1+b1)◦a=
a◦(a1+b1)+a−[a◦(a1+b1)]a. So a◦(a1+b1)= [a◦(a1+b1)]a∈A. Then a◦(a1+
b1)= a+a1+b1−a(a1+b1), or b1−ab1 = a◦(a1+b1)−a−a1 ∈A. But b1−ab1 ∈ B;

so b1 − ab1 = 0. Then a = a ◦ (a1 + b1) ◦ a = [a+ a(a1 + b1)− a(a1 + b1)] ◦ a, or

a= (a+a1−aa1)◦a= a◦a1 ◦a. Proceed similarly for right ideals.

Lemma 4.7. Let R be adjoint regular.

(a) Either J(R)= R or R contains a nonzero idempotent.

(b) If the module RR is indecomposable and R ≠ J(R), then R = eRe⊕r(e), as a direct

sum of right ideals, with eRe a regular ring with identity e, and r(e) is a square zero

ideal of R.
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(c) If the modules RR and RR are indecomposable, then either R = J(R) or R is a

division ring.

Proof. (a) Let r ∈ R, r ≠ 0. Then there exists r̄ ∈ R such that r ◦ r̄ ◦r = r , and r ◦ r̄
and r̄ ◦r are nonzero idempotents in (R,◦). So r ◦ r̄ and r̄ ◦r are also idempotents

in R. If R has no nonzero idempotent, then r ◦ r̄ = r̄ ◦r . So in this case each element

of R is quasi-regular, that is, R = J(R).
(b) If R ≠ J(R), then there exists a nonzero r ∈ R such that e = r ◦ r̄ is a nonzero

idempotent in R. Then R = Re⊕l(e), as a direct sum of left ideals. Since Re and l(e) are

submodules of RR, and since Re≠ 0, we have l(e)= 0, and hence e is a right identity of

R. SoR = eR⊕r(e), as a direct sum of right ideals ofR. However,R·r(e)= (Re)r(e)= 0,

so r(e) is an ideal of R and r(e)⊆ r(R). Since R is adjoint regular, we have that eRe is

a regular ring [7, Proposition 2].

(c) Continuing from the proof of (b), since RR is indecomposable and since eRe≠ 0,

we have that r(e) = 0, and hence e is also a left identity. Thus R = eRe, a regular

ring with identity. Since the ring is indecomposable, either R = J(R) or R is a division

ring.

Note that from Lemma 4.7, we have that if R is indecomposable in terms of both

left and right ideal decompositions, then either R is a Jacobson radical ring and the

regular radical (see [20, Chapter VI]) is zero, or R is equal to its regular radical and

the Jacobson radical is zero.

Proposition 4.8. LetR be adjoint regular. IfR has a right (left) nonzero semicentral

idempotent, then there exist submonoids A and B of (R,◦) such that

(a) R =A◦B and A∩B = 0;

(b) R =A⊕B as a direct sum of adjoint regular right (left) ideals of R;

(c) A is a regular ring with identity and B is a two-sided ideal of R.

Proof. Let e be a nonzero right semicentral idempotent in R. Then R = eR⊕r(e)
as a direct sum of right ideals, where eR = eRe is a ring with unity and r(e) is a two-

sided ideal of R. Let A = eR and B = r(e). Observe that R = A ◦B because AB = 0.

By Proposition 4.6, (A,◦) is regular. Since A is a ring with unity, A is regular. Proceed

similarly for e left semicentral.

5. Radicals for adjoint Clifford rings. We show the equivalence of several standard

radicals for rings which are adjoint Clifford and obtain a characterization for the

Jacobson radical of such rings.

Proposition 5.1. If R is adjoint Clifford, then the Brown-McCoy radical, �(R), and

�(R) are equal.

Proof. For purposes of contradiction suppose that there is an adjoint Clifford

ring R with �(R)≠ �(R). Then R/�(R) is also adjoint Clifford and �(R/�(R))= 0. So,

without loss of generality, take �(R) = 0. Since R is adjoint Clifford it is a subdirect

product of division rings by [13, Proposition 3.7]. Because �(R) ≠ 0, at least one of

these homomorphic image division rings must have nonzero Brown-McCoy radical, a

contradiction.
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Example 5.2. Proposition 5.1 cannot be extended to all adjoint regular rings, even

if the ring is also adjoint simple, as the following example illustrates. Let V be a vector

space over a field F with dimF V = ℵω, and let ω be the first infinite limit ordinal. Let

R = {φ ∈ EndF V | rankφ < ℵω}. It is well known that R is a regular ring with no

maximal ideal. So J(R) = 0 and G(R) = R. It is also known that (R,◦) is simple, [4,

Example 3B].

In the next proposition, when R does not have unity we use the unity element in

the Dorroh extension for convenience of expression.

Proposition 5.3. If R is adjoint Clifford, then �(R)=∩e∈E(1−e)R.

Proof. Let R = eR⊕ (1− e)R as ideals. Then eR is adjoint Clifford because the

map φ : R → eR is a ring homomorphism and so φ : (R,◦) → (eR,◦) is a semigroup

homomorphism. Therefore �(R)⊆ (1−e)R. Since e is arbitrary, we have that �(R) ⊆
∩e∈E(1−e)R.

Conversely, let I = ∩e∈E(1− e)R. Then I is an ideal, hence adjoint Clifford. But I
contains no nonzero idempotent. Therefore (I,◦) is a group, so I ⊆ �(R).
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