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Suppose thatX is an arbitrary real Banach space and T :X →X is a Lipschitz strongly pseu-
docontractive operator. It is proved that under certain conditions the Ishikawa iterative
method with errors converges strongly to the fixed point of T and this iteration procedure
is stable with respect to T .
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1. Introduction and preliminaries. Let X be a real Banach space and J denote the

normalized duality mapping from X into 2X
∗

given by

Jx = {f ∈X∗ : 〈x,f 〉 = ‖x‖2 = ‖f‖2}, (1.1)

where X∗ denotes the dual space of X and 〈·,·〉 denotes the generalized duality pair-

ing. In the following, I denotes the identity operator on X. An operator T with domain

D(T) and range R(T) in X is called strongly pseudocontractive if there exists a con-

stant t > 1 such that for given x,y ∈D(T), there exists j(x−y)∈ J(x−y) satisfying

〈
Tx−Ty,j(x−y)〉≤ 1

t
‖x−y‖2. (1.2)

If t = 1 in (1.2), then T is called pseudocontractive. Interest in pseudoncontractive

mappings stems mainly from their firm connection with the important class of accre-

tive operators, where an operator T is called accretive if for each x,y ∈ D(T), there

exists j(x−y)∈ J(x−y) such that

〈
Tx−Ty,j(x−y)〉≥ 0. (1.3)

Furthermore, T is called strongly accretive if there exists a constant k ∈ (0,1) such

that for given x,y ∈D(T), there exists j(x−y)∈ J(x−y) satisfying

〈
Tx−Ty,j(x−y)〉≥ k‖x−y‖2. (1.4)

It follows easily from (1.2), (1.3), and (1.4) that T is strongly pseudocontractive (resp.,

pseudocontractive) if and only if (I−T) is strongly accretive (resp., accretive), so that
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the mapping theory for strongly accretive operators (resp., accretive operators) is inti-

mately connected with the fixed point theory of strongly pseudocontractive operators

(resp., pseudocontractive operators). It is well known [4] that if T :X →X is a Lipschitz

strongly pseudocontractive operator, then T has a unique fixed point.

Next we recall the definition of stability. LetX be a Banach space and T be a mapping

from X into X. Let x0 ∈ X and xn+1 = f(T ,xn) define an iteration procedure which

yields a sequence of points {xn}∞n=0 in X. Suppose that F(T)= {x ∈ X : Tx = x}≠∅
and that {xn}∞n=0 converges to a fixed point p of T . Let {yn}∞n=0 be an arbitrary se-

quence in X and εn = ‖yn+1−f(T ,yn)‖. If limn→∞ εn = 0 implies limn→∞yn = p, then

the iteration procedure defined by xn+1 = f(T ,xn) is said to be T -stable or stable

with respect to T . Stability results for several iteration procedures for certain con-

tractive definitions have been established in recent papers by several authors, (see

[6, 10, 11, 12] and the references therein). In [6], Harder and Hicks showed how such a

sequence {yn}∞n=0 could arise in practice and demonstrated the importance of inves-

tigating the stability of various iteration procedures for various classes of nonlinear

mappings.

It is our purpose in this paper to show that if X is an arbitrary real Banach space

and T : X → X is a Lipschitz strongly pseudocontractive operator, then under certain

conditions the Ishikawa iterative method with errors converges strongly to the unique

fixed point of T . We also prove that this iteration procedure is stable with respect to T .

Our results generalize most of the results that have appeared recently. In particular,

the results of [1, 2, 3, 5, 6, 8, 10, 11, 12, 13] and a host of others will be special cases

of our theorems.

The following lemma plays a crucial role in the proofs of our main results.

Lemma 1.1 [9]. Let {an}∞n=0, {bn}∞n=0, and {cn}∞n=0 be three nonnegative real se-

quences satisfying the inequality

an+1 ≤
(
1−wn

)
an+bnwn+cn (1.5)

for all n ≥ 0, where {wn}∞n=0 ⊂ [0,1],
∑∞
n=0wn =∞, limn→∞bn = 0, and

∑∞
n=0 cn <∞.

Then limn→∞an = 0.

2. Main results. In the sequel, k= (t−1)/t and t is the constant appearing in (1.2)

and L denotes the Lipschitz constant of T with L≥ 1.

Theorem 2.1. Let X be an arbitrary real Banach space and let T : X → X be a

Lipschitz strongly pseudocontractive mapping. Define the sequence {xn}∞n=0 iteratively

by x0,u0,v0 ∈X,

yn =
(
1−βn

)
xn+βnTxn+vn, n≥ 0,

xn+1 =
(
1−αn

)
xn+αnTyn+un, n≥ 0,

(2.1)

where {αn}∞n=0, {βn}∞n=0 are two real sequences and {un}∞n=0, {vn}∞n=0 are two se-

quences in X satisfying the following conditions:
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∞∑
n=0

αn =+∞, 0≤αn ≤ 1, n≥ 0; (2.2)

k−L(L+1)βn−L2(L+1)αn
1−(1−k)αn ≥ r , 0≤ βn ≤ 1, n≥ 0; (2.3)

lim
n→∞

∥∥vn∥∥= 0,
∞∑
n=0

∥∥un∥∥<+∞; (2.4)

where r ∈ (0,1] is a constant. Then {xn}∞n=0 converges strongly to the unique fixed

point of T .

Proof. It follows from [4, Corollary 1] that T has a unique fixed point p in X. Since

T is strongly pseudocontractive, it follows from (1.2) that for all x,y ∈X, there exists

j(x−y)∈ J(x−y) such that

〈
(I−T)x−(I−T)y,j(x−y)〉≥ k‖x−y‖2. (2.5)

Thus

〈
(I−T −kI)x−(I−T −kI)y,j(x−y)〉≥ 0, (2.6)

and by [7, Lemma 1.1], we have

‖x−y‖ ≤ ∥∥x−y+s[(I−T −kI)x−(I−T −kI)y]∥∥ (2.7)

for all x,y ∈X and s > 0. Using (2.1), we obtain that

(
1−αn

)
xn = xn+1−αnTyn−un
= [1−(1−k)αn]xn+1+αn(I−T −kI)xn+1

+αnTxn+1−αnTyn−un.
(2.8)

Note that,

(
1−αn

)
p = [1−(1−k)αn]p+αn(I−T −kI)p. (2.9)

It follows from (2.7), (2.8), and (2.9) that
(
1−αn

)∥∥xn−p∥∥
≥ [1−(1−k)αn]

∥∥∥∥xn+1−p+ αn
1−(1−k)αn

[
(I−T −kI)xn+1−(I−T −kI)p

]∥∥∥∥
−αn

∥∥Txn+1−Tyn
∥∥−∥∥un∥∥

≥ [1−(1−k)αn]∥∥xn+1−p
∥∥−αn∥∥Txn+1−Tyn

∥∥−∥∥un∥∥,
(2.10)

which implies that

∥∥xn+1−p
∥∥≤ 1−αn

1−(1−k)αn
∥∥xn−p∥∥+ αn

1−(1−k)αn
∥∥Txn+1−Tyn

∥∥
+ 1

1−(1−k)αn
∥∥un∥∥.

(2.11)
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We have the following estimates:

∥∥xn−yn∥∥≤ βn∥∥xn−Txn∥∥+∥∥vn∥∥≤ (L+1)βn
∥∥xn−p∥∥+∥∥vn∥∥,∥∥Tyn−yn∥∥≤ (L+1)

∥∥yn−p∥∥≤ (L+1)
(
1−βn+Lβn

)∥∥xn−p∥∥+(L+1)
∥∥vn∥∥

≤ L(L+1)
∥∥xn−p∥∥+(L+1)

∥∥vn∥∥.
(2.12)

From (2.1) and (2.12), we have

∥∥Txn+1−Tyn
∥∥≤ L∥∥xn+1−yn

∥∥
≤ L(1−αn)∥∥xn−yn∥∥+αnL∥∥Tyn−yn∥∥+L∥∥un∥∥
≤ [L(L+1)βn+L2(L+1)αn

]∥∥xn−p∥∥+L(L+1)
∥∥vn∥∥+L∥∥un∥∥.

(2.13)

Using (2.13) in (2.11), we get

∥∥xn+1−p
∥∥

≤
{

1−αn
1−(1−k)αn +

αn
1−(1−k)αn

[
L(L+1)βn+L2(L+1)αn

]}

×∥∥xn−p∥∥+ αn
1−(1−k)αn L(L+1)

∥∥vn∥∥+ L
1−(1−k)αn

∥∥un∥∥

≤
[

1−αn k−L(L+1)βn−L2(L+1)αn
1−(1−k)αn

]∥∥xn−p∥∥+Dαn∥∥vn∥∥+D∥∥un∥∥,

(2.14)

where D = (L2+L)/k. It follows from (2.3) and (2.14) that

∥∥xn+1−p
∥∥≤ (1−rαn)∥∥xn−p∥∥+Dαn∥∥vn∥∥+D∥∥un∥∥. (2.15)

Put an = ‖xn−p‖, wn = rαn, bn = (D/r)‖vn‖, and cn =D‖un‖ for any n ≥ 0. Then

Lemma 1.1 ensures that ‖xn−p‖→ 0 as n→∞. This completes the proof.

Theorem 2.2. Let X, T , {xn}∞n=0, {αn}∞n=0, {βn}∞n=0, and {vn}∞n=0 be as in Theorem

2.1. Suppose that there exists a sequence {γn}∞n=0 with limn→∞γn = 0 and ‖un‖ = γnαn
for any n≥ 0. Then {xn}∞n=0 converges strongly to the unique fixed point of T .

Proof. Just as in the proof of Theorem 2.1, we have

∥∥xn+1−p
∥∥≤ (1−rαn)∥∥xn−p∥∥+Dαn∥∥vn∥∥+D∥∥un∥∥
= (1−rαn)∥∥xn−p∥∥+Dαn(∥∥vn∥∥+γn). (2.16)

Put an = ‖xn−p‖, wn = rαn, bn = (D/r)(‖vn‖+γn), and cn = 0 for any n≥ 0. Then

Lemma 1.1 ensures that ‖xn−p‖→ 0 as n→∞. This completes the proof.

Remark 2.3. Examples 2.4 and 2.5 show that Theorems 2.1 and 2.2 extend properly

[3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1].
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Example 2.4. Let X, T be as in Theorem 2.1 and

r = k
2
, αn = k

4L2(L+1)(n+1)
, βn = k

4L(L+1)
,

∥∥un∥∥= 1
(n+1)2

,
∥∥vn∥∥= 1

n+1

(2.17)

for all n≥ 0. Then the conditions of Theorem 2.1 are satisfied. But [3, Theorem 1], [1,

Theorem 4.2], and [5, Theorem 1] are not applicable.

Example 2.5. Let X, T , r , {vn}∞n=0, and {βn}∞n=0 be as in Theorem 2.1. Put

αn = k
4L2(L+1)

√
n+1

,
∥∥un∥∥= 1

n+1
(2.18)

for all n ≥ 0. Then the assumptions of Theorem 2.2 are fulfilled. However we do not

invoke [3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1] to show the sequence

{xn}∞n=0 converges strongly to the unique fixed point of T , because {βn}∞n=0 does not

converge to 0.

Now we prove the Ishikawa iterative procedure with errors is stable with respect to

Lipschitz strong pseudocontraction.

Theorem 2.6. Let X, T , {un}∞n=0, and {vn}∞n=0 be as in Theorem 2.1. Define the

sequence {xn}∞n=0 iteratively by x0,u0,v0 ∈X,

zn =
(
1−βn

)
xn+βnTxn+vn, n≥ 0,

xn+1 =
(
1−αn

)
xn+αnTzn+un, n≥ 0,

(2.19)

where {αn}∞n=0 and {βn}∞n=0 are two real sequences satisfying (2.4) and

0<a≤αn ≤ 1, 0≤ βn ≤ 1, n≥ 0; (2.20)

lim
n→∞

∥∥vn∥∥= lim
n→∞

∥∥un∥∥= 0, (2.21)

where a is a constant. Let {yn}∞n=0 be an arbitrary sequence in X. Define {εn}∞n=0 ⊂
[0,+∞) by

wn =
(
1−βn

)
yn+βnTyn+vn, n≥ 0,

εn =
∥∥yn+1−

(
1−αn

)
yn−αnTwn−un

∥∥, n≥ 0.
(2.22)

Then,

(1) the sequence {xn}∞n=0 converges strongly to the fixed point p of T ;

(2) ‖yn+1 − p‖ ≤ (1 − ar)‖yn − p‖ + εn +D‖vn‖ +D‖un‖, n ≥ 0, where D =
(L2+L)/k;

(3) limn→∞yn = p� limn→∞ εn = 0.

Proof. It follows from Theorem 2.1 that xn → p as n → ∞. This completes the

proof of (1).
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Using (2.22), we have

∥∥yn+1−p
∥∥≤ εn+∥∥(1−αn)yn+αnTwn+un−p

∥∥. (2.23)

Set Pn = (1−αn)yn+αnTwn+un, then (1−αn)yn = Pn−αnTwn−un. As the proof

in Theorem 2.1 and by (2.20), we obtain that

∥∥Pn−p∥∥≤ (1−αnr)∥∥yn−p∥∥+Dαn∥∥vn∥∥+D∥∥un∥∥
≤ (1−αr)∥∥yn−p∥∥+D∥∥vn∥∥+D∥∥un∥∥. (2.24)

Hence ‖yn+1−p‖ ≤ (1−αr)‖yn−p‖+εn+D‖vn
∥∥+D‖un‖. This completes the proof

of (2).

Now suppose that limn→∞yn = p. Then

εn =
∥∥yn+1−

(
1−αn

)
yn−αnTwn−un

∥∥
≤ ∥∥yn+1−p

∥∥+∥∥(1−αn)yn+αnTwn+un−p
∥∥

≤ ∥∥yn+1−p
∥∥+(1−αr)∥∥yn−p∥∥+D(∥∥vn∥∥+∥∥un∥∥).

(2.25)

It is easy to verify that εn→ 0 as n→∞.

Next suppose that limn→∞ εn = 0. From (2.23) and (2.24), we obtain that

∥∥yn+1−p
∥∥≤ (1−αnr)∥∥yn−p∥∥+Dαn∥∥vn∥∥+D∥∥un∥∥+εn
≤ (1−αr)∥∥yn−p∥∥+D∥∥vn∥∥+D∥∥un∥∥+εn, (2.26)

which means thatyn→ p asn→∞ according to Lemma 1.1 and (2.21). This completes

the proof of Theorem 2.6.

Remark 2.7. Example 2.8 below shows that Theorem 2.6 extends substantially [11,

Theorem 1] and [12, Theorem 3].

Example 2.8. Let X, T be as in Theorem 2.6 and

r = k
2
, a= k

16L2(L+1)
, αn = k(n+1)

8L2(L+1)(n+2)
,

βn = k(n+1)
4L2(L+1)(n+2)

,
∥∥un∥∥= ∥∥vn∥∥= 1

n+1

(2.27)

for n ≥ 0. Then the conditions in Theorem 2.6 are fulfilled. But [11, Theorem 1] and

[12, Theorem 3] are not applicable since αn < βn for all n≥ 0.
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