ON THE DIOPHANTINE EQUATION $x^2 + p^{2k+1} = 4y^n$

S. AKHTAR ARIF and AMAL S. AL-ALI

Received 12 June 2001

It has been proved that if p is an odd prime, y > 1, $k \ge 0$, n is an integer greater than or equal to 4, (n,3h) = 1 where h is the class number of the field $Q(\sqrt{-p})$, then the equation $x^2 + p^{2k+1} = 4y^n$ has exactly five families of solution in the positive integers x, y. It is further proved that when n = 3 and $p = 3a^2 \pm 4$, then it has a unique solution k = 0, $y = a^2 \pm 1$.

2000 Mathematics Subject Classification: 11D61.

1. Introduction. The purpose of this note is to compute positive integral solutions of the equation $x^2 + p^{2k+1} = 4y^n$, where p is an odd prime and n is any integer greater than or equal to 3. The special case when p = 3 and k = 0 was treated by Nagell [7] and Ljunggren [3] who proved that this equation has the only solutions y = 1 and y = 7 with n = 3. Later on, Ljunggren [4, 5], Persson [8], and Stolt [9] studied the general equation $x^2 + D = 4y^n$ and proved that it has a solution under certain necessary conditions on p. Le [2] and Mignotte [6] proved that the equation p0 p1 p2 p3 p3 p4 p5 has a finite number of solutions under certain conditions on p3 and p5 but did not compute these solutions. We will prove the following theorem.

THEOREM 1.1. The Diophantine equation

$$x^2 + p^{2k+1} = 4y^n, \quad y > 1,$$
 (1.1)

where p is an odd prime, $k \ge 0$, n is an integer greater than or equal to 4, (n,3h) = 1, where h is the class number of the field $Q(\sqrt{-p})$ has exactly five families of solutions given in Table 1.1.

Table 1.1

р	n	k	х	У
7	5	5 <i>M</i>	$11 \cdot 7^{5M}$	$2 \cdot 7^{2M}$
7	13	13M	$181\cdot 7^{13M}$	$2 \cdot 7^{2M}$
7	7	7M + 1	$13 \cdot 7^{7M}$	$2 \cdot 7^{2M}$
11	5	5M	$31 \cdot 11^{5M}$	$3\cdot 11^{2M}$
19	7	7M	$559\cdot 19^{7M}$	$5 \cdot 19^{2M}$

We start by the usual method of factorizing in the field $Q(\sqrt{-p})$, then we use a recent result of Bilu et al. [1], about primitive divisors of a Lucas number.

We start by giving some important definitions.

DEFINITION 1.2. A Lucas pair is a pair (α, β) of algebraic integers, such that $\alpha + \beta$ and $\alpha\beta$ are nonzero coprime rational integers and α/β is not a root of unity. Given a Lucas pair (α, β) , we define the corresponding sequence of Lucas numbers by $u_n(\alpha, \beta) = (\alpha^n - \beta^n)/(\alpha - \beta)$ (where n = 0, 1, 2, ...).

A prime number p is a primitive divisor of $u_n(\alpha, \beta)$ if p divides u_n , but does not divide $(\alpha - \beta)^2 u_1 u_2 \cdots u_{n-1}$.

The following result has been proved in [1].

LEMMA 1.3. For n > 30, the nth term of any Lucas sequence has a primitive divisor.

Also in [1], for $5 \le n \le 30$, all values of the pairs (α, β) have been listed for which the nth term of the Lucas sequence $u_n(\alpha, \beta)$ has no primitive divisors.

We first consider the case when (p,x) = 1 and prove the following theorem.

THEOREM 1.4. Equation (1.1), where n and p satisfy the conditions of Theorem 1.1, has no solution in the positive integers x when (p,x) = 1 except when p = 7,11, or 19.

PROOF. First suppose that n is an odd integer. Without loss of generality, we can suppose that n is an odd prime. Factorizing (1.1), we obtain

$$\left(\frac{x+p^k\sqrt{-p}}{2}\right)\cdot\left(\frac{x-p^k\sqrt{-p}}{2}\right)=y^n. \tag{1.2}$$

We can easily verify that the two numbers on the left-hand side are relatively prime integers in $Q(\sqrt{-p})$. So that

$$\frac{x+p^k\sqrt{-p}}{2} = \left(\frac{a+b\sqrt{-p}}{2}\right)^n,\tag{1.3}$$

where a and b are rational integers such that $a \equiv b \pmod{2}$ and $4y = a^2 + pb^2$, where (a, pb) = 1.

Let

$$\alpha = \frac{a + b\sqrt{-p}}{2}, \qquad \tilde{\alpha} = \frac{a - b\sqrt{-p}}{2}.$$
 (1.4)

Then from (1.3), we get

$$\frac{\alpha^n - \bar{\alpha}^n}{\alpha - \bar{\alpha}} = \frac{p^k}{b}.$$
 (1.5)

By equating imaginary parts in (1.3), we can easily conclude from (1.5) that

$$\frac{\alpha^n - \bar{\alpha}^n}{\alpha - \bar{\alpha}} = \begin{cases} \pm 1 & \text{if } (p, n) = 1, \\ \pm p & \text{if } n \mid p. \end{cases}$$
 (1.6)

It can be verified that $(\alpha, \bar{\alpha})$ is a Lucas pair as defined earlier and the only positive prime divisor of the corresponding nth Lucas number

$$u_n = \frac{\alpha^n - \bar{\alpha}^n}{\alpha - \bar{\alpha}} \tag{1.7}$$

is p which is not a primitive divisor because it divides $(\alpha - \bar{\alpha})^2 = pb^2$. So the Lucas number defined in (1.7) has no primitive divisors. Using Lemma 1.3 and [1, Table 2], we deduce that (1.1) has no solutions when n > 13. When $5 \le n \le 13$, again using [1, Table 2], we find all values of α for which the Lucas number $u_n(\alpha, \beta)$ has no primitive divisors. We consider each value of n separately.

When n = 13, then $\alpha = (1 + \sqrt{-7})/2$ which correspondingly gives k = 0, a = 1, b = 1, p = 7 and consequently, $y = (a^2 + pb^2)/4 = 2$, x = 181 is the only solution of the equation $x^2 + p^{2k+1} = 4y^{13}$.

When n = 11, there is no α for which $u_{11}(\alpha, \bar{\alpha})$ has no primitive divisors and so no solution of (1.1).

When n=7, the values of α for which $u_7(\alpha,\bar{\alpha})$ has no primitive divisors, are $\alpha=(1+\sqrt{-7})/2$, $(1+\sqrt{-19})/2$ which give y=2 as a solution of $x^2+7^3=4y^7$ (x=13) and y=5 as a solution of $x^2+19=4y^7$ (x=559). Similarly, for n=5, we get y=2 as a solution of $x^2+7=4y^5$ (x=11) and y=3 as a solution of $x^2+11=4y^5$ (x=31).

Now we will prove that there is no solution for (1.1) when n is even. It suffices to consider that n = 4.

Factorizing $x^2 + p^{2k+1} = 4y^4$, we get

$$(2y^2 + x) \cdot (2y^2 - x) = p^{2k+1}. \tag{1.8}$$

Since (p,x) = (p,y) = 1, then

$$2y^2 + x = p^{2k+1}, \qquad 2y^2 - x = 1$$
 (1.9)

which gives $4y^2 = p^{2k+1} + 1$. This can easily be checked to have no solution with y > 1.

PROOF OF THEOREM 1.1. Suppose that $p \mid x$. Let $x = p^{\lambda}x_1$, $y = p^{\mu}y_1$, where $(x_1, p) = (y_1, p) = 1$ and $\lambda, \mu \ge 1$. Substituting in (1.1), we get

$$p^{2\lambda} \cdot x_1^2 + p^{2k+1} = 4p^{n\mu} \cdot y_1^n. \tag{1.10}$$

We have the following three cases.

CASE 1. If $2\lambda = \min(2\lambda, 2k+1, n\mu)$, then

$$x_1^2 + p^{2k-2\lambda+1} = 4p^{n\mu-2\lambda} \cdot y_1^n. \tag{1.11}$$

This equation is impossible modulo p unless $n\mu - 2\lambda = 0$, and then we get $x_1^2 + p^{2(k-\lambda)+1} = 4y_1^n$, where $(x_1,p) = (y_1,p) = 1$. According to Theorem 1.4, this equation has no solution for all $n \ge 4$ except when n = 13,7,5, $k = \lambda$, and n = 7, $k = \lambda + 1$.

Accordingly, when n=13, we have $13\mu=2\lambda$, then $\lambda=13M$, $\mu=2M$ and so the solutions of (1.1) are p=7, $x=181\cdot 7^{13M}$, $y=2\cdot 7^{2M}$. Similarly, considering n=5,7, we get exactly the families of solutions given in the statement of Theorem 1.1.

CASE 2. If $2k + 1 = \min(2\lambda, 2k + 1, n\mu)$, then

$$p^{2\lambda - 2k - 1} \cdot x_1^2 + 1 = 4p^{n\mu - 2k - 1} \cdot y_1^n. \tag{1.12}$$

This equation is known to have no solution [7].

CASE 3. If $n\mu = \min(2\lambda, 2k+1, n\mu)$, then

$$p^{2\lambda - n\mu} \cdot \chi_1^2 + p^{2k+1-n\mu} = 4\gamma_1^n. \tag{1.13}$$

This equation is possible only if $2\lambda - n\mu = 0$ or $2k + 1 - n\mu = 0$. If $2\lambda - n\mu = 0$, we get $x_1^2 + p^{2(k-\lambda)+1} = 4y_1^n$, which is an equation of the same form as considered in Case 1. If $2k+1-n\mu=0$, we get $p(p^{\lambda-k-1}\cdot x_1)^2+1=4y_1^n$, which is known to have no solution [6]. This completes the proof of Theorem 1.1.

NOTE 1.5. When n = 3, factorizing (1.1), we get

$$\frac{x+3^k\sqrt{-3}}{2} = \varepsilon \left(\frac{a+b\sqrt{-3}}{2}\right)^3,\tag{1.14}$$

$$\frac{x+p^k\sqrt{-p}}{2} = \left(\frac{a+b\sqrt{-p}}{2}\right)^3, \quad p \neq 3,\tag{1.15}$$

where $\varepsilon = \omega$ or ω^2 and ω is a cube root of unity. From (1.14), we easily deduce that k=0 and $\gamma=1$ and 7 are the only solutions as proved in [3]. We treat (1.15) by the same way as before by taking $\alpha = (a + b\sqrt{-p})/2$ and $\bar{\alpha} = (a - b\sqrt{-p})/2$, so we get $(\alpha^3 - \bar{\alpha}^3)/(\alpha - \bar{\alpha}) = \pm 1$. It can be easily proved that $(\alpha, \bar{\alpha})$ is a Lucas pair as defined above. Using [1, Table 2], we find the following two values of α for which the Lucas number $u_3(\alpha,\bar{\alpha})$ has no primitive divisors:

$$\alpha = \begin{cases} \frac{m + \sqrt{\pm 4 - 3m^2}}{2}, & m > 1, \\ \frac{m + \sqrt{\pm 4 \cdot 3^k - 3m^2}}{2}, & m \neq 0 \pmod{3}, \end{cases}$$
 (1.16)

where $(k, m) \neq (1, 2)$.

The first value of α gives b=1, k=0 and consequently, $p=3a^2\pm 4$, $\gamma=a^2\pm 1$, and $x = a(2a^2 \pm 3)$ is the solution of (1.1) with n = 3. No solution is found for the second value of α since $p \neq 3$. Hence, we have the following theorem.

THEOREM 1.6. The Diophantine equation

$$x^2 + p^{2k+1} = 4y^3, \quad (p, x) = 1$$
 (1.17)

has the only solutions k = 0 and y = 1 and 7 when p = 3. When p is a prime greater than 3, such that (3,h) = 1, where h is the class number of the field $Q(\sqrt{-p})$, then it has solutions only if $p = 3a^2 \pm 4$, and then the solution is k = 0, $y = a^2 \pm 1$, and $x = a(2a^2 \pm 3).$

REFERENCES

- Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer
- numbers, J. reine angew. Math. 539 (2001), 75–122. M. H. Le, On the Diophantine equation $D_1x^2+D_2^m=4y^n$, Monatsh. Math. 120 (1995), [2]
- W. Ljunggren, Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre ku-[3] bische Formen mit positiver Diskriminante, Acta Math. 75 (1943), 1-21 (German).

- [4] _____, On the Diophantine equation $x^2 + D = 4y^q$, Monatsh. Math. 75 (1971), 136-143.
- [5] _____, New theorems concerning the Diophantine equation $x^2 + D = 4y^q$, Acta Arith. 21 (1972), 183–191.
- [6] M. Mignotte, On the Diophantine equation $D_1x^2 + D_2^m = 4y^n$, Portugal. Math. 54 (1997), no. 4, 457-460.
- [7] T. Nagell, *Des équations indéterminées* $x^2 + x + 1 = y^n$ *et* $x^2 + x + 1 = 3y^n$, Norsk Mat. Forenings Skr., Ser. I (1921), no. 2, 1-14.
- [8] B. Persson, On a Diophantine equation in two unknowns, Ark. Mat. 1 (1949), 45–57.
- [9] B. Stolt, Die Anzahl von Lösungen gewisser diophantischer Gleichungen, Arch. Math. 8 (1957), 393-400 (German).

S. AKHTAR ARIF: DEPARTMENT OF MATHEMATICS, GIRLS COLLEGE OF EDUCATION, P.O. BOX 22171, RIYADH 11495, SAUDI ARABIA

E-mail address: sarif5@hotmail.com

AMAL S. AL-ALI: DEPARTMENT OF MATHEMATICS, GIRLS COLLEGE OF EDUCATION, P.O. BOX 56778, RIYADH 11564, SAUDI ARABIA

E-mail address: amal1422h@yahoo.com