
IJMMS 32:1 (2002) 17–27
PII. S0161171202201167

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON SECTIONAL AND BISECTIONAL CURVATURE
OF THE H-UMBILICAL SUBMANIFOLDS

S. IANUS and G. B. RIZZA

Received 20 January 2002

Let M be an H-umbilical submanifold of an almost Hermitian manifold M̃ . Some relations
expressing the difference of bisectional and of sectional curvatures of M̃ and of M are
obtained. The geometric notion of related bases for a pair of oriented planes permits
to write the second members in a completely geometrical form. When the planes are not
orthogonal, more simple formulas are obtained. The paper ends with a remark, concerning
the vector field JH, and some special cases.
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1. Introduction. In [2, 3] Chen introduces and studies the n-dimensional totally

real H-umbilical submanifolds of the Kähler manifolds of real dimension 2n. More

generally, the present paper considers the H-umbilical submanifolds of the almost

Hermitian manifolds (Section 4). Some remarks in Section 4 show that these subman-

ifolds are very close to be weakly antiholomorphic submanifolds (see [4, Section 4])

and not far from being totally real submanifolds.

Let M be an H-umbilical submanifold of an almost Hermitian manifold M̃ . The aim

of this paper is to obtain relations linking the bisectional (sectional) curvatures of M
with the corresponding bisectional (sectional) curvature of M̃ .

Even if the relation (5.3) represents a first solution of our problem, the real difficulty

was that of giving a clear geometrical meaning to its second member. The notion of

related bases for a pair of planes (Section 3), introduced by Rizza in [8, Section 6], has

been the main tool to overcome the above difficulty.

Finally, Propositions 6.1, 6.2, and 6.3 solve our problem in a complete and satisfac-

tory way, since in the formulas only geometrical elements occur.

The relations of Propositions 6.1 and 6.2 may appear rather complicated, but when

the two planes are not orthogonal more simple formulas can be proved (Propositions

6.4 and 6.5).

The paper ends with Section 8, containing some remarks about the vector field JH,

that plays an essential role in the relations of Section 6. Other remarks, referring to

some special cases, are also included in Section 8.

2. Geometric preliminaries. In this section as well as in the following one, we recall

some geometric notions and fix some notations occurring in the sequel.

Let V be an m-dimensional real vector space (m≥ 2) and g an inner product on V .

Let p, q be two oriented planes (2-dimensional subspaces) of V .
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The planes p, q are said to be orthogonal, if there exists in p (in q) a line (1-

dimensional subspace) orthogonal to q (to p). In particular, p, q are strictly orthogonal,

if any line of p (of q) is orthogonal to q (to p).

Let A, Λ, p be a vector, a line, and an oriented plane of V , respectively. We denote

by AΛ and Ap the vectors obtained by orthogonal projection of the vector A on the

line Λ and on the plane p. It is easy to check that, if L is a unit vector of Λ and X, Y
is an orthonormal oriented basis of p, we have

AΛ = g(A,L)L, (2.1)

Ap = g(A,X)X+g(A,Y)Y . (2.2)

It is worth remarking that AΛ and Ap do not depend on the orientation of Λ and p.

3. Related bases. The main tool occurring in the proofs of this paper is the geo-

metric notion of related bases for a pair p, q of oriented planes of V (see [8, Section

6]). Two oriented orthogonal bases X, Y and Z , W of p and q, respectively, are said to

be related bases, if we have

g(X,W)= g(Y ,Z)= 0. (3.1)

The existence of related bases can be proved by an elementary calculation.

Starting from a pair of related bases of p, q and considering suitable rotations of

k(π/2) (k= 0,1,2,3) of these bases in p and in q, we obtain 8 pairs of related bases

for p, q, that will be regarded as equivalent in the sequel.

A simple investigation shows that when |g(X,Z)| ≠ |g(Y ,W)| there exists, essen-

tially, only one pair of related bases for the planes p, q. If we have |g(X,Z)| =
|g(Y ,W)| ≠ 0, there exist ∞1 pairs of related bases for p, q. Starting from one of

these pairs, we can generate all the other ones by simultaneous rotations in p and

in q. Finally, if we have |g(X,Y)| = |g(Y ,W)| = 0, the planes p, q are strictly orthogo-

nal. So there exist∞2 pairs of related bases for p, q. More explicitly, an oriented basis

of p and an oriented basis of q are always related bases for p, q.

Assume first that the inequality

∣∣g(X,Z)∣∣> ∣∣g(Y ,W)∣∣ (3.2)

is satisfied. Consider a line in the plane p and let α (0 ≤ α ≤ π/2) be the angle that

this line forms with the plane q. Denote by αm, αM the minimum and maximum value

of α, as the line varies in p. Then, the values αm, αM are attained by sectioning p, q
with the nonoriented planes tm, tM defined by X, Z and by Y ,W , respectively (see [10,

pages 69–74]). In other words, we have

cosαm =
∣∣g(X,Z)∣∣, cosαM =

∣∣g(Y ,W)∣∣. (3.3)

Since we have (cf. [7, (4), page 149])

cospq = g(X,Z)g(Y ,W), (3.4)

we can write |cospq| = cosαm cosαM .
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We introduce also the symmetries σp : p→ p, σq : q→ q defined by

σpX = Y , σpY =X, σqZ =W, σqW = Z, (3.5)

and useful in the sequel.

We assume now that

g(X,Z)= g(Y ,W)≠ 0. (3.6)

It is easy to show that any line of p (or q) forms the same angleα∗ (0≤α∗ ≤π/2)with

the plane q(p). So we say that p, q are isoclinic planes. Since we have αm =αM =α∗,

we denote by t∗, t∗ the planes previously denoted by tm, tM , respectively. Under

concord rotations of the bases in the oriented planes p, q the planes t∗, t∗ generate

two systems
∑
∗,
∑∗ of ∞1 planes and the correspondence t∗ → t∗ is one-to-one.

Some remarks are needed in the special case |g(X,Z)| = 1. When (3.2) is satisfied,

the planes p, q have a line in common, αm = 0, tm degenerates into the line p∩q
and tM is the normal plane. When (3.6) is satisfied, we have q = p or q = p′, where p′

denotes the same plane as p with opposite orientation. The planes t∗, t∗ degenerate

to lines and αm =αM =α∗ = 0.

Remark 3.1. If the inequality

∣∣g(Y ,W)∣∣> ∣∣g(X,Z)∣∣ (3.7)

replaces (3.2), then

cosαm =
∣∣g(Y ,W)∣∣, cosαM =

∣∣g(X,Z)∣∣. (3.8)

Consequently, the nonoriented planes tm, tM are defined by Y ,W and by X, Z , respec-

tively.

If the equation

g(X,Z)=−g(Y ,W)≠ 0 (3.9)

replaces (3.6), then p, q are again isoclinic planes. All goes as in the previous case, but

the rotations of the bases in the oriented planes, leading to the systems
∑
∗,
∑∗, are

no more concord.

Finally, the remarks concerning the special case |g(X,Z)| = 1 hold true also in the

special case |g(Y ,W)| = 1.

Remark 3.2. Let p, q be isoclinic planes. Then, under the mentioned rotations of

the bases in p and in q, the same condition, that is, (3.6) or (3.9), is satisfied.

Remark 3.3. Consider a pair of related bases of p, q varying in its equivalence

class. If p, q are not isoclinic planes, then (3.2) holds in 4 cases and (3.7) in the other 4

ones. Correspondingly, the symmetries σp , σq do not change or change to −σp , −σq.

If p, q are isoclinic planes, then the same relation, that is, (3.6) or (3.9), is satisfied. In

both situations the nonoriented planes t∗, t∗ do not change in 4 cases and interchange

in the other 4 ones. Correspondingly, the symmetries σp , σq do not change or change

to σq, σp .
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We conclude the section, remarking that the notion of related bases is a geometric

notion (intrinsic notion). Consequently, the nonoriented planes tm, tM , t∗, t∗, as well

as the isomorphisms σp , σq have a geometrical meaning (intrinsic meaning).

More details about related bases can be found in [9].

4. H-umbilical submanifolds. Let M̃ = M̃(g,J) be an m̃-dimensional almost Her-

mitian manifold and M an m-dimensional submanifold of M̃ (m ≥ 4), with induced

metric still denoted by g.

For the basic facts about the geometry of the submanifolds we refer to [1, Chapter 2],

[6, Chapter 7], and [11, Chapter 2]. In the sequel, B denotes the second fundamental

form and H = 1/m trace B the mean curvature vector field of M .

Following Chen ([3, page 70] and [2, page 278]), we say thatM isH-umbilical if there

exists an open covering � onM such that in any open set U of the covering the second

fundamental form B satisfies the condition

B
(
e1,e1

)= λJe1, B
(
e2,e2

)= ··· = B(em,em)= µJe1,

B
(
e1,ej

)= µJej, B
(
ej,ek

)= 0 j,k= 2, . . . ,m j ≠ k,
(4.1)

for some suitable functions λ, µ and for some orthonormal system of fields e1, . . . ,em.

Remark 4.1. In [2, 3], M̃ is a Kähler manifold of real dimension 2n and M is an

n-dimensional totally real H-umbilical submanifold of M̃ .

From (4.1) it follows that

mH = (λ+(m−1)µ
)
Je1. (4.2)

It is easy to prove that if M is H-umbilical and totally umbilical, then M is totally

geodesic, and vice versa.

From B(e1,ej)= µJej (j = 2, . . . ,m) it follows that µ = 0. Hence we have B(e1,e1)=
λJe1 =mH. On the other hand, we have B(e1,e1) =H and since m ≥ 4 we get H = 0

and λ= 0. The conclusion is now immediate. The converse is obvious.

From now on we assume thatM isH-umbilical and not minimal. A first consequence

is that if we have H ≠ 0 almost everywhere on M , then M is almost everywhere weakly

antiholomorphic (see [4, Section 4]).

The assumption on H implies that for any U of the open covering we have λ ≠ 0

or µ ≠ 0 almost everywhere in U . So, from the first row of (4.1) we derive that almost

everywhere on U there exists a non-null tangent vector e1, such that Je1 results to be

orthogonal to M . This leads to the conclusion.

The submanifold M is called �-regular if for any U of � we have µ ≠ 0 almost

everywhere in U . It is now worth remarking that if M is �-regular, then M is almost

everywhere antiholomorphic (almost everywhere totally real).

Let x be a point of U where µ ≠ 0, then by virtue of (4.1) the fields e1, . . . ,em at x
are such that the fields Je1, . . . ,Jem at x belong to Tx(M)⊥. Consequently, we have

JTx(M)⊂ Tx(M)⊥ and this proves the statement.
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We complete the section remarking that at any point x of U where H ≠ 0 and for

any pair X, Y of vectors of Tx(M) we have

B(X,Y)=αg(JX,H)g(JY ,H)H+βg(H,H)g(X,Y)H
+βg(H,H)[g(JX,H)JY +g(JY ,H)JX], (4.3)

where

α= λ−3µ
γ3

, β= µ
γ3
, γ = λ+(m−1)µ

m
. (4.4)

Of course in (4.3) and (4.4), the second fundamental form B, the mean curvature

field H, the Riemannian structure g, and the almost complex structure J are consid-

ered at the point x and the functions λ, µ are evaluated at x.

As in the case considered by Chen in [2, 3], relation (4.3) is an easy consequence of

condition (4.1).

5. A first curvature relation. Our aim now is to obtain some information about

the curvature of the H-umbilical submanifold M . The basic facts about sectional and

bisectional curvatures are recalled in [7].

Consider first the classical Gauss formula

R̃(X,Y ,Z,W)−R(X,Y ,Z,W)= g(B(X,W),B(Y ,Z))−g(B(X,Z),B(Y ,W)), (5.1)

where R, R̃ are the curvature tensor fields of M , M̃ respectively and X, Y , Z , W are

vector fields of M .

Let U be an open set of the covering � of M and x a point of U ⊂M ⊂ M̃ , where H
does not vanish. Since we know that the second fundamental form at the point x is

given by (4.3), we can evaluate the second member of (5.1) at X. A long but elementary

calculation leads to the relation

g
(
B(X,W),B(Y ,Z)

)−g(B(X,Z),B(Y ,W))
= δ(g(H,H))2[g(X,W)g(JY ,H)g(JZ,H)+g(Y ,Z)g(JX,H)g(JW,H)]
−δ(g(H,H))2[g(X,Z)g(JY ,H)g(JW,H)+g(Y ,W)g(JX,H)g(JZ,H)]
−β2(g(H,H))3[g(X,Z)g(Y ,W)−g(X,W)g(Y ,Z)],

(5.2)

where δ= β(α+β).
Now, let p, q be two oriented planes of Tx(M) ⊂ Tx(M̃). Denote by χpq and χ̃pq

the bisectional curvatures of M and of M̃ with respect to p, q. If X, Y and Z , W are

oriented orthonormal bases of p and of q respectively, then from (5.1), (5.2) we derive

χ̃pq−χpq = β2(g(H,H))3[g(X,W)g(Y ,Z)−g(X,Z)g(Y ,W)]
+δ(g(H,H))2[g(X,W)g(JY ,H)g(JZ,H)+g(Y ,Z)g(JX,H)g(JW,H)]
−δ(g(H,H))2[g(X,Z)g(JY ,H)g(JW,H)+g(Y ,W)g(JX,H)g(JZ,H)],

(5.3)

where δ= β(α+β).
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Relation (5.3) is a first expression for the difference of the bisectional curvatures of

M̃ and of M . The tensor fields H, g, J occurring at second member of (5.3) must be

considered at the point x; similarly the functions δ, α, β must be evaluated at x.

6. Main results. The notations introduced in Sections 2 and 3 now permit to state

some results.

Proposition 6.1. If the planes p, q have no lines in common, then

χ̃pq−χpq =−β2(g(H,H))3
cospq−δ(g(H,H))2

�, (6.1)

where

�= g(σp(JH)p∩tm ,σq(JH)q∩tm)+g(σp(JH)p∩tM ,σq(JH)q∩tM ) (6.2)

and δ= β(α+β). When p, q are isoclinic planes, then t∗, t∗ replace tm, tM .

In particular, if p, q are orthogonal, but not strictly orthogonal, we have cospq = 0

and

�= g(σp(JH)p∩tM ,σq(JH)q∩tM ). (6.3)

If p, q are strictly orthogonal, then

χ̃pq = χpq. (6.4)

Proposition 6.2. If the planes p, q have one and only one line in common, then

(6.1) holds true and

�= g(σp(JH)p∩q,σq(JH)p∩q)+g(σp(JH)p∩ν ,σq(JH)q∩ν), (6.5)

where ν is the normal plane. In particular, if p, q are orthogonal, then cospq = 0 and

�= g(σp(JH)p∩ν ,σq(JH)q∩ν). (6.6)

Proposition 6.3. Let K̃p , Kp be the sectional curvatures of M̃ , M with respect to

the plane p. Then

K̃p−Kp =−β2(g(H,H))3−δ(g(H,H))2g
(
(JH)p,(JH)p

)
. (6.7)

Moreover, if p′ denotes the same plane as p with opposite orientation, then

χ̃pp′ −χpp′ = β2(g(H,H))3+δ(g(H,H))2g
(
(JH)p,(JH)p

)
. (6.8)

It is worth remarking that Propositions 6.1, 6.2, and 6.3 exhaust all possible cases.

More expressive formulas can be obtained when the planes are not orthogonal.
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Proposition 6.4. If the planes p, q are not orthogonal and have no lines in com-

mon, then relation (6.1) holds true where

�= cospq
[
g
(
(JH)p∩tm ,(JH)q∩tm

)
cos2αm

+ g
(
(JH)p∩tM ,(JH)q∩tM

)
cos2αM

]
, (6.9)

and δ= β(α+β).
In particular, if p, q are isoclinic planes, then

�=±[g((JH)p∩t∗ ,(JH)q∩t∗)+g((JH)p∩t∗ ,(JH)q∩t∗)] (6.10)

according to cospq > 0, or cospq < 0.

Proposition 6.5. If the planes p, q are not orthogonal and have one and only one

line in common, then relation (6.1) holds true where

�= 1
cospq

[
g
(
(JH)p,(JH)q

)−g((JH)p∩q,(JH)p∩q)sin2pq
]
. (6.11)

We conclude the section by remarking that all the formulas occurring in Proposi-

tions 6.1, 6.2, 6.3, 6.4, and 6.5 have a clear geometrical meaning. Moreover, taking

into account of Remarks 3.1, 3.2, and 3.3, we can assure that the above results do not

depend on the choice of the pair of related bases in p, q.

7. Proofs. In order to evidence the geometrical meaning of relation (5.3) and to

prove the propositions of Section 6, we assume that X, Y and Z , W are related bases

of p, q (Section 3). Then, using [7, (4)], we can write relation (5.3) in the form (6.1)

where

�= g(X,Z)g(JH,Y)g(JH,W)+g(Y ,W)g(JH,X)g(JH,Z) (7.1)

and δ= β(α+β).
To prove Proposition 6.1, assume first that (3.2) is satisfied. So, using the notations

of Section 2, we have

(JH)p∩tm = g(JH,X)X, (JH)p∩tM = g(JH,Y)Y ,
(JH)q∩tm = g(JH,Z)Z, (JH)q∩tM = g(JH,W)W.

(7.2)

Now, recalling definition (3.5) of the symmetries σp , σq, we immediately realize that

(7.1) can be written in the form (6.2).

When (3.7) replaces (3.2), we are led to the same conclusion.

We can use the previous proceeding also in the case when p, q are isoclinic planes

(Section 3). We have only to change the notations, that is, to replace tm, tM with t∗, t∗.
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In particular, if p, q are orthogonal but not strictly orthogonal (Section 2), there

exists a unit vector Y of p (W of q), that results to be orthogonal to any vector of

q (of p). Choose a unit vector X of p (Z of q) such that X, Y (Z , W ) be an oriented

orthonormal basis of p (of q). It is easy now to realize that X, Y and Z , W are related

bases of p, q (Section 3).

Referring to these bases, we have g(Y ,W)= 0. Since p, q are not strictly orthogonal,

we have g(X,Z)≠ 0. So inequality (3.2) is satisfied. It is now immediate to check that

the first addend of (6.2) vanishes and that cospq = 0 by (3.4). Therefore (6.3) is proved.

Finally, let p, q be strictly orthogonal (Section 2).Then any orthonormal basis X, Y
of p and any orthonormal basis Z , W of q form a pair of related bases of p, q. Since

we have g(X,Z)= g(Y ,W)= 0, the second member of (7.1) vanishes as well as cospq
and (6.1) reduces to (6.4).

To prove Proposition 6.2, we consider a unit vector X = Z on the line p∩q and

choose Y and W in such a way that X, Y and Z , W are oriented orthonormal bases of

p and of q, respectively. These bases are related bases and the plane defined by Y ,

W is the normal plane ν . The proceeding used to prove (6.2) now leads from (7.1) to

(6.5).

Equality (6.5) can be also regarded as a limiting case of (6.2), the plane tm degener-

ating into the line p∩q and tM tending to the normal plane ν .

In particular, if p, q are orthogonal, then g(Y ,W)= 0. Consequently, since we have

σp(JH)p∩q ∈ p∩ν, σq(JH)p∩q ∈ q∩ν , we get cospq = 0 and the first addend of (6.5)

vanishes.

In order to prove Proposition 6.3, we consider the special case q = p, recalling that

χpp =Kp and χ̃pp = K̃p (see [7, page 149]). Let X, Y and Z , W where Z =X and W = Y ,

be orthonormal oriented bases of p and of q = p, respectively. Since these bases

are related bases of p, q (Section 3), we have relation (6.1) where � is given by (7.1).

Remarking that in the present case (7.1) reduces to � = (g(JH,X))2 + (g(JH,Y))2,

by virtue of (2.2) we have � = g((JH)p,(JH)p). It is now immediate to check that

(6.1) reduces to (6.7). Finally, the relation (6.8) is a direct consequence of (6.7) and of

[7, (3)].

We prove now Proposition 6.4. As we have seen at the beginning of the section, if

X, Y and Z ,W are related bases of p, q then we have (6.1) where � is given by (7.1). We

assume first that (3.2) is satisfied. So we can use (7.2). Since p, q are not orthogonal,

taking account of (3.1) we find g(X,Z)≠ 0 and g(Y ,W)≠ 0. Then, recalling (3.3) and

(3.4), we have

cospq
cos2αm

= g(Y ,W)
g(X,Z)

,
cospq

cos2αM
= g(X,Z)
g(Y ,W)

. (7.3)

It is now easy to check that (7.1) can be written in the form (6.9). When (3.7) replaces

(3.2) we arrive to the same conclusion.

If p, q are isoclinic planes, that is, αm = αM = α∗ (Section 3), then we have either

(3.6) or (3.9). Relation (7.3) shows that the two cases occur when cospq > 0, or cospq <
0, respectively. Using (3.6), (3.9), and (7.2) where t∗, t∗ replace tm, tM (Section 3), we

see immediately that (7.1) reduces to (6.10).
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To prove Proposition 6.5, we consider related bases X, Y and Z ,W of p, q such that

X = Z is a unit vector of p∩q (see proof of Proposition 6.2). Taking into account (2.2)

and (3.1), respectively, we have

g
(
(JH)p,(JH)q

)= (g(JH,X))2+g(Y ,W)g(JH,Y)g(JH,W). (7.4)

On the other hand, from (2.1) it follows

g
(
(JH)p∩q,(JH)p∩q

)= (g(JH,X))2. (7.5)

Since (3.4) reduces to g(Y ,W) = cospq ≠ 0, it is now easy to check that (7.1) can be

written in the form (6.11).

8. Remarks and special cases. Let U be an open set of the covering � (Section 4)

and x a point of U , where H does not vanish.

The first result of the section is an inequality concerning the sectional curvatures.

Remark 8.1. If at the point x we have δ≥ 0 or δ≤ 0, then for any plane of T(M)⊂
T(M̃) we have

Kp ≤ K̃p+
(
β2+δ)(g(H,H))3, (8.1)

or

Kp ≥ K̃p+
(
β2+δ)(g(H,H))3, (8.2)

respectively.

The results of Section 6 underline the essential role played by the vector field JH
in the present research. We add now the following remarks.

Remark 8.2. The vector field JH is tangent to M .

Remark 8.3. Assume first q ≠ p and q ≠ p′. Then, if at the point x the plane p
(the plane q) is orthogonal to JH, we have

χ̃pq−χpq =−β2(g(H,H))3
cospq, (8.3)

and consequently

χ̃pq−β2(g(H,H))3 ≤ χpq ≤ χ̃pq+β2(g(H,H))3. (8.4)

We assume now q = p or q = p′. If at x the plane p is orthogonal to JH, we have

Kp = K̃p+β2(g(H,H))3, χpp′ = χ̃pp′ −β2(g(H,H))3, (8.5)

respectively. Then we have

Kp ≥ K̃p, χpp′ ≤ χ̃pp′ . (8.6)
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To prove Remark 8.1, just note that

g
(
(JH)p,(JH)p

)≤ g(JH,JH)= g(H,H). (8.7)

Then, use (6.7).

At the point x of U , relation (4.2) implies

JH =−λ+(m−1)µ
m

e1 ∈ Tx(M). (8.8)

So Remark 8.2 is proved.

Finally, Remark 8.3 is an easy consequence of Propositions 6.1, 6.2, and 6.3.

The next remark refers to some special cases for the functions λ and µ, considered

by Chen [2, page 282].

Remark 8.4. If at the point x we have λ= 3µ (λ= 0), then the left (right) inequality

of Remark 8.1 holds with δ= β2 (δ=−2β2).
If at x we have λ = 2µ, then δ = 0. Consequently, we have relation Kp = K̃p +

β2(g(H,H))3 and Kp ≥ K̃p . Finally, if at x we have λ = µ, since δ = −β2, the right

inequality of Remark 8.1 reduces to Kp ≥ K̃p .

We end the paper with another special case.

Remark 8.5. We consider the H-umbilical submanifolds, such that for any U of �

we have µ = |H|. Then the relations giving the differences χ̃pq−χpq of the bisectional

curvatures for the above mentioned submanifolds and for the totally umbilical sub-

manifolds differ only for an additional term. In particular, the expressions of χ̃pq−χpq
are the same in both cases, when in U we have λ= 2µ = 2|H|.

To prove Remark 8.5, just note that β2(g(H,H))3 = µ2 and compare (6.1) with [5,

(8), page 74].
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S. Ianus: Facultatea de Matematică, Universitatea Bucuresti, Str. Academiei 14, Bu-
curesti 70109, Romania

G. B. Rizza: Dipartimento di Matematica, Universit’a di Parma, Via D’Azeglio 85,
43100 Parma, Italy


