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We define the Conway skein module �(M) of ordered based links in a 3-manifold M . This
module gives rise to �(M)-valued invariants of usual links in M . We determine a basis
of the Z[z]-module �(Σ× [0,1])/Tor(�(Σ× [0,1])), where Σ is the real projective plane
or a surface with boundary. For cylinders over the Möbius strip or the projective plane,
we derive special properties of the Conway skein module, among them a refinement of a
theorem of Hartley and Kawauchi about the Conway polynomial of strongly positive am-
phicheiral knots in S3. In addition, we determine the Homfly and Kauffman skein modules
of Σ×[0,1] where Σ is an oriented surface with boundary.

2000 Mathematics Subject Classification: 57M25.

1. Introduction. In 1969, Conway found a normalized version ∇̃ of the Alexander

polynomial of a link. It satisfies a so-called skein relation on certain triples of links

differing only by local modifications, namely,

∇̃
( )

−∇̃
( )

= z∇̃
( )

(1.1)

(see [1, 7]). The Conway polynomial also satisfies ∇̃(On)= δ1n, where On is the trivial

link with n components and δij is 1 if i = j, and 0 otherwise. The skein relation to-

gether with ∇̃(O1)= 1 uniquely determine the isotopy invariant ∇̃(L) for every link L.

More precisely, the so-called skein module �(S3), generated over Z[z±1] by isotopy

classes of links modulo the skein relation, is free with basis O1. The Jones, Homfly,

and Kauffman polynomials of links in S3 [8, 10, 11] can be characterized by similar

skein relations. In 1988, Przytycki and Turaev generalized the Homfly and Kauffman

polynomials to links in a solid torus and determined the corresponding skein mod-

ules. Since then, various versions of skein modules related to these polynomials have

been studied [19], among them the Homfly skein module of links in a handlebody [18].

In 1990, Vassiliev invariants were introduced [23]. They can be characterized as fol-

lows: every link invariant v with values in an abelian group can recursively be extended

to an invariant of singular links by v
( )= v( )−v( )

. Vassiliev invariants v of

degree n of links are those invariants that vanish on singular links with n+1 double

points. If the 3-manifold is not orientable, then there exists no preferred choice of a

sign in v
( )=±v( )∓v( )

, but it still makes sense to speak of Vassiliev invari-

ants of degree n. Let I = [0,1]. In 1996, Andersen, Mattes, and Reshetikhin [2] found

a universal Vassiliev invariant ZΣ×I of links in a cylinder over an orientable surface Σ
with boundary. We use ZΣ×I to determine the Homfly and Kauffman skein modules

of Σ× I. In comparison with [18], our choice of a basis of the Homfly skein module

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


516 JENS LIEBERUM

has some technical advantages. The result seems to be new for the Kauffman skein

module.

In [15], the invariant ZΣ×I was extended to a universal Vassiliev invariant of links

in cylinders over nonorientable surfaces with boundary and over the real projective

plane P2. The main idea that led to this paper was to extract an explicitly computable

link invariant from ZΣ×I in the nonorientable case. We define a skein module �(M) of

a 3-manifold M using a version of the skein relation in (1.1) for ordered based links.

In Theorem 4.1, we establish an isomorphism of Z[z]-modules,

�#(Σ×I)� Z[z]⊗Z�#
0(Σ×I), (1.2)

where Σ = P2 or Σ is a nonorientable surface with boundary, �#(M) is the quotient

of the Z[z]-module �(M) by its torsion submodule, and �#
0(M) is the quotient of the

Z-module �(M)/(z�(M)) by its torsion submodule. We determine the structure of

�#
0(M) for an arbitrary 3-manifold. It is isomorphic to a tensor product of a polyno-

mial algebra and an exterior algebra. A basis of �#(Σ×I) is given by certain descending

links. We describe explicitly how to compute a Conway polynomial inducing the iso-

morphism in (1.2) and how to obtain invariants of links (without order or basepoints)

from the Conway skein module. When Σ is the Möbius strip X or Σ= P2 we show that

the isomorphism in (1.2) is an isomorphism of involutive algebras (Theorem 4.2). In

addition, we have the following theorem for the Conway polynomials ∇̃ of knots in

P2×I and in S2×I.
Theorem 1.1. For a noncontractible knot K ⊂ P2×I

∇̃(p−1(K)
)= ∇̃(K)2, (1.3)

where p : S2×I → P2×I denotes the 2-fold covering map.

See Theorem 4.3 for an equivalent formulation of Theorem 1.1. For strongly positive

amphicheiral knots in S3, a theorem of Hartley and Kawauchi [9] says that the Conway

polynomial is a square. Theorem 1.1 is a refinement of this result (see Corollary 4.4)

because it assures that the square root of the Conway polynomial of p−1(K) can be

computed directly using the Conway skein relation for ordered based links in P2×I.
The paper is organized as follows. In Section 2, we define �(M) and prove some

of its general properties. After this section we concentrate on the case M = Σ× I. In

Section 3, we introduce decomposed surfaces and make a choice of representatives

of conjugacy classes in the fundamental group of Σ. This choice is important in the

definition of a descending link. Only a careful choice leads to a basis of �#(Σ×I) over

Z[z]. In Section 4, we state Theorems 4.1, 4.2, and 4.3. Sections 5 to 9 are devoted to

the proof of these theorems. In Section 5, we show that descending knots and the so-

called cabled descending knots generate �(Σ×I) as an algebra. Making computations

in �#(X× I), we show in Section 6 that cabled descending knots vanish in �#(Σ× I).
In Section 7, we introduce labeled ordered based chord diagrams and prove that a

mapW ob
gl 0

defined on these diagrams is compatible with certain relations. In Section 8,

we compose the universal Vassiliev invariant ZΣ×I adapted to ordered based links

with W ob
gl 0

to prove Theorems 4.1 and 4.2. In Section 9, we prove Theorem 4.3 using a
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map between chord diagrams induced by the covering S2×I → P2×I. In an appendix,

we determine the structure of the Homfly and Kauffman skein modules of Σ× I for

oriented surfaces Σ with boundary.

2. The Conway skein module. Throughout this paper, we work in the PL-category.

Let M be a connected 3-manifold equipped with an oriented subset U homeomor-

phic to a closed 3-ball D3. We denote the fundamental group of M with respect to

a basepoint in U by π1(M). The first Stiefel-Whitney class induces a homomorphism

σ : π1(M) → Z/2 called orientation character of M . Explicitly, if a local orientation

at the basepoint stays the same when we push it around w ∈ π1(M), then we have

σ(w)= 0, and σ(w)= 1 otherwise.

Ordered based links in M are links in M with a linear order of their components

and with a basepoint in U on each component. In particular, every component of an

ordered based link meets U . The basepoints are not allowed to leave U during an

isotopy (resp., homotopy) of ordered based links. The homotopy class of a based knot

K can canonically be considered as an element α(K) ∈ π1(M). We denote σ(α(K))
simply by σ(K). Notice that σ(K) does not depend on the basepoint of K. We will

regard the empty link ∅ as an ordered based link because this will simplify slightly

the statement of our results.

In Figure 2.1 parts of ordered based links are shown. Numbers 1 and 2 near the

basepoints in this figure indicate that the corresponding component is first or second

in the order of this link.

1 2

L+

1 2

L− L‖

1 1

L+

1

L− L‖

1 2

Figure 2.1. Skein triples of ordered based links.

Ordered based links (L+,L−,L‖) form a skein triple if they differ inside of a ball

D3 ⊂U as one of the two triples (L+,L−,L‖) in Figure 2.1, they coincide on the outside

of this ball, and the order and basepoints of the remaining components also coincide.

We say that L+ and L− are related by changing a crossing and L‖ is obtained from L+
or L− by splicing a crossing.

Definition 2.1. Let �(M) be the Z[z]-module generated by isotopy classes of

ordered based links and the following relations (Ord), (Bas), and (Skein):

(Ord): L = (−1)σ(K1)σ(K2)L′, where K1, K2 are two components of an arbitrary or-

dered based link L that are neighbors in the order of the components of L. The ordered

based link L′ is equal to L except that the order of K1 and K2 is interchanged.

(Bas): L = (−1)σ(a)σ(b)L′, where L and L′ are ordered based links that are equal

except for one basepoint on a componentK of L andK′ of L′. The elementa∈π1(Σ×I)
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is given by the curve described by the basepoint of K when it is pushed along K until

it coincides with the basepoint of K′, and b =α(K′)a−1.

(Skein): L+−L− = zL‖, where (L+,L−,L‖) is a skein triple of ordered based links.

Let the homomorphism of rings ϕ : Z[z]→ Z[z] be given by ϕ(p)(z)= p(−z). We

turn � into a functor in the sense of the following proposition.

Proposition 2.2. Let the 3-manifolds Mi (i = 1,2) be equipped with the oriented

subsets Ui �D3, and let i :M1→M2 be an embedding with i(U1)⊆U2.

(1) If the orientations of i(U1) and U2 coincide, then i induces a morphism of Z[z]-
modules i∗ : �(M1)→�(M2).

(2) If the orientations of i(U1) and U2 are opposite, then i induces a morphism of

Z-modules i∗ : �(M1)→ �(M2) satisfying i∗(pm) = ϕ(p)i∗(m) for all p ∈ Z[z] and

m∈�(M1).

Sketch of proof. (1) Is obvious.

(2) The only defining relation of �(M1) that depends on the orientation of U1 is the

skein relation. Reversing the orientation of U1 interchanges the parts L+ and L− of a

link which can be compensated by replacing z by −z. In this way we obtain part (2) of

the proposition using part (1).

The existence of a suitable homeomorphism from M to itself implies the follow-

ing corollary, which explains why we do not refer explicitly to U in the name of

�(M).

Corollary 2.3. If the 3-manifold M is oriented (resp., nonorientable), then for dif-

ferent choices of Ui ⊂Mi =M with Ui �D3 equipped with the induced (resp., an arbi-

trary) orientation the Z[z]-modules �(Mi) are isomorphic.

Let c be an arbitrary crossing of an ordered based link. We apply an isotopy such

that c is contained in U . Then we use relations (Ord) and (Bas) such that c becomes a

crossing involved in a skein triple. The skein relation then implies that the Z-module

�0(M)=�(M)/(z�(M)) is generated by homotopy classes of ordered based links. We

turn a disjoint union of ordered based links L= L1∪L2 into an ordered based link by

extending the order of the components of Li to L by K1 <K2 for based knots Ki ⊂ Li.
This operation is not well defined on �(M), but it turns �0(M) into an associative

ring with 1-element∅. Let T = Tor(�0(M)) be the torsion submodule of the Z-module

�0(M) which is a 2-sided ideal of �0(M). Define �#
0(M) = �0(M)/T . We describe the

structure of �#
0(M). Denote the conjugacy class of an element w ∈ π1(M) by [w].

Let

�1 =
{
[w] |w ∈π1(M), σ(w)= 1

}
,

�∗0 =
{
[w] |w ∈π1(M), σ(w)= 0 and N(w)⊆ Kerσ

}
,

(2.1)

where N(w) = {v ∈ π1(M) | vw = wv} is the normalizer of w. For a set X, let VX
be the free Z-module with basis {tx | x ∈X}. Denote the symmetric algebra on a free

Z-module V by S(V) and the exterior algebra by Λ(V). For w ∈π1(M) we denote the

corresponding based knot in �#
0(M) by K̄w .
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Proposition 2.4. For every choice �̂∗0 of representatives of the conjugacy classes

in �∗0 exists an isomorphism of algebras

ψ : S
(
V�̂∗0

)
⊗Λ(V�1

)
�→�#

0(M), (2.2)

given by mapping tv⊗1 to K̄v (v ∈ �̂∗0 ) and 1⊗t[w] to K̄v for some v ∈ [w]∈�1.

Proof. The Z-module �0(M) can be described by noncommutative generators kw
(w ∈π1(M)) and the relations(

Ord′
)

: kvkw = (−1)σ(v)σ(w)kwkv,(
Bas′

)
: kvw = (−1)σ(v)σ(w)kwv,

(2.3)

for all v,w ∈ π1(M). By the relation (Bas′), we have ka = kb for all a,b ∈ [a] ∈ �1.

Relation (Ord′) implies that k2
a = −k2

a ∈ �0(M). Therefore, we have k2
a = 0 ∈ �#

0(M).
Now relation (Ord′) implies that ψ is well defined. If σ(w) = 0 and there exists v ∈
π1(M) with vw =wv and σ(v)= 1, then

kw = kvwv−1 = (−1)σ(v)σ(wv
−1)kwv−1v =−kw, (2.4)

implying that kw = 0 ∈ �#
0(M). Therefore, ψ is surjective. Since we know a presenta-

tion of �0(M) by generators and relations, it is easy to verify that an inverse map of

ψ is well defined.

Now we fix a choice of a linearly ordered set �̂∗ consisting of representatives of

�∗0 ∪�1. Then by Proposition 2.4 we can equip �#
0(M) with the basis

K̄w1 ···K̄wn, where wi ∈ �̂∗, wi ≤wi+1,
(
wi =wi+1 �⇒ σ

(
wi
)= 0

)
. (2.5)

We define the linear map θ : �#
0(M)→ Z to be equal to 1 on these basis elements. For

nonorientable M , the definition of θ depends on the representatives chosen for �∗0
and on the order chosen on �1.

The module �(M) gives rise to invariants of links inM (without order or basepoints)

as follows. Given a link L, we choose a basepoint bi on each component and pull

all basepoints into U along disjoint paths βi. Then we choose an arbitrary order of

the components of L and obtain an ordered based link Lb. We denote the image of

Lb ∈�(M) under the Z-linear projection �(M)→�#
0(M) by L̄b. Define vi(L) and C(L)

by

�(M)
zi+1�(M)

� vi(L)= θ
(
L̄b
)
L̄b, (2.6)

{{a,b} | a,b ∈�(M)
}� C(L)=


{
θ
(
L̄b
)
L̄b
}
, if θ

(
L̄b
)
≠ 0,{± L̄b}, if θ

(
L̄b
)= 0.

(2.7)

Proposition 2.5. The maps C and vi (i ≥ 0) are isotopy invariants of links. In

addition, the maps vi are Vassiliev invariants of degree i.

Proof. Let L be a link and let La, Lb be ordered based links obtained from L by

choosing basepoints ai and bi on the components of L that are pulled into U along the



520 JENS LIEBERUM

paths αi and βi, respectively. We first assume that all the paths αi and βi are disjoint.

Then we can pull the points bi on La into U along the βi, and the points ai on Lb into

U along αi. This shows that we can pass from La to Lb by isotopies of ordered based

links and by application of relations (Ord) and (Bas). The relations (Ord) and (Bas)

influence only the signs, and θ(L̄b) changes signs simultaneously with L̄b. If the paths

αi and βi are not disjoint, then we choose the basepoints ci of L and paths γi disjoint

to αi and βi and apply the argument above to the pairs (La,Lc) and (Lc,Lb). This

shows that the maps vi and C are well defined isotopy invariants of links. It follows

from the skein relation by the same arguments as for the usual Conway polynomial

of links that the maps vi are Vassiliev invariants of degree i (see [24]).

3. Decomposed surfaces. Now we consider the special case M = Σ× I, where Σ is

a connected compact surface and I = [0,1] is an oriented interval. First assume that

∂Σ ≠ ∅. We choose an oriented subset B0 � D2 of Σ such that B0∩ ∂Σ ≠ ∅. Define

�(Σ×I) with respect to U = B0×I �D3. Fix the choice of a point u∈ B0∩∂Σ. For the

following definition we need some notation: we denote the fundamental group of Σ
with respect to a basepoint in B0 by π1(Σ). Let pΣ and pI be the projections from Σ×I
to Σ and I, respectively. For x ∈ Σ×I we call the value pI(x) the height of x.

Definition 3.1. (1) A based knot K ⊂ Σ× I is called descending with respect to

its basepoint, if the height of K is descending when we travel along K starting at

the basepoint A and following the orientation of K until we reach a point A′ with

pΣ(A)= pΣ(A′) from which K leads back to A by increasing the height and by keeping

the projection to Σ constant.

(2) A based knot K ⊂ Σ× I is called a descending knot, if K is descending with

respect to its basepoint A and there exists a neighborhood V � D2 of u in B0 such

that (V ×I)∩K consists of an interval containing A.

The important property of descending knots is that for w ∈ π1(Σ) there exists up

to isotopy exactly one descending knot Kw such that α(Kw) = w. If v,w ∈ π1(Σ)
are conjugate then we can pass from Kv to Kw by isotopies and crossing changes

and by moving the basepoint. In this section we choose a set �̂ of representatives

of conjugacy classes in π1(Σ) with good properties (compare the example preceding

(5.1) for a choice with bad properties).

Definition 3.2. A decomposed surface is a triple (Σ,(B0,B1, . . . ,Bk),u) where Σ is

a surface, I2 � B0 ⊂ Σ is oriented, u ∈ B0∩∂Σ, and I2 � Bi ⊂ Σ such that
⋃k
i=0Bi = Σ

and conditions (3.1) are satisfied,

B0∩Bi � I×{0,1} for i≥ 1,

Bi∩Bj =∅ for i≠ j, i,j ≥ 1.
(3.1)

We represent decomposed surfaces graphically as shown in Figure 3.1 by an exam-

ple. By convention, the orientation of B0 is counterclockwise in this figure. We also

represent Σ× I as in Figure 3.1 where we assume that on B0 the interval I directs

towards the reader.
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B1 B2

B0u

Figure 3.1. A picture of a decomposed surface.

The decomposition of Σ determines generators xi (i = 1, . . . ,k) of π1(Σ) that pass

through the band Bi exactly once in the clockwise sense in our pictures and that do not

meet the other bands Bj (j ≥ 1, i ≠ j). For w ∈ π1(Σ) we denote by �(w) the length

of the unique reduced expression of w in the generators xi of the free group π1(Σ)
and we denote the generator at position i (1 ≤ i ≤ �(w)) in this expression by w(i).
Traveling along ∂B0 in the clockwise sense starting at u, we number the 2k intervals

Bi∩B0 (i= 1, . . . ,k) from 1 to 2k. We denote these intervals by Iν (ν ∈ {1, . . . ,2k}). This

numbering determines maps s,d : π1(Σ)→ {1, . . . ,2k} where Is(w) (resp., Id(w)) is the

interval that a generic representative of w intersects first (resp., last). For example,

we have s(x−1
1 x2) = 3 and d(x−1

1 x2) = 4 for the decomposed surface in Figure 3.1.

We define an order on elements of π1(Σ) of fixed length r such that for v , w with

s(v) < s(w) we have v < w. For the remaining pairs (v,w) ∈ π1(Σ)2 with v ≠w we

choose m> 0 such that t := v(1)···v(m−1)=w(1)···w(m−1) and x := v(m)≠
w(m)=:y and say that v <w if

σ(t)+ρ(s(y),s(x))+ρ(d(t),s(x))+ρ(d(t),s(y))≡ 0mod2, (3.2)

where ρ(a,b) is 0 for a > b and 1 for a≤ b. Notice that we have s(x)≠ s(y), d(t)≠
s(x), d(t)≠ s(y). See Figure 3.2 for an example.

v w

u

m= 3

x = x−1
1 , y = x1, t = x1x−1

2

s(x)= 3, s(y)= 1, d(t)= 2

σ(t)+ρ(1,3)+ρ(2,3)+ρ(2,1)=
1+1+1+0≡ 1mod2

Figure 3.2. x1x−1
2 x−1

1 = v >w = x1x−1
2 x1.

We can visualize the relation defined above as follows: the condition s(v) < s(w)
says that if the first interval where v enters a band lies to the left of the first interval

where w enters a band, then we have v < w. For the second condition, represent v
by a generic loop on Σ. We start drawing w by entering the first band to the right of
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d(t) s(x) s(y) s(x) d(t) s(y) s(x) s(y) d(t)

Figure 3.3. Configurations of (s(x),s(y),d(t)) and intersections.

v and then by running close and parallel to v through the first m−1 bands. Then w
leaves the m−1st band to the left of v if and only if σ(t) = 0. Three configurations

of (s(x),s(y),d(t)) ∈ N3 and the possible ways to continue drawing w for σ(t) = 0

are shown in Figure 3.3.

The remaining possibilities in Figure 3.3 for σ(t)= 0 are given by interchanging x
and y . The case σ(t)= 1 is treated in a similar way. We see that

σ(t)+ρ(s(y),s(x))+ρ(d(t),s(x))+ρ(d(t),s(y))≡ 1mod2 (3.3)

if and only if the part of w corresponding to y going from the interval d(t) to s(y)
must intersect the part of v corresponding to x going from d(t) to s(x). It is easy to

verify that the defined relation is an order relation.

An important property of v,w ∈ π1(Σ) with v > w is the following. Assume that

v and w are represented by generic loops on Σ corresponding to reduced words, we

have v(1)=w(1), v enters the first band at the interval s(v) to the left of w, and v
and w have no intersections while they are traversing the bands Bi (i ≥ 1). Choose

the smallest number n such that the part of v going from the interval d(v(n−1))
to s(v(n)) intersects the part of w going from d(w(n−1)) to s(w(n)) in an odd

number of points. Then we necessarily have v(i)=w(i) for all i < n.

Now we can choose representatives ŵ of conjugacy classes of elements w ∈π1(Σ)
as follows:

ẇ =min
{
v | v is cyclically reduced, [v]= [w] or

[
v−1]= [w]},

ŵ =
ẇ if

[
ẇ
]= [w],

ẇ−1 if
[
ẇ−1

]= [w].
(3.4)

For a decomposed surface we choose �̂ := {ŵ |w ∈ π1(Σ)}. For Σ = P2 we obviously

have to choose �̂ = π1(P2,∗)� Z/2. By a descending knot K we mean, in this case, a

based knot K with constant height pI(K). The isotopy class of a descending knot K is

again uniquely determined by α(K)∈π1(P2,∗).
For i = 0,1, denote by fi an orientation preserving homeomorphism I �

[i/2,(i+1)/2]. By Proposition 2.2 we obtain isomorphisms of Z[z]-modules,

(
id×fi

)
∗ : �(Σ×I) �→�

(
Σ×

[
i
2
,
(i+1)

2

])
. (3.5)

The identity Σ×[1/2,1]∪Σ×[0,1/2]= Σ×I induces a Z[z]-bilinear product,

�(Σ×I)×�(Σ×I)��

(
Σ×

[
1
2
,1
])
×�

(
Σ×

[
0,

1
2

])
�→�(Σ×I), (3.6)
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where we extend the order of the components of ordered based links L1, L2 to their

product L1L2 by K1 < K2 for K1 ⊆ L1, K2 ⊆ L2. The projection �(Σ× I) → �0(Σ× I)
becomes a homomorphism of rings.

Since the multiplication in �(Σ×I) is in general not commutative, we use a standard

order for products of descending knots. For this purpose we fix an arbitrary choice

of an order on the set �̂. For example, for a decomposed surface we can take the

lexicographical order on the alphabet x1,x−1
1 ,x2, . . ., using reduced expressions.

Definition 3.3. An �̂-descending link is an ordered based link isotopic to a prod-

uct of descending knots K1 ···Kn with α(Ki)∈ �̂ and α(K1)≤ ··· ≤α(Kn).

4. Main results about the Conway skein module. Let Tor(�(M)) = {m ∈ �(M) |
∃p ∈ Z[z] : pm = 0} be the torsion submodule of �(M) and denote the quotient

�(M)/Tor(�(M)) by �#(M). Let R(M) be the quotient of �#
0(M) by the 2-sided ideal

generated by the elements K̄eK̄w , where e is the neutral element in π1(M) and w ∈
π1(M) is arbitrary. For nonorientable M , we have R(M)=�#

0(M) because a link L one

of whose components is a trivial knot, satisfies 2L = 0 ∈ �(M) by the relation (Bas)

and isotopies.

We choose �̂ as in Section 3. Recall the definition of θ from page 5. With the notation

above we can state the following theorem.

Theorem 4.1. Let Σ = P2 or let Σ be a compact connected surface with boundary.

Then there exists a unique Z[z]-linear map,

∇ : �(Σ×I) �→ Z[z]⊗ZR(Σ×I), (4.1)

satisfying ∇(L)= 1⊗ L̄ for all �̂-descending links L with θ(L̄)≠ 0. The map ∇ induces

an isomorphism �#(Σ×I)� Z[z]⊗ZR(Σ×I).
Theorem 4.1 is proven in Section 8. In Sections 5 and 6, we prove the uniqueness

of ∇. This part of the proof contains a constructive algorithm for the computation

of ∇(L). In Sections 7 and 8, we prove the existence of ∇. For this part of the proof,

we use a universal Vassiliev invariant ZΣ×I .
As a first example, observe that for Σ = I2 we have ∇(L) = ∇̃(L)K̄e where ∇̃(L) is

the usual Conway polynomial of L (see (1.1)).

For a link L⊂ Σ×I we denote the mirror image under reflection in Σ×{1/2} by L∗.

For a link L with ordered components, we use the same order for the components of

L∗ as for their preimages. For i= 0,1, denote by |L|i the number of components K of

L satisfying σ(K) = i. Then we have the following theorem about special properties

of the Conway skein module for certain surfaces.

Theorem 4.2. (1) For Σ = I2, S1× I, P2, or the Möbius strip X, the map ∇ satisfies

∇(L)= 1⊗ L̄ and ∇(L1L2)=∇(L1)∇(L2) for all �̂-descending links L, L1, L2.

(2) For Σ= P2 or Σ=X, L= (−1)|L|0L∗ ∈�#(Σ×I).
Theorem 4.2 is proven in Section 8. Notice that we do not require that θ(L) ≠ 0

in part (1) of the theorem. In the case where Σ = I2 we have the well known sym-

metry property L∗ = (−1)|L|+1L similar but different from the formula in part (2) of

Theorem 4.2, whereas for other surfaces no formula of this type is valid.
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Let L be an ordered based link in P2×I represented by a link in X×I as in Figure 4.1,

where X = P2 \D2 is the Möbius strip. Let L′ be a link in I2×I as in Figure 4.1, where

the parts of the two diagrams consisting of a box labeled T are identical.

L=
T

L′ =
T

Figure 4.1. A link in P2×I and a link in I2×I.

If L is a knot, then we have ∇(L)= ∇̃(L′)K̄s , where s denotes the unique nontrivial

element of π1(P2,∗). In general, we can compose∇ with the invariant C(L) (see (2.7))

and obtain

∇(C(L))=

{∇̃(L′)K̄s}, if L is a knot,{±∇̃(L′)K̄s}, otherwise.

(4.2)

The example above is related to a simple special case of the following theorem.

Theorem 4.3. Let K be a knot in P2×I with ∇(K)= f(z)K̄s . Then

∇(p−1(K)
)= f(z)2K̄e, (4.3)

where p : S2×I → P2×I denotes the 2-fold covering map.

Theorem 4.3 is proven in Section 9 using relations between Vassiliev invariants of

K and p−1(K).
Recall that a knot K in S3 is called strongly amphicheiral, if there exists an ori-

entation-reversing involution i of S3 with i(K)=K. We say that K is strongly positive

amphicheiral, if there exists an involution i as above that preserves the orientation of

K. We have the following corollary.

Corollary 4.4. Let K be a strongly positive amphicheiral knot in S3. Then ∇̃(K)=
f(z)2 for some f ∈ Z[z].

Proof. Strongly positive amphicheiral knots in S3 are in one-to-one correspon-

dence with knots K in P2× I with σ(K) = 1. To see this, recall that the set of fixed

points of an orientation-reversing involution i of S3 is either S0 or S2 (see [21]). For

strongly positive amphicheiral knots K, it is sufficient to consider involutions i with

fixed point set S0 ⊂ S3 and K ∩ S0 = ∅. By a theorem of Livesay (see [17, 20]), we

then have (S3 \S0)/i � P2×]0,1[. The corollary follows by applying Theorem 4.3 to

the image of K in (S3 \S0)/i.

Corollary 4.4 was proven directly by Kawauchi and Hartley using the Blanchfield

pairing (see [6, 9, 12]). Theorem 4.3 contains the stronger statement that f(z) itself
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can be calculated using a skein relation. It would be interesting to have a direct skein-

theoretical proof of Theorem 4.3.

5. Generators of �(Σ×I). In general, we can show that all sets of knots �, for which

{α(K) | K ∈ �} contains a set of representatives of conjugacy classes of π1(Σ), gen-

erate a dense subalgebra of the z-adic completion lim←� �(Σ×I)/zn�(Σ×I) of �(Σ×I).
As we will see, by the following example, the set � does not necessarily generate the

Z[z]-module �(Σ× I). Choose a generator s ∈ π1(S1× I,∗). Denote the descending

knot in S1× I2 belonging to sn by K′n. There are knots K′′n in S1× I2 that are a con-

nected sum of K′n and a Whitehead knot in S1× I2 such that the equation K′′n = K′n−
zK′sgn(n)(|n|+1)K

′
−sgn(n) holds in �(S1×I2) (see Figure 5.1 for n= 3). Using Theorem 4.1

it is easy to see that the knots K′′n (n ∈ Z) do not generate �(S1× I2) as an algebra,

but {α(K′′n) |n∈ Z} =π1(S1×I).

= − z

Figure 5.1. K′′3 =K′3−zK′4K′−1 ∈�(Σ×I).

The knots K′′n from the previous example are not descending. For a set �̂′ consisting

of cyclically reduced representatives of conjugacy classes in π1(Σ), where Σ is a de-

composed surface, we can show using Theorem 4.1 that the descending knots Kw
(w ∈ �̂′) generate Q(z)⊗Z[z]�(Σ× I) as a Q(z)-algebra, where Q(z) is the quotient

field of Z[z]. The knots Kw (w ∈ �̂′) do not necessarily generate �(Σ× I) as a Z[z]-
algebra. For example, let Σ be a disc with three holes decomposed such that s(xi)= i,
d(xi) = 7− i (i = 1,2,3). By Theorem 4.1 and Proposition 2.2, there exists a basis of

the Z[z]-module �#(Σ× I) containing the element K∗
x1x−1

3 x2
−K∗

x1x2x−1
3

, where K∗ de-

notes the mirror image of K with respect to Σ×{1/2}. Let {x2x1x−1
3 ,x

−1
3 x1x2} ⊂ �̂′.

If the knots Kw (w ∈ �̂′) would generate �(Σ× I) we see, by Theorem 4.1, that we

could find a basis of �#(Σ×I) containing the element Kx2x1x−1
3
−Kx−1

3 x1x2
. But this is

impossible because we can show by a computation that

Kx2x1x−1
3
−Kx−1

3 x1x2
= (1+z2)(K∗

x1x−1
3 x2

−K∗
x1x2x−1

3

)
∈�(Σ×I). (5.1)

According to the following lemma the set �̂ chosen in Section 3 has better properties.

Lemma 5.1. The descending knots Kw (w ∈ �̂) generate �(Σ×I) as a Z[z]-algebra.

Proof. Let L be a diagram of an ordered based link. For the proof we use the

following strategy: we never increase the number of crossings of L, and make compu-

tations modulo diagrams with less crossings. This allows us to make crossing changes.
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We prove the lemma by induction, where the induction base is given by the following

arguments for link diagrams without crossings, and the induction step is given by the

same arguments for link diagrams with crossings.

�

Figure 5.2. Eliminating cancellations of generators of π1(Σ).

Case 1 ∂Σ≠∅.

Step 1. We apply an isotopy that does not increase the number of double points in

pΣ(L) such that the projection of L to
⋃k
i=1Bi consists of parallel strands connecting

points in Is(xi) with points in Id(xi). Then we pass from L to a diagram of a product of

knots by crossing changes.

Step 2. Each component of L represents a unique word in the generators xi of

π1(Σ). We claim that we can replace each of these components by a diagram of a

based knot K representing a cyclically reduced word in π1(Σ): for words that are not

cyclically reduced, we find a segment h of K corresponding to a cancellation such that

pΣ(h) connects two points P1,P2 ∈ Iν for some ν , and all the parts of pΣ(K) that go

into B0 between P1 and P2 intersect pΣ(h) (see Figure 5.2).

The part h can first be moved to a suitable height by making crossing changes and

then be pulled back by applying an isotopy that does not increase the number of

crossings as shown in Figure 5.2. This will remove one cancellation from the word in

the generators xi, x−1
i corresponding to the knot projection. We continue by induction

on the number of cancellations to pass to a cyclically reduced word.

Step 3. Recall the definitions of ẇ and ŵ for w ∈ π1(Σ) from (3.4). We continue

with the modification of each based knot K in L by moving the basepoint of K until

w = ŵ where w = α(K). By relation (Bas), this only contributes a factor ±1. We can

further achieve that the projection A of the basepoint of K to Σ lies in Is(ẇ). Assume

that there are points in pΣ(K)∩Is(ẇ) to the left of A in our pictures of Σ. Let P be the

left neighbor of A in pΣ(K)∩Is(ẇ). Notice that there may be points of pΣ(L\K)∩Is(ẇ)
between P and A. Let v be the element of π1(Σ) that is represented by pΣ(K) with

basepoint P and with an orientation such that at P the curve pΣ(K) enters the band.

By the definition of the representative ŵ we have v ≥ ẇ. Assume first that v > ẇ. We

have v(1)= ẇ(1). Therefore, following the two strands of pΣ(K) starting by entering

a band at P and A, we follow paths p and a, respectively, that pass through the same

bands until we find a crossing c between them. Denote that part of L by T whose

projection lies in a small neighborhood of the triangle bounded by a, p, and Is(ẇ)
with corners P , A, and c. By crossing changes we pass to a suitable height on T and

then pull back this part by an isotopy as shown in Figure 5.3 until the points P and

A are interchanged. The projection of T arrives very close to Is(ẇ) in B0 such that no

crossings with the remaining part of pΣ(L) can appear.
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A P
T

p a

�
Ṫ

Figure 5.3. Moving the basepoint to the left in pΣ(K)∩Is(ẇ).

= −z

Figure 5.4. What is ∇(K(x1x−1
2 )2)?

If v = ẇ, then we push the basepoint along K until its projection arrives at P .

Therefore, in any case this modification does not increase the number of crossings

of K. This implies that by induction, we can assume that there are no points in pΣ(K)∩
Is(ẇ) to the left of A. Then we pass from K to a descending knot by crossing changes.

Since this works for all the components of L we have proven the lemma in the case

where ∂Σ≠∅.

Case 2 Σ = P2
. We choose an open disc D ⊂ P2. Then P2 \D = X is the Möbius

strip. It is easy to see that every link in P2×I can be represented by a link in X×I and

that a descending link in X×I is isotopic to a descending link in P2×I. Therefore, we

conclude using this lemma for Σ=X.

Let Σ be a surface with nonempty boundary. Let w ∈ π1(Σ)\{e}. In the free group

π1(Σ), the normalizerN(w) is isomorphic to Z. A generator z ofN(w) is characterized

by the property thatw = zk where k∈ Z and |k| is as large as possible. If σ(z)= 1 and

σ(w)= 0, then by Proposition 2.4 we have K̄w = 0∈ �#
0(Σ×I). Nevertheless, we may

have Kw ≠ 0∈�#(Σ×I). Hence it is not obvious how to calculate∇(Kw) using only the

properties of ∇ given in Theorem 4.1. Our next goal will be to see why the equation

in Figure 5.4 implies that ∇(K(x1x−1
2 )2) = −zK̄x1x−2

2
K̄x1 . In the rest of this section we

will reduce this question to a problem in �#(X×I), where X is the Möbius strip.

Fix a generator s ofπ1(X) and denote the descending knot Ksn by Kn. For v ∈π1(Σ)
with σ(v) = 1 we have an embedding iv : X× I → Σ× I such that iv(K1) = Kv . Up to

isotopy, iv is uniquely determined by v (since σ(v) = 1 no framing is needed). By

Proposition 2.2 the embedding iv induces a map between skein-modules iv∗ : �(X×
I) → �(Σ× I). We can assume that iv∗ is Z[z]-linear by making a suitable choice of

the oriented subset U of X× I. For w ∈ π1(Σ)\ {e}, there exists a unique generator

u of N(w) such that w = un for n ∈ N. If σ(u) = 1 and σ(w) = 0, then we define
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the cabled descending knot as K̂w = (iu)∗(Kn). We define K̂w = Kw in the remaining

cases. Using this notation we can rewrite the equation in Figure 5.4 as

K(x1x−1
2 )2 = K̂(x1x−1

2 )2−zKx1x−2
2
Kx1 = K̂(x1x−1

2 )2−zK̂x1x−2
2
K̂x1 . (5.2)

Lemma 5.2. The knots K̂w (w ∈ �̂) generate �(Σ×I) as a Z[z]-algebra.

Proof. For Σ = P2 there is nothing to prove. Assume that ∂Σ ≠∅. Let L be a link

in Σ× I. By the first two steps of the proof of Lemma 5.1 we can assume that the

connected components of L represent cyclically reduced words in π1(Σ). Applying

the following Steps 1 and 2 to all the components K of L will imply the lemma by

induction on the number of crossings:

Step 1 (collect all starting points on the left). Choose a maximal k > 0 such that ẇ =
(a1 ···an)k ∈ π1(Σ) where w = α(K) and ai ∈ {x±1

j }. Assume that σ(a1 ···an) = 1

(otherwise there is nothing to do). Consider the k points Ai on K such that pΣ(Ai)∈
Is(a1) andpΣ(K)with each of these points represents ŵ. We want to move all the points

pΣ(Ai) to the left side in pΣ(K)∩ Is(a1) without increasing the number of crossings

of L: if this is not already the case, then choose j such that the point P to the left of

A := pΣ(Aj) in pΣ(K)∩ Is(a1) is not one of the points pΣ(Ai). Let (b1 ···bn)k be the

element of π1(Σ) represented by pΣ(K) with respect to P and oriented such that it

leaves B0 at P . Since we use this orientation of pΣ(K), the word b1 ···bn is obtained

from a1 ···an by a cyclic permutation.

The minimality of ẇ and the maximality of k imply that a1 ···an < b1 ···bn.

We have b1 = a1. Therefore, we can follow pΣ(K) on two strands along b1 ···bm =
a1 ···am (m < n) starting at P and A until we find a crossing c between these two

strands. As in Step 3 of the proof of Lemma 5.1 we make crossing changes and then

pull back this crossing and possibly some other parts of L \K by an isotopy until

the points P and A are interchanged (see Figure 5.3). With this modification we do

not increase the number of crossings of L and the point A has moved one step to

the left in pΣ(K)∩ Is(a1). We now verify that no other point A′ = pΣ(Aj′) has moved

to the right during this operation: assume that we reach A′ after starting at P and

traveling along b1 ···bm′ with 0 < m′ ≤m. Then for x = a1 ···am′ we have either

a1 ···an = xyx or a1 ···an = xyx−1. We can exclude the second case because this

would imply that x = a1 ···am′ = b1 ···bm′ = x−1, which is impossible. By the mini-

mality of ẇ = (xyx)k and the maximality of k we have xyx <yxx and xyx < xxy .

From xyx <yxx, we deduce that xy <yx. Then xyx < xxy and yx > xy implies

that σ(x) = 1. Therefore, starting at P and A and traveling along x, the first strand

reaches Is(a1) to the right of the second one. This means that by pulling back the cross-

ing c we move the two points A and A′ to the left (see Figure 5.5 for an example). We

can continue by induction until all points pΣ(Ai) are on the left side of pΣ(K)∩Is(a1).

Step 2 (move component into cabling position). Successively, for i = 2, . . . ,n,

we consider all parts sν of K such that the projections pΣ(sν) connects some interval

Ij with Is(ai) inside of B0. By crossing changes we move all the sν to a suitable height

and then push the part T containing all crossings between these strands across the

band at Is(ai). This isotopy can be chosen in the following way such that the total

number of crossings of L does not increase: after being pushed across the band the
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�

Figure 5.5. Applying Step 1 to the leftmost point of pΣ(K)∩I1.

part T arrives very close to Id(ai)×I and the strands that now enter into Is(ai) without

intersections in their projection to Σ can be moved into a position such that they coin-

cide with the original parts of T except in the neighborhoods of crossings and except

for orientations.

After having done the previous modification for i = 2, . . . ,n we make crossing

changes such that K = ia1···an∗(K
′), where K′ is a knot in X× I. Applying the argu-

ments in the proof of Lemma 5.1 forΣ=X toK′ we see thatK is equal to ia1···an∗(Kk)=
K̂w modulo diagrams with less crossings.

In a diagram of a product of knots we can permute two components modulo dia-

grams with less crossings. By the relation (Ord) this allows to express 2K2
w (σ(w)= 1)

by diagrams with less crossings. This can be used in the calculation of ∇(L) by work-

ing with Z[1/2][z]⊗R(Σ×I). In order to prove that ∇ takes values in Z[z]⊗R(Σ×I)
we have to be more careful. Since the presentation of �0(Σ×I) by generators and rela-

tions (see the proof of Proposition 2.4) shows that K2
w �≡ 0modz we pass to a quotient

of �(Σ×I). Let J be the 2-sided ideal of �(Σ×I) generated by elements i∗(K2
1) for all

embeddings i :X×I → Σ×I as in Proposition 2.2. Then we have the following lemma.

Lemma 5.3. The Z[z]-module �(Σ×I)/J is generated by the following set of links:

{
K̂w1 ···K̂wn |n∈N, wi ∈ �̂, wi ≤wi+1,

(
wi =wi+1 �⇒ σ

(
wi
)= 0

)}
. (5.3)

Proof. The proof of Lemma 5.2 shows that the Z[z]-module �(Σ×I) is generated

by the links K̂w1 ···K̂wn with n ∈ N, wi ∈ �̂, and wi ≤ wi+1. Consider the links L
of the form L′K′K′′L′′ where L′ and L′′ are ordered based links and K′ = K′′ = K̂w
with σ(w) = 1. For σ(w) = 1 we always have Kw = K̂w . As shown in the proof of

Lemma 5.1 we may assume that in a diagram of L the projections of the components

K′ and K′′ of L represent cyclically reduced words in π1(Σ). Furthermore, we may

assume that the projections A′ and A′′ of the basepoints of K′ and K′′ lie in Is(ẇ).
When we follow the two strands of pΣ(K′ ∪K′′) starting by entering a band at A′ and

A′′, we follow the pathsa′ anda′′, respectively, that pass through the same bands until

we find a crossing c between them. We pull this crossing back as shown in Figure 5.3.

We continue with the modification of L as in Step 2 of the proof of Lemma 5.2. We

obtain that L is equal to L′i∗(K2
1)L′′ modulo diagrams with less crossings, where we

have α(i∗(K1)) = w and where we can choose the embedding i : X× I → Σ× I such

that i∗(K1) is a knot descending with respect to its basepoint (but in general not a
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descending knot). The link L′i∗(K2
1)L′′ lies in the ideal J. We obtain the lemma by

induction on the number of crossings.

6. Generators of �#(X×I). We show by making computations in �#(X×I) that the

knots K̂w with K̂w ≠Kw are 0 in �#(Σ×I). Verifying directly that(
z2+4

)
i∗
(
K2

1

)= 0∈�(Σ×I) (6.1)

gives a good impression of the ideas used in this section. Readers that are mainly

interested in the case Σ= P2 can concentrate on the verification of (6.1).

Recall that we denote the descending knot Ksn for a fixed choice of a generator

s ∈π1(X) by Kn. In this section, we represent ordered based links in X×I by drawing

only a part of them as shown in Figure 6.1. We say that we represent an ordered based

link in L as the closure of a tangle.

T � T for example, K5 =

Figure 6.1. The closure of a tangle.

The tangle T must have the same number n of endpoints at the top and at the bot-

tom and the strand at the ith endpoint at the top (always by counting the endpoints

from the left to the right side) is directed downwards if and only if the (n+1− i)th
strand at the bottom is directed downwards (i = 1, . . . ,n). The ordered set of base-

points of T is in bijection with the components of the closure of T .

The following lemmas are important for determining �#(X× I). They also provide

shortcuts in the computation of the Conway polynomial.

Lemma 6.1. For all k,n,m∈ Z the following identities hold in �#(X×I):

K2k = 0, K2n+1K2m+1 =−K2m+1K2n+1. (6.2)

As a preparation for the proof of Lemma 6.1 we first prove the following lemma.

Lemma 6.2. Assume that K2n = 0 ∈ �#(X× I) for all n with −k < n < k. Then for

i∈ Z with −k < i < k the following identities hold in �#(X×I):
(1) if a link L is a closure of a tangle T on 2i strands as in Figure 6.2 with r = i,

then L= 0;

(2) if a knot K is a closure of a tangle on l∈ {2i+1,2i+2} strands as in Figure 6.2

with r = i+1, K is descending with respect to its basepoint, the basepoint lies on

one of the first i+1 strands of K, and K is homotopic to Km, then K =Km =K∗m.

Proof. (1) Since 2i is even and the diagram of L is as shown in Figure 6.2, we can

pass from L to a product ±K2i1 ···K2ir with −i < iν < i by crossing changes and by
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T

r r −1 or r

Examples for
parts (1)
and (2) of

Lemma 6.2:

1

2

(1) (2)

,

Figure 6.2. Special tangles on an even or odd number of strands.

the relation (Bas). If a crossing of L is spliced, then we obtain again a closure of a

tangle as in Figure 6.2. By induction on the number of crossings of L, we can expand L
as a linear combination over Z[z] of monomials K2j1 ···K2jm with −i < ji < i. Under

the hypotheses of Lemma 6.2 all these monomials equal 0 in �#(X×I).
(2) Let K be as in part (2) of Lemma 6.2. When we push the basepoint of K along

the generator s of π1(X) and l is odd, then the relation (Bas) contributes the sign

(−1)1·(l−1) = 1. If l is even, then we will see in the following that we will push the

basepoint along s an even number of times, because the basepoint is on one of the first

i+1 strands of K. This will not give a sign contribution either. If the basepoint passes

through a crossing, then by changing this crossing, the knot will become descending

with respect to the new basepoint. If the crossing is spliced, then we obtain a product

of two knots that are descending with respect to their basepoints. One of these knots

is isotopic to K0 = 0 or satisfies the conditions from part (1) of the lemma. Therefore,

we do not change K if we push the basepoint along K and change crossings until the

basepoint is close to the left boundary of X in our pictures. This implies that K =Km
if K is homotopic to Km (the number m satisfies −l≤m ≤ l and l≡mmod2). There

exists a diagram of Km as a closure of a tangle as in Figure 6.2 on m strands having

[(m−1)/2] crossings such that by changing arbitrary crossings and by splicing one

arbitrary crossing we obtain a product of two knots (see Figure 6.1 for m = 5). Using

this we obtain Km =K∗m by similar arguments as above.

Proof of Lemma 6.1. We prove the lemma by induction. We have K0 = 0. Assume

that the lemma is true for all k, n, m with |k| ≤ � and |n| + |m| < �. We have to

prove the lemma for |k|−1 = � = |n|+ |m|. Since the inversion of the orientations

of all components of a link induces a Z[z]-linear involution of �(M), we can assume

without loss of generality that k > 0 and n≥ 0. We prove the following two equations:

2K2k =−z
k−1∑
i=0

K2i+1K2(k−i)−1, (6.3)

K2n+1K2m+1+K2m+1K2n+1 = zp(z)K2k, for some p(z)∈ Z[z]. (6.4)

Equations (6.3) and (6.4) imply that (2+z2q(z))K2k = 0 for some q(z)∈ Z[z]. There-

fore, the K2k = 0∈�#(X×I). This, together with (6.4), implies also that K2n+1K2m+1 =
−K2m+1K2n+1 ∈�#(X×I).

We prove (6.3) for k = 3 in Figure 6.3 and explain afterwards why this equation

holds for arbitrary k.
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Figure 6.3. A refinement of 2K̄2k = 0∈�0(Σ×I).

m≥ 0

x 2 1

m< 0 x 2 1

Figure 6.4. The links K5K7 and K5K−7.

The first equality in Figure 6.3 follows in general from part (2) of Lemma 6.2 for

l = 2k and from the relation (Bas). The new knot is descending with respect to its

basepoint. The second equality follows by applying the skein relation successively k
times to crossings that appear when the new basepoint is pulled to the left. When

all crossings are changed, then we obtain again K2k. When one of the k crossings is

spliced, then we obtain a product of two descending knots each of which satisfies

the conditions of part (2) of Lemma 6.2 for odd l. This gives us the k product links

KiK2k−i where i runs successively over the numbers 1,3, . . . ,2k− 1. Looking at the

signs we obtain (6.3).

Proof of (6.4). The link K2n+1K2m+1 is the closure of a tangle as shown in

Figure 6.4. In this diagram the crossings between the two components of K2n+1K2m+1

are numbered from 1 to x := |2m+1|. The position of the basepoints on K2n+1K2m+1

is not important.

LetDi(n,m) (i= 1, . . . ,x = |2m+1|) be the knot obtained by changing the crossings

1,2, . . . , i−1 and by splicing the crossing i in Figure 6.4 (see Figure 6.5). For later use,

some crossings of the diagram of Di(n,m) are marked by the symbol ∗ in Figure 6.5.

Since we can permute the two components of K2n+1K2m+1 by changing all crossings

between them, we obtain by the skein relation and by relation (Ord) that

K2n+1K2m+1 =−K2m+1K2n+1+z
|2m+1|∑
i=1

εiDi(n,m) (6.5)
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m≥ 0
∗ ∗ ∗

(n= 2,
m= 3,
i= 2)

m< 0

∗ ∗ ∗
(n= 2,
m=−4,
i= 5)

Figure 6.5. The diagram Di(n,m).

for some basepoint on Di(n,m) and some signs εi ∈ {±1}. Equation (6.4) follows

from (6.5), the induction hypothesis and the subsequent lemma.

Let Jk be the 2-sided ideal of �(Σ×I) generated by knotsK2n with−k <n< k. Recall

the definition of the diagram Di(n,m) from the proof of Lemma 6.1 (see Figure 6.5).

Then the following holds.

Lemma 6.3. For n∈N,m∈ Z, and i≤ |2m+1| thenDi(n,m)= p(z)K2k+a, where

p(z)∈ Z[z], k=n+|m|+1, and a is some element of Jk.

Proof. A binary tree with root L = Di(n,m) is given by the following recursive

description:

(1) we start at the top left of the diagram of L and follow the orientation of the

strand until we come back to the point where we started or until we travel along an

undercrossing strand of a crossing where we did not travel along the overcrossing

strand of that crossing before;

(2a) if we come back to the starting point on L in step 1, then the tree for L consists

of a leaf labeled L;

(2b) if we reach a crossing first as an undercrossing in step 1, then we apply the

relations (Bas) and (Ord) and then a skein relation to this crossing. We obtain L =
ε1L1+ε2zL2 for some εj ∈ {±1}. The tree for L consists of a root vertex connected to

a tree for L1 and to a tree for L2.

The knot Di(n,m) is equal to a weighted sum of the labels L′ of the leaves in this

tree with weights ±zj , where j is equal to the number of crossings spliced on the

path in the tree leading from the root to L′. The leaves are labeled links L′ that are the

products KL′′, where K is a descending knot. We further examine the paths in the tree

leading from the root to a leaf. There is a unique path in the tree where no crossing

is spliced and the label of the leaf at the end of this path is K2n+2m+2.

If a crossing of Di(n,m) is spliced, then the first one has to be one of the crossings

marked by a ∗ in Figure 6.5. Let Ds be the resulting link diagram (see Figure 6.6).

For m≥ 0 (resp., m< 0) let B be a point on Ds near the (1+n+|m|)th endpoint at

the bottom (resp., at the top) of Ds . Traveling along Ds as in step 1 of the description

of the tree for Ds , we first pass through a strand of the crossing that was spliced by

passing from K2n+1K2m+1 toDi(n,m). We label a point on this strand byA and a point

on the other strand of this spliced crossing by C (see Figure 6.6). When we continue to

travel alongDs , we will arrive first at the point B and then at the point C onDs without

the need of a further modification ofDs . Forgetting the componentK′ ofDs containing
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m≥ 0

a d b c e

C

A
B

e c b d a

m< 0

c a e b d
B

A

C

d b e a c

Figure 6.6. The diagram Ds obtained from Di(n,m).

the points A, B, C , we obtain a knot K′′. The upper and lower boundary points of the

diagram of K′′ consist of a subset of the corresponding boundary points of K2m+1 in

Figure 6.4, the (δ1sgn(m)+|m|)th upper and lower boundary points do not belong toK′′

because B lies on K′, and the strands of K′′ to the right of the point B do not intersect.

This implies that K′′ is the closure of a tangle on 2r strands as in Figure 6.2. The link

Ds is not the product of K′ and K′′, but the point C lies between the r th and r +1st

strand of K′′, and when we travel along K′ from C back to the starting point we cross

K′′ only in strands to the right of C . This implies that no matter how Ds is modified in

the passage from Ds to a leaf L, the component of L containing the points A, B, C will

always be homotopic to K2j for some j ∈ {n−|m|, . . . ,n+|m|+1} ⊆ {−k+1, . . . ,k}.
We have K2j ∈ Jk for |j|< k. If the label L of the leaf of the tree is of the form L=K2kL′

for some link L′, then L=K2k.

Combining Lemmas 6.1 with 5.3 we obtain the following proposition.

Proposition 6.4. The Z[z]-module �#(Σ× I) is generated by the following set of

links:

�Σ =
{
Kw1 ···Kwn |n∈N, wi ∈ �̂∗, wi ≤wi+1,(
wi =wi+1 �⇒ σ

(
wi
)= 0

)
,
(
wi = e �⇒ i=n= 1

)}
.

(6.6)

Proof. The cabled descending knots K̂w with K̂w ≠ Kw are indexed by w ∈ �̂ \
(�̂∗ ∪ {e}). By definition they are of the form K̂w = iv∗(K2n) for some v ∈ π1(Σ)
with σ(v) = 1 and n > 0. By Lemma 6.1 we have K2n = 0 ∈ �#(X× I) implying that

K̂w = 0 ∈ �#(Σ× I). Also by Lemma 6.1, we have 2K2
1 = 0 ∈ �#(X× I) implying that

i∗(K2
1) = 0 ∈ �#(Σ× I) for an arbitrary embedding i : X× I → Σ× I. This shows that

the ideal J of Lemma 5.3 is contained in TorZ[z](�(Σ× I)). It is easy to see that for

all 3-manifolds M we have zKeKw = 0 ∈ �(M). For nonorientable M we have Ke = 0

and e �∈ �̂∗. The three arguments from above together with Lemma 5.3 imply the

proposition.

7. The weight system of the Conway polynomial. We used ordered based links

to define the Conway polynomial ∇ taking values in Z[z]⊗R(Σ×I). We will construct

a map W ob
gl 0

from a space of ordered based chord diagrams to R(Σ×I)⊗Q. In the next

section we use the mapW ob
gl 0

together with a universal Vassiliev invariant Zob
Σ×I to show

that ∇ is well defined.
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Let G be a group. Let Γ = S1�l be a disjoint union of l oriented circles. A G-labeled

ordered based chord diagram D with support Γ consists of a finite set S = A�B�C
of mutually distinct points on Γ , such that

• on each circle lies exactly one element of B called basepoint, the set B is linearly

ordered;

• C is partitioned into subsets of cardinality two called chords, and

• to each point p inA there is an assigned element of the groupG called label of p.

Usually, we call G-labeled ordered based chord diagrams simply chord diagrams.

We consider 2-chord diagrams D and D′ with support Γ and Γ ′, respectively, as being

equal, if there exists a homeomorphism between Γ and Γ ′ that preserves all additional

data. Define the degree deg(D) of a chord diagram D as the number of its chords.

We represent a chord diagram graphically as follows: the circles of the 1-manifold

Γ are oriented counterclockwise in the pictures. We connect the two endpoints of a

chord by a thin line. The labels of a chord diagram are represented by marking the

points of A by a dot on a circle and by writing the labels close to these marked points.

The basepoints are marked by the symbol × on the circle. We draw the basepoints

from the left to the right in increasing order, or we label the basepoints by elements

of an ordered set. An example of a picture of a Z-labeled chord diagram D of degree 5

is shown in Figure 7.1.
−1

3

1

Figure 7.1. A picture of a Z-labeled chord diagram.

In the following definitions we define vector spaces by generators and graphical

relations. We use the convention that all diagrams in a graphical relation coincide

everywhere except for the parts we show, and that all configurations of the hidden

parts are possible.

Definition 7.1. Let G be a group, and σ : G → Z/2 a homomorphism of groups.

Define �ob(G,σ) to be the graded Q-vector space generated by G-labeled ordered

based chord diagrams D modulo relations (4T), (σ -Nat), (Rep), (Bas), and (Ord) below.

The 4-term relation (4T):

+ = + (7.1)

Relation (σ -Nat):

�

�

�

�

s

s

s

s

= (−1)σ(s) (7.2)
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Relations (Rep):

� � � �

a b
=

ab
,

e
= , (7.3)

where e is the neutral element of G, and ab denotes the product of a and b in the

group G.

Relations (Bas):

= ,
a

= (−1)σ(a)σ(b)
a

, (7.4)

where the element b ∈G is defined as the product of the labels on the hidden part of

the shown component (the order of the multiplication is not important).

Relation (Ord):

g1

g2

gn h1

h2

hm

= (−1)σ(g1···gn)σ(h1···hm)
h1

h2

hm g1

g2

gn

(7.5)

meaning that the change of the order of two neighbored circles gives the sign contri-

bution (−1)σ(a)σ(b), where a and b are the products of the labels on the two circles.

Definition 7.2. Let �̄
ob(G,σ) be the quotient of �ob(G,σ) by the framing inde-

pendence relation (FI):

= 0 . (7.6)

Extending the order of the basepoints of chord diagrams D1, D2 to the disjoint

union D1�D2, by requiring that all basepoints of D1 are smaller than those of D2,

induces a multiplication on �(G,σ) turning it into a graded ring. If G = π1(M) and

σ :π1(M)→ Z/2 is the first Stiefel-Whitney class of M , then we have an isomorphism

of rings �0(M)⊗Q��0(G,σ), where �0(G,σ) is the degree-0 part of �(G,σ).
Let D be a picture of a chord diagram such that the basepoint is the highest

point on each circle and all labels lie on a horizontal line. An example is shown in

Figure 7.2.

We used the order of the oriented circles and the basepoints to draw Figure 7.2.

Now we forget this data. We replace each chord as shown in Figure 7.3.

The result is an immersion of labeled circles into the plane. By a homotopy this

immersion can be rearranged to a standard embedding, meaning that all labels lie on

a horizontal line, no parts of the circles lie below this line, and the projections of the

circles to the horizontal line are disjoint. As an example, after having replaced the

chords of the diagram in Figure 7.2, we can rearrange the immersion to a standard

embedding as shown in Figure 7.4.

During the homotopy we count the numberm of times the order of the projections

of two labels s, s′ with σ(s) = σ(s′) = 1 to the horizontal line changes. For the ex-

ample in Figures 7.2 and 7.4, we have (−1)m = (−1)σ(b)σ(cfg)+σ(d)σ(fgh)+σ(f)σ(g). The

chosen order of the circles and the chosen highest points of the circles in a standard

embedding of labeled circles determine an ordered based chord diagram (without

chords) that we call D′ for the moment.
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a b c d f g h

Figure 7.2. A special picture of a chord diagram.

�

Figure 7.3. Replacing a chord.

a c g f b h d

Figure 7.4. A standard embedding of labeled circles.

Proposition 7.3. The linear map

W ob
gl : �ob(G,σ) �→�ob

0 (G,σ) (7.7)

that sends a G-labeled ordered based chord diagram D to (−1)mD′ is well defined.

Proof. Changing the order of two circles or pushing a label around a circle in a

standard embedding of labeled circles as in Figure 7.4 gives the same sign contribution

to (−1)m and to D′. So W ob
gl is well defined for chord diagrams. We have to verify that

W ob
gl respects the defining relations of �ob(G,σ).
The map W ob

gl respects the relation shown in Figure 7.5, where any order of the

shown parts of the diagram is possible, because we can slide one thickened chord as

in Figure 7.3 along the other one (see [5, Section 3]). This relation implies relation (4T).

=

Figure 7.5. A 2-term relation.

We can easily verify the compatibility of W ob
gl with relations (Rep), (Bas), and (Ord).

The compatibility of W ob
gl with relation (σ -Nat) follows from Figure 7.6, which shows

an equation between the elements of �ob
0 (G,σ) defined by immersed labeled circles

as in the definition of W ob
gl .

The formula in Figure 7.6 holds because when we push labels s to their new posi-

tions, then in the projection to the horizontal line they are commuted with the same
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s s = (−1)σ(s) s s

Figure 7.6. The compatibility of Wob
gl with relation (σ -Nat).

labels from the remaining part of the diagram, and the commutation between the s
on the right side with the s on the left side gives the sign contribution (−1)σ(s).

Let p : �0(π1(Σ),σ) → R(Σ× I)⊗Q be the homomorphism of rings induced by

mapping a circle with a single mark g to K̄g . Replacing the chords in a relation (FI)

as in Figure 7.3 produces a circle without labels together with at least one additional

component. This implies the following corollary.

Corollary 7.4. For nonorientable surfaces Σ, the map p◦W ob
gl descends to a map

W ob
gl 0

: �̄
(
π1(Σ),σ

)
�→ R(Σ×I)⊗Q. (7.8)

The reason for the notation W ob
gl and W ob

gl 0
is given in [16, Section 1.17], where W ob

gl

and W ob
gl 0

are related to weight systems associated with the Lie superalgebra gl (V) of

endomorphisms of a Z/2-graded vector space V . In the case of W ob
gl 0

the superdimen-

sion of V is 0. We make use of this relation in Section 9.

The map W ob
gl can be described recursively as follows. For chord diagrams D of

degree 0 we have W ob
gl (D)=D. If D is a chord diagram with at least one chord c, then

we can use relations (Bas) and (Ord) such that D looks like one of the two diagrams

to the left of the symbol � in Figure 7.7.

g1 gn gn+1 gm

�
g1 gn gn+1 gm

,

g1 gn gn+1 gm

�
g1 gn gn+1 gm

Figure 7.7. A recursive description of Wob
gl .

In Figure 7.7 only the chord c of D is replaced as shown in Figure 7.3. We obtain a

chord diagram D(c) with deg(D(c))= deg(D)−1 and with

W ob
gl (D)=W ob

gl

(
D(c)

)
. (7.9)

We can express the recursion formula for W ob
gl from Figure 7.7 without using embed-

dings by the local replacement rules involving basepoints as shown in Figure 7.8.

8. Proof of Theorems 4.1 and 4.2. Let Σ = ⋃k
i=0Bi be a decomposed surface or

let Σ = P2. Let L be a link in Σ× I. Recall the definition of the universal Vassiliev

invariant ZΣ×I(L) from [15]. For a decomposed surface Σ, this definition is roughly

as follows: after applying an isotopy we can assume that L∩Bi× I is in a standard

position for all i > 0. The tangle L∩B0×I is turned into a nonassociative tangle T by
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1
�

1 2

, 1 2 �

1

or or

1 2

1
,

1 2 1�
�

Figure 7.8. Descriptions of Wob
gl and Wob

gl 0
by local replacement rules.

choosing a bracketing on the ordered set L∩(∂B0)×I satisfying some conditions. Then

ZΣ×I(L) is obtained from the universal Vassiliev invariant Z(T) of the nonassociative

tangle T (see [4, 14]) by gluing labeled intervals to those pairs of boundary points of

diagrams in Z(T) whose corresponding boundary points of T are connected by an

interval in L∩(Σ\B0)×I.
Let �ob(M) be the set of isotopy classes of ordered based links in M . Let �̂

ob
(M)

be the graded completion of �̄
ob(M)= �̄

ob(π1(M),σ). Define a map,

Zob
Σ×I : �ob(Σ×I) �→ �̂

ob
(Σ×I), (8.1)

by equipping the chord diagrams in the series ZΣ×I(L) with an order and with base-

points according to the order and the basepoints of L. The map Zob
Σ×I is well defined

because the chord endpoints commute with the basepoints by relation (Bas) (see

[15, Lemma 25]). Let R̂(M) := (R(M)⊗Q)[[h]]. Define

Ŵ ob
gl 0

: �̂
ob
(G,σ) �→ R̂(Σ×I) (8.2)

by extending Ŵ ob
gl 0
(D)=W ob

gl 0
(D)hdegD for any chord diagramD to formal power series.

Finally, define the invariant ∇̂ of ordered based links by

∇̂ = Ŵ ob
gl 0
◦Zob

Σ×I . (8.3)

Turn R̂(M) into a Z[z]-module by z ·a := (eh/2−e−h/2)a for a∈ R̂(M).
Lemma 8.1. The invariant ∇̂ of ordered based links induces a Z[z]-linear map

∇̂ : �#(Σ×I) �→ R̂(Σ×I) satisfying

∇̂(L)≡ L̄modh for all ordered based links L.
(8.4)

Proof. Let (L+,L−,L‖) be a skein triple of ordered based links. Let B1 = 1 and

B2 = 1 2. Define the composition of diagrams D1, D2 by placing D1 onto the top of

D2. In the recursive description of W ob
gl (see Figure 7.8) a chord Bi ◦ between two

parallel parts of the oriented circles is replaced by B3−i◦ . By the explicit description
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of Zob
Σ×I and by (7.9) we have, for some i∈ {1,2},

∇̂(L+)−∇̂(L−)
= Ŵ ob

gl 0

(
Bi ◦exp

(
/2
)
◦

)
−Ŵ ob

gl 0

(
Bi ◦exp

(
− /2

)
◦

)

=
∞∑
n=0

1
4n(2n+1)!

Ŵ ob
gl 0

(
Bi ◦

2n+1

◦
)

=
∞∑
n=0

h2n+1

4n(2n+1)!
Ŵ ob

gl 0

(
B3−i

)= (eh/2−e−h/2)∇̂(L‖)= z ·∇̂(L‖).

(8.5)

It is obvious by relations (Ord) and (Bas) for ordered based links and chord diagrams

that ∇̂ is well defined on �(Σ×I). Since R̂(Σ×I) has no nontrivial torsion elements as

a Z[z]-module, ∇̂ descends to �#(Σ× I). Equation (8.4) follows because for ordered

based links L whose ith component is homotopic towi ∈π1(Σ×I) we have Zob
Σ×I(L)≡

DLmodh, where DL ∈ �̄(Σ× I)0 is a product of r oriented circles with a single label

wi, and W ob
gl 0
(DL)=π(DL)= L̄∈ R(Σ×I)⊗Q.

It remains to make a change of parameters to show that the Conway polynomial is

well defined.

Proof of Theorem 4.1. (1) The uniqueness of ∇ follows because the Z[z]-
module Z[z]⊗R(Σ× I) has a trivial torsion submodule and the condition ∇(L) = L̄
for descending links L with θ(L) ≠ 0 prescribes the image of the generators �Σ of

�#(Σ× I) (see Proposition 6.4). We prove the existence of ∇. Proposition 2.4 implies

that the set �̄Σ = {L̄ | L∈ �Σ} is a basis of the Z-module R(Σ×I). Define a Z[z]-linear

map κ : Z[z]⊗ZR(Σ×I)→�#(Σ×I) on basis elements by

κ
(
1⊗K̄w1 ···K̄wn

)
:=Kw1 ···Kwn. (8.6)

The map κ is surjective. Consider the composition

Z[z]⊗ZR(Σ×I) κ
�������������������������������������������������→ �#(Σ×I) ∇̂

������������������������������������������������→ R̂(Σ×I). (8.7)

By Lemma 8.1 we have ∇̂(κ(L̄)) ≡ L̄modh for all ordered based links L. This implies

that �̄Σ is mapped injectively to the basis ∇̂(κ(�̄Σ))modh of theQ-vector space R̂(Σ×
I)/(h). Considering inductively the sets ∇̂(κ(�̄Σ))modhn we see that ∇̂(κ(�̄Σ)) is

linearly independent over Q[z] (where z ·a = (eh/2−e−h/2)a). This implies that ∇̂◦
κ : Z[z]⊗R(Σ× I) → R̂(Σ× I) is injective. Hence κ is an isomorphism and the map

κ−1 : �#(Σ× I) → Z[z]⊗R(Σ× I) has the property κ−1(L) = L̄ for all �̂-descending

links L with θ(L̄) ≠ 0. We obtain ∇ as the composition of the canonical projection

�(Σ×I)→�#(Σ×I) with κ−1.

Proof of Theorem 4.2. (1) Let Σ be the Möbius strip X. Let L ⊂ X × I be a �̂-

descending link. If θ(L̄)= 0, then L= 0∈�#(X×I) by Lemma 6.1. Theorem 4.1 implies

that ∇(L)= 0 because ∇ factors through �#(X×I).
It follows easily from Lemma 6.1 and Theorem 4.1 that ∇(L1L2)=∇(L1)∇(L2) for

all �̂-descending links L1,L2 ⊂ X× I. Lemma 5.1 implies this formula for all ordered

based links L1,L2 ⊂X×I.
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The case Σ= P2 of the theorem can be deduced from the case Σ=X. For Σ= I2 and

Σ= S1×I part (1) of the theorem is trivial.

(2) It is enough to show that L= (−1)|L|0L∗ ∈�#(Σ×I) for Σ=X. Let L be a diagram

of an ordered based link in X× I. Let k1(L) be the number of crossings of L and let

k2(L) be the minimal number of crossing changes needed to pass from L to a diagram

of an �̂-descending link. We prove the theorem by induction on the lexicographical

order on (k1(L),k2(L)).
Assume that k2(L) = 0. Then L = Ki1 ···Kir is a product of descending knots. By

Lemma 6.1 we have L = 0 = L∗ if |L|0 > 0. Assume that |L|0 = 0. Then Lemmas 6.1

and 6.2 imply that

Ki1 ···Kir = (−1)r(r−1)/2Kir ···Ki1 = (−1)r(r−1)/2K∗ir ···K∗i1
= (Ki1 ···Kir )∗ = (−1)|L|0

(
Ki1 ···Kir

)∗. (8.8)

If k1(L) = 0, then we also have k2(L) = 0 and we are back in the first case. Now let

k1(L) > 0 and k2(L) > 0. Choose a crossing of L such that k2(L1) = k2(L)−1, where

L1 is obtained from L by changing this crossing and let L2 be obtained by splicing the

crossing. Then for an ε∈ {±1} we have, by induction,

L= L1+εzL2 = (−1)|L1|0L∗1 +εz(−1)|L2|0L∗2

= (−1)|L|0
(
L∗1 −εzL∗2

)= (−1)|L|0L∗.
(8.9)

In this computation we used that, for a skein triple (L+,L−,L‖) of links, we have |L+|0 =
|L−|0 = |L‖|0±1 and (L∗−,L∗+,L

∗
‖ ) is also a skein triple.

9. Coverings and the Conway polynomial. Let �̄(G,σ) be the vector space gen-

erated by G-labeled chord diagrams (without order and basepoints) modulo relations

(4T), (σ -Nat), (Rep), and (FI) (see Section 7). For a 3-manifold M we define �̄(M) :=
�̄(π1(M),σ) where σ is the orientation character of M . The universal Vassiliev invari-

ant ZΣ×I (see [15]) takes values in a completion of �̄(Σ× I). For a labeled diagram D,

define

σ(D)=
∑
σ(g)∈ Z/2, (9.1)

where the sum runs over all labels g on the skeleton of D.

Recall a result of [15] for the special case of the 2-fold covering p : S2× I → P2×
I. For a chord diagram D labeled by the elements of π1(P2,∗) � Z/2, we omit the

points labeled by the neutral element in our pictures. The points of D labeled by the

nontrivial element are simply represented by a dot (without label). There exists a map

p∗ : �̄(P2×I)→ �̄(S2×I) defined by the replacement rules shown in (9.2),

p∗
( )

= , p∗
( )

= − .
(9.2)

For a link L⊂ P2×I, we have

p∗ ◦ZP2×I(L)= ZS2×I
(
p−1(L)

)
(9.3)
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(see [15, Theorem 4, part (2)]). Links in S2× I are in a natural bijection with links in

S3 or R3, and ZS2×I corresponds to the usual Kontsevich integral under this bijection

([15, Theorem 4, part (1)]).

Comparing �̄(P2 × I) with �̄
ob(P2 × I) we remark huge differences: elements of

odd degree in �̄(P2 × I) are 0 (see [15, proof of Corollary 4]), whereas this is not

true for �̄
ob(P2×I) (otherwise the recursive description in Figure 7.8 of the nontrivial

map W ob
gl 0

could not exist). However, for ordered based diagrams D on a single circle

with σ(D)= 1, the order and basepoints are superfluous and the difference between

�̄(P2×I) and �̄
ob(P2×I) vanishes for these special diagrams.

As for usual chord diagrams there are many descriptions of spaces isomorphic to

�̄(G,σ). By G-labeled trivalent diagrams we mean usual trivalent diagrams D (see [3])

together with a distinguished subset of points on edges of D that are equipped with

local orientations and labeled by the elements of G. For points on the skeleton of D
we assume that the local orientation coincides with the orientation of the skeleton. In

particular, labeled chord diagrams are labeled trivalent diagrams. The space �̄(G,σ)
is isomorphic to theQ-vector space generated by trivalent diagrams modulo relations

(FI), (Rep) (see Section 7), (STU), (IHX), (AS) (see [3]) and modulo relations (Comult), and

(Inv1) shown below

(Comult)

(Inv1)

g =
g g

,
g

= g

g

g
= (−1)σ(g)

g−1
.

(9.4)

This can be proven along the same lines as in [3] (with a slight difference in the case

where an internal trivalent vertex connects to the skeleton of the diagram via two

edges). A similar description by generators and relations exists for �̄
ob(G,σ). The

space �̄(G,σ) is a coalgebra with comultiplication ∆ given by

∆(D)=
∑

D=D1∪D2

D1⊗D2, (9.5)

where the sum runs over all trivalent diagrams D1,D2 ⊂D, such that D\Γ = (D1\Γ)�
(D2 \Γ). Beside the comultiplication ∆, there exists a map

∆ob : �̄(G,σ) �→ �̄
ob(G,σ)⊗�̄

ob(G,σ) (9.6)

defined by the same formula as in (9.5), where this time D1 and D2 are equipped with

the order and basepoints that are arbitrarily chosen for the first diagram and copied

to the second.

Now consider the Z/2-labeled trivalent diagrams D with skeleton Γ where D \ Γ is

connected and all the labeled points lie close to univalent vertices of D \ Γ . Define
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diagrams p1(D) and p2(D) by the local replacement rules shown in (9.7),

pi
( )

= , pi
( )

= ,

p1

( )
= p2

( )
= , p1

( )
= p2

( )
= .

(9.7)

For diagrams D as above it is easy to see that p∗ satisfies the equation

p∗(D)= p1(D)+(−1)degDp2(D). (9.8)

For diagrams D where each of the c > 1 connected components of D \ Γ satisfies the

conditions above, p∗(D) can be expressed as a sum with 2c terms by extending (9.8)

multilinearly over these connected components. Using relations (Comult) and (Inv1),

we can apply this formula whenever D\Γ is a forest.

We call a connected component of a diagram D \ Γ a wheel with (resp., without) a

dot, if it looks like the left (resp., right) side of Figure 9.1.

Figure 9.1. A wheel with and without a dot.

As a consequence of (9.8) we can construct many elements in Ker(p∗). An example

is given in the following lemma.

Lemma 9.1. LetD be a trivalent diagram such that one component ofD\Γ is a wheel

with a dot. Then p∗(D)= 0.

Proof. Applying the (STU) relation to the wheel with a dot we obtain the two

diagrams D1 and D2 shown in Figure 9.2.

D = � D1 = D2 =

Figure 9.2. D =D1−D2 by the (STU) relation.

By (9.8) we then have

p∗(D)= p∗(D1−D2
)

= p1
(
D1
)+(−1)deg(D1)p2

(
D1
)−p1

(
D2
)−(−1)deg(D2)p2

(
D2
)= 0

(9.9)

because pi(D1)= pi(D2).
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Consider an interval J on the skeleton Γ = S1�� of a diagram D. Cutting D at the

endpoints of J, we obtain a diagram D′ with skeleton S1��−1�J�(S1\J). When D′ is

the union of diagrams D1 and D2 with skeletons J and S1��−1�(S1 \J), respectively,

then we say that D1 is an isolated part of D. The mapW ob
gl 0

: �̄
ob(P2×I)→ R(P2×I)⊗Q

has the following special property.

Lemma 9.2. Let D be an ordered based Z/2-labeled diagram such that σ(D)= 0, or

the number of circles of the skeleton of D plus the degree of D is even, or D contains

an isolated part of odd degree. Then W ob
gl 0
(D)= 0.

The proof of the lemma follows easily by expandingW ob
gl 0
(D) as a linear combination

of multiples of K̄e = 0 and K̄2
s = 0∈ R(P2×I)⊗Q.

Some properties of W ob
gl 0

for ordered based Z/2-labeled diagrams can more con-

veniently be proven using the Lie superalgebra gl (1 | 1). We identify gl (1 | 1) with

2×2-matrices using a homogeneous basis of the defining (1 | 1)-dimensional repre-

sentation of gl (1 | 1). The rough idea, how the usual description of the weight system

associated to gl (1 | 1) (see [22]) extends to Z/2-labeled diagrams is by mapping a dot

on the skeleton to the morphism τ in (9.10),

� �→
(

0 1

1 0

)
= τ (9.10)

(cf. [16, Section 1.17], recall from there how labels can influence signs). Given an or-

dered based Z/2-labeled diagram D with σ(D)= 1, we cut the first circle of the skele-

ton of D at its basepoint. Then the construction of weight systems maps the resulting

diagram to a morphism of the form λ ·τ . It is easy to show that W ob
gl 0
(D) = λK̄s . In

particular, the number λ=:Ws(D) depends only on D ∈ �̄
ob(P2×I).

Define We : �̄(S2× I) → Q by We(D) = λ whenever W ob
gl 0
(D) = λK̄e. The following

properties of W =We for diagrams without labels are proven in [22]. The diagram on

the right side of (9.12) is a trivalent diagram in the sense of this paper (which means

it must not contain a connected component that does not connect to the skeleton of

the diagram). They extend to W =Ws in a straightforward way,

W

 =W( )
= 0 (9.11)

W
( )

=W
( )

(9.12)

W
( )

=−2W
( )

. (9.13)

Equations (9.11), (9.12), and (9.13) for W = We, Ws , (9.5), (9.6), (9.8), and the (STU)

relation imply the following lemma.

Lemma 9.3. Equations (9.11), (9.12), and (9.13) also hold for

W =We ◦p∗, W = (Ws⊗Ws)◦∆ob. (9.14)
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Now we are ready to prove the following important lemma.

Lemma 9.4. Let D be a Z/2-labeled diagram with skeleton S1 and σ(D)= 1. Then

(
Ws⊗Ws)◦∆ob(D)=We(p∗(D)). (9.15)

Proof. The proof is divided into four steps.

(1) Assume that a component of D \ Γ is a wheel with a dot. Then Ws(D) = 0 (by

(9.12) and Lemma 9.2 it is sufficient to verify this for a degree-2 wheel with a dot. This

case follows from a straightforward computation).

(2) We show now that when the lemma holds for D, then it also holds for all the

diagrams D′ with D ⊂ D′ where C = D′ \D is connected and C is not a tree. If C is a

wheel with a dot, then we have

(
Ws⊗Ws)◦∆ob(D′)= 0, We(p∗(D′))= 0 (9.16)

by part (1) of this proof and Lemma 9.1. If C is not a wheel, then (9.16) follows from

Lemma 9.4 and (9.11). If C is a wheel of odd degree, then (9.16) is implied by the (STU)

relation, the previous case (where C was not a wheel), and Lemma 9.2. Finally, if C is

a wheel of even degree without a dot, then we have W ob
gl 0
(D′) = −2W ob

gl 0
(D) by (9.12)

and (9.13), which implies that

(
Ws⊗Ws)◦∆ob(D′)=−4

(
Ws⊗Ws)◦∆ob(D)=−4We(p∗(D))=We(p∗(D′)). (9.17)

(3) Now assume that the lemma holds for a diagram D and consider D ⊂ D′ such

that C = D′ \D is a tree. We call the tree C a comb if we cannot apply (9.11) to the

part C of the diagram D. By Lemma 9.3 and (9.12) we only need to consider combs of

degrees 1, 2, 3, and 4. By the (STU) relation and part (2) of this proof, we may arrange

the univalent vertices of C on the skeleton S1 in any order we want. We then apply

relation (Comult) to reduce the configuration of labels we need to consider. In the

following we investigate the remaining possibilities:

degC = 1: by relation (FI) and [16, Lemma 1.9] there is nothing to prove in this case

(alternatively, there is a direct proof similar to the case degC = 3);

degC = 2: we only need to consider the case shown in (9.18), where we apply rela-

tions (STU) and (AS) to reduce this case to part (2) of this proof,

= 1
2

; (9.18)

degC = 3: all possible configurations of C ⊂ D′ can be reduced to the case shown

in (9.19), where we prove that p∗(D′)= 0

p∗
( )

= − = 0 , (9.19)

by Lemma 9.2 we have (Ws⊗Ws)◦∆ob(D′)= 0 because∆ob(D′) is a linear combination

of elements D1⊗D2 such that D1 or D2 has an isolated part of odd degree;
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degC = 4: it is sufficient to consider a comb as shown on the left side of (9.20),

1
2

+� 1
2

= 0 . (9.20)

By the (STU) relation and part (2) of this proof, we can equivalently consider the linear

combination of two diagrams shown on the right side of (9.20). But by relation (AS)

this element equals 0.

(4) Conclusion: for diagrams of degree 0 the lemma is obvious. Using parts (2) and (3)

of this proof, the lemma follows by induction.

It would be interesting to know to what extent Theorem 4.3 can be generalized to

links. A counterexample to Lemma 9.4 for chord diagrams on more than one circle is

shown in Figure 9.3.

Figure 9.3. A diagram D with (Ws⊗Ws)◦∆ob(D)= 0 and We(p∗(D))≠ 0.

Lemma 9.4 is the main ingredient in the following proof of Theorem 4.3.

Proof of Theorem 4.3. Define Q[[h]]-valued maps Ŵ e and Ŵ s by Ŵ e(D) =
We(D)hdegD and Ŵ s(D)=Ws(D)hdegD . Let Kob ⊂ P2×I be a based knot with σ(K)= 1

and let K be Kob without its basepoint. Then we have

Ŵ e ◦ZS2×I
(
p−1(K)

)= Ŵ e ◦p∗(ZP2×I(K)
)

= (Ŵ s⊗Ŵ s)◦∆ob(ZP2×I(K)
)

=
(
Ŵ s ◦Zob

P2×I
(
Kob))2

,

(9.21)

where the first equality follows from (9.3), the second equality follows from Lemma

9.4, and the last one follows because ZP2×I(K) is group-like.

It remains to verify that (9.21) is compatible with the replacement of parameters in

the proof of Theorem 4.1; by Proposition 6.4 there exist f ,g ∈ Z[z] such that

∇(p−1(K)
)= g(z)K̄e, ∇(Kob)= f(z)K̄s . (9.22)

By Lemma 8.1 we have

Ŵ e ◦ZS2×I
(
p−1(K)

)= g(eh/2−e−h/2)Ŵ e ◦ZS2×I
(
Ke
)
,

Ŵ s ◦ZP2×I
(
Kob)= f (eh/2−e−h/2)Ŵ s ◦ZP2×I

(
Ks
)
.

(9.23)

As a simple consequence of the construction of ZP2×I we have(
Ŵ s ◦ZP2×I

(
Ks
))2 = Ŵ e ◦ZS2×I

(
Ke
)
. (9.24)

Equations (9.21), (9.22), (9.23), and (9.24) imply that g(z)= f(z)2, what we wanted to

prove.
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Lemma 9.4 can be generalized from P2 to the Möbius strip X using the weight

system W ob
gl 0

mod(K̄iK̄j | i,j ∈ Z). A generalization of Theorem 4.3 to this case is not

straightforward because (9.22) becomes more complicated, and for ordered based

links L in the ideal (KiKj | i,j ∈ Z)⊂�(X×I) we may have

Ŵ ob
gl ◦ZX×I(L) �≡ 0mod

(
K̄iK̄j | i,j ∈ Z

)
(9.25)

(e.g., L=K−1K1K3).

Appendix. In the following we apply the methods of this paper to determine

the Homfly and Kauffman skein modules of cylinders over oriented surfaces with

boundary. For the Homfly skein module we rediscover the main result of [18]. Our

choice of representatives of conjugacy classes in π1(Σ) is different from the choice

made in [18]. Our choice has the advantage that it allows us to determine the structure

of the 2-variable Kauffman skein module with similar methods. This result seems to

be new.

A.1. The Homfly skein module. The Homfly skein module of an oriented 3-mani-

fold is generated over the ring Z[x±1,y±1] by isotopy classes of oriented links modulo

the skein relation of the Homfly polynomial

x −x−1 =y , (A.1)

where the links
(

, ,
)

differ only locally as shown in the diagrams. For techni-

cal reasons, we include the empty link∅ in the definition of the Homfly skein module

and relate it to the trivial knot O by the equation (x−x−1)∅=yO.

In difference to the Conway skein module, the 3-manifold must be oriented for the

definition of the Homfly skein module, and we need no order nor basepoints on L. Let

Σ be an oriented decomposed surface in the sense of Section 3. Define the ordered set

�̂ of representatives of conjugacy classes of elements in π1(Σ) as in Section 3. Then

�̂-descending links are defined by forgetting the order and basepoints of the links in

Definition 3.3. Define �̂◦ = �̂\{e}, where e ∈ π1(Σ) is the neutral element. For a link

L⊂ Σ×I we define L◦ as L without the components that are homotopic to e. Let n(L)
be the number of components of L\L◦. Let Z[t�̂◦] (resp., Z[t�̂]) be a polynomial ring

with indeterminates tw in one-to-one correspondence with elements w ∈ �̂◦ (resp.,

w ∈ �̂). For a knot K ⊂ Σ× I the element tK ∈ Z[t�̂] is defined as tK = tw , where K is

homotopic to w. For a link L the element tL is defined as the product of elements tK
where K runs over all components of L. By t∅ we mean 1 ∈ Z[t�̂]. Then we have the

following theorem.

Theorem A.5. There exists a unique invariant,

H(L)∈ Z[x±1,y±1]⊗Z Z[t�̂◦
]
, (A.2)

of links L in Σ× I that depends only on the class of L in the Homfly skein module and

satisfies

H(L)= tL◦
(
x−x−1

y

)n(L)
whenever L is �̂-descending. (A.3)
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The link invariant H is called the Homfly polynomial. As in the proof of Lemma 5.1

we see that (A.1) and (A.3) are sufficient to calculateH(L) for every link. This argument

is much simpler than the corresponding proof for the Conway polynomial in Sections

5 and 6. This implies the uniqueness stated in Theorem A.5. Under the condition that

H factors through the Homfly skein module, it can easily be shown that (A.3) is implied

by the same equation for links L with n(L) = 0. This implies that the Homfly skein

module of Σ× I is a quotient of Z[x±1,y±1]⊗Z Z[t�̂◦]. We give a sketch of the proof

of the existence of H in the rest of this section. This will imply that the Homfly skein

module of Σ×I is isomorphic to Z[x±1,y±1]⊗Z Z[t�̂◦].
For a group G, define �(G) = �ob(G,0) and �̄(G) = �̄

ob(G,0) (see Definitions 7.1

and 7.2). In these definitions the order and the basepoints on chord diagrams and

relations (Ord) and (Bas) are superfluous because σ = 0. We identify the degree-0

part �0(G) of �(G) with the isomorphic polynomial ring Q[t�̂]. The analogue of

Corollary 7.4 is not true forσ = 0 because tetw ≠ 0 forw ∈G. There are two equivalent

ways of solving this problem. One way is used in the following, and the second way is

used in Subsection A.2 for the Kauffman polynomial. For a G-labeled chord diagram

D, we define the element ι(D) by replacing each chord as shown in Figure A.4.

− 1
2

(
� +

)

Figure A.4. The deframing map ι.

The definition determines a linear map ι : �̄(G)→�(G), such that p◦ ι = id where

p : �(G) → �̄(G) denotes the canonical projection (compare [3, Exercise 3.16]). The

map ι induces a map ι∗ : �(G)∗ → �̄(G)∗ called deframing projection. For σ = 0 we

denote the map W ob
gl (see Proposition 7.3) also by Wgl . Define

W̄gl : �̄(G) �→Q[t�̂

]
, W̄gl =Wgl ◦ι. (A.4)

The map W̄gl is called the weight system of the Homfly polynomial. Proceeding as in

Section 8, we extend W̄gl to the completion �̂(G) of �̄(G) by

Ŵgl (D)= W̄gl (D)hdegD ∈Q[t�̂

][
[h]

]
. (A.5)

For a link L⊂ Σ×I, let Ĥ(L)∈Q[t�̂][[h]] be given by Ĥ(L)= Ŵgl ◦ZΣ×I(L), where ZΣ×I
denotes the universal Vassiliev invariant of links in Σ× I. Denote the inclusion map

Q[t�̂][[h]]→Q[t�̂][[h,h−1]] by i. We turnQ[t�̂][[h,h−1]] into a Z[x±1,y±1]-module

by

x ·a= eteh/2a, y ·a= (eh/2−e−h/2)a. (A.6)

With the notation from above we have the following lemma.

Lemma A.6. The link invariant i ◦ Ĥ induces a Z[x±1,y±1]-linear map from the

Homfly skein module to Q[t�̂][[h,h−1]] and satisfies

Ĥ(L)≡ tLmodh for every link L. (A.7)
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The proof of Lemma A.6 and the completion of the proof of Theorem A.5 are similar

to the proofs in Section 8.

A.2. The Kauffman skein module. The Kauffman skein module of an oriented 3-

manifold is generated over the ring Z[x±1,y±1] by isotopy classes of framed oriented

links modulo the relation that, reversing the orientation of a component, induces the

identity map of the Kauffman skein module, and modulo the skein relations of the

Kauffman polynomial,

− =y
(

−
)
, = x , (A.8)

where the framed links
(

, , ,
)

and
(

,
)

differ only locally as shown by

the diagrams. In diagrams of framed links, the framing is assumed to be the so-called

blackboard framing (the framing pointing to the reader). For technical reasons, we

include the empty link∅ in the definition of the Kauffman skein module and relate it

to the trivial knot with 0-framing O by the equation (x−x−1+1)∅=yO.

Let Σ be an oriented decomposed surface in the sense of Section 3. Define the

ordered set �̂ of representatives of conjugacy classes of elements in π1(Σ) as in

Section 3. Let �̂± = {min{a,a−1} | a∈ �̂}. The set �̂± is in one-to-one correspondence

with homotopy classes of nonoriented knots. In this section, �̂-descending links are

defined by forgetting the order and basepoints of the links in Definition 3.3 and equip-

ping them with arbitrary framing.

For a diagram L of a framed oriented link in Σ×I, define the writhe of L as w(L)=
k+−k−, where k+ is the number of positive crossings and k− is the number of negative

crossings in the diagram. The writhe is an isotopy invariant of framed oriented links

and of framed nonoriented knots.

Define �̂◦± = �̂±\{e}, where e∈π1(Σ) is the neutral element. For a framed link L we

define L◦, n(L), and tL ∈ Z[t�̂±] in the same way as in Subsection A.1. Then we have

the following theorem.

Theorem A.7. There exists a unique invariant,

F(L)∈ Z[x±1,y±1]⊗Z Z[t�̂◦±
]
, (A.9)

of framed links L in Σ× I that depends only on the class of L in the Kauffman skein

module and satisfies

F(L)= tL◦
(
x−x−1

y
+1

)n(L)
xw(L), whenever L is �̂±-descending. (A.10)

The link invariant F is called the Kauffman polynomial. The polynomial x−w(L)F(L)
is defined for each framed oriented link L and does not depend on the framing of L,
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and hence is an isotopy invariant of oriented links. As in the proof of Lemma 5.1 we

see that the conditions in Theorem A.7 are sufficient to calculate F(L) for every link.

This implies the uniqueness stated in Theorem A.7. We give a sketch of the proof of

the existence of F in the rest of this section. This will also imply that the Kauffman

skein module of Σ×I is isomorphic to Z[x±1,y±1]⊗Z Z[t�̂◦±].
We say that a circle is locally oriented if it is decomposed into a finite number of

oriented intervals. Let Cloc(G) be the Q-vector space generated by disjoint unions of

locally oriented circles with a finite number of distinct points on oriented parts of the

circles labeled by the elements of G modulo homeomorphisms of these diagrams and

the following relations:

(Rep):

a b
=

ab
,

e
= , (A.11)

(Ori):

g g−1
= . (A.12)

Here and in Figure A.5, we represent elements ofCloc(G) graphically by formal linear

combinations of parts of pictures of immersions of labeled, locally oriented circles.

The points where the local orientation changes are marked by the symbol |.
Recall the definition of the vector space �(G)=�ob(G,0) (see Definition 7.1). Define

a map β1 : �(G)→ Cloc(G) by replacing each chord as shown in Figure A.5 (it is easy

to see that β1 is well defined).

� −

Figure A.5. The map β1.

Using relations (Rep) and (Ori), we can replace each element of Cloc(G) by a linear

combination of disjoint unions of oriented circles labeled by a single element of G.

Again by relations (Rep) and (Ori), oriented circles with labels g, hgh−1, and g−1 define

the same element of Cloc(G). A map β2 : Cloc(G) → Q[t�̂±] is defined by replacing

oriented circles with a label g ∈ �̂± by tg . It is easy to see that β2 is well defined. We

define the linear map

Wosp : �(G) �→Q[t�̂±
]
, Wosp = β2 ◦β1. (A.13)
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The map Wosp is called the weight system of the Kauffman polynomial. Proceeding as

in Section 8, we extend Wosp to the completion �̃(G) of �(G) by

W̃osp(D)=Wosp(D)hdegD ∈Q[t�̂±
][
[h]

]
. (A.14)

For a framed oriented link L⊂ Σ×I let F̃(L)∈Q[t�̂][[h]] be given by

F̃(L)= W̃osp ◦ZfΣ×I(L), (A.15)

where ZfΣ×I denotes the universal Vassiliev invariant of framed oriented links in Σ×I.
The invariant ZfΣ×I is defined by the same formulas as ZΣ×I (see [4, 14, 16]). As in

Subsection A.1 we denote the inclusion map Q[t�̂±][[h]] → Q[t�̂±][[h,h
−1]] by i.

This time, we turn Q[t�̂±][[h,h
−1]] into a Z[x±1,y±1]-module by

x ·a= e(te−1)h/2a, y ·a= (eh/2−e−h/2)a. (A.16)

With the notation from above we have the following lemma (cf. [13]).

Lemma A.8. The invariant i◦F̃ of framed oriented links induces a Z[x±1,y±1]-linear

map from the Kauffman skein module to Q[t�̂±][[h,h
−1]] and satisfies

F̃(L)≡ tLmodh for every link L. (A.17)

Sketch of proof. Using Wosp( ) = −Wosp( ) and the analogous dependence

of ZfΣ×I on orientations we see that F̃(L) does not depend on the orientation of L.

Using Wosp( ) = (te−1)Wosp( ) and the explicit description of ZfΣ×I , it is easy

to see that

F̃
( )

= e(te−1)h/2F̃
( )

. (A.18)

The property F̃(L) ≡ tLmodh follows directly from the analogous property of the

degree-0 part of Z̃fΣ×I and the definition of Wosp. Therefore, it remains only to show

that (A.20) holds with κ = 1, ỹ = eh/2−e−h/2, and

(
L+,L−,L‖,L=

)= ( , , ,
)
, (A.19)

where the link L= has arbitrary orientation,

F̃
(
L+
)− F̃(L−)= ỹ(F̃(L‖)−κF̃(L=)). (A.20)

For the following computation we extend W̃osp to locally oriented labeled chord di-

agrams in the unique way that respects relation (Ori); we do not indicate the local
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orientation in the picture if it is not of importance:

F̃
(
L+
)− F̃(L−)= W̃osp

(
exp

(
/2
)
◦

)
−W̃osp

(
exp

(
− /2

)
◦

)

=
∞∑
n=0

W̃osp

(((
−

)n−( −
)n)◦ ) hn

2nn!

=
∞∑
n=0

W̃osp

((
n− +

(
−

)n−(− )n

+
(
−

)n−( −
)n)◦ ) hn

2nn!

= ỹF̃(L‖)+ ∞∑
n=0

W̃osp

((
− +

(
−

)n
(A.21)

+
(
−

)n−( −
)n)◦ ) hn

2nn!

= ỹF̃(L‖)+ 1
te

∞∑
n=0

W̃osp

((
− +

(
−

)n+(− )n

−
(
−

)n)◦ ) hn
2nn!

= ỹF̃(L‖)+ −eh/2+e(1−te)h/2+e−h/2−e(te−1)h/2

te
W̃osp

( )
= ỹ

(
F̃
(
L‖
)− [te−1]eh/2+1

te
W̃osp

( ))
,

where in the last equation we used the notation

[
te−1

]
eh/2 =

e(te−1)h/2−e−(te−1)h/2

eh/2−e−h/2 . (A.22)

Let O be the trivial knot with 0-framing. It is easy to see that we have

W̃osp

 ν1/2

ν1/2

= F̃(O)te W̃osp

( )
, (A.23)

where ν = Zf (O). We have F̃(O) ≡ temodh which implies that F̃(O) is invertible in

Q[t�̂±][t
−1
e ][[h]]. The above computations show that (A.20) holds with

κ =
([
te−1

]
eh/2+1

)
F̃(O)

∈Q[t�̂±
][
t−1
e
][
[h]

]
. (A.24)

Applying (A.20) to the link diagrams of Figure A.6 and using (A.18), we obtain

F̃
(
O2)= ([te−1

]
eh/2+κ

)
F̃(O). (A.25)
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It is easy to see that F̃(O2)= F̃(O)2. With κ as in (A.24), equation (A.25) has a unique

solution satisfying F̃(O) ≡ temodh, namely, F̃(O) = [te−1]eh/2 +1. This implies that

κ = 1, which completes the proof.

O1 O−1 O2 O

Figure A.6. Link diagrams used to determine F̃(O).

Theorem A.7 follows from Lemma A.8 in a similar way as Theorem 4.1 follows from

Lemma 8.1 (see Section 8).
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