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ABSTRACT. It is shown that the above sequences always determine linear trans-

formations and if the sequences are bounded under the least cross norm, that the

transformations are continuous. Such operators are characterized to within

algebraic isomorphism with the weak-star sequential closure of the tensor product

space in its second dual, and consequently certain classes of weakly sequentially

complete projective tensor products are exhibited.
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i INTRODUCTION.

Let E and F be normed linear spaces and G and H subspaces of their duals E*

and F*, respectively. Let % be the least cross norm [8] (operator norm, norm

giving the inductive topolgy), and consider E $%F, the %-completion of the tensor
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product E (R)xF. Then G (R) H is algebraically isomorphic to a subspaee of

(E F)* by (El gi @ hi)(Z xj yj) -i,jZ gi(xj)hi(Yj) where gi G’hi H,

xj m E yj F. As such G H carries the dual norm of % which is itself

a cross norm different, in general, from the greatest cross norm y[8] (nuclear

norm, norm giving the projective topology).

show that in order for E F to be o(E F, G %0 H)-It is easy to

sequentially complete (or sequentially complete in its weak topology) it is

necessary that E and F be (weakly) sequentially complete in their respective

weak topologies o(E,G) and o(F,H). To motivate our work, let E l’ the

space of absolutely summable sequences, G--c, the space of convergent

sequences embedded in the bounded sequences, and F a weakly sequentially

Banach space. Then i% F is sequentially complete in itscomplete

o( F, c 0 F*) topology, and the canonical map @% F / e(c,F) is

surective, where L(c,F) is the space of bounded linear transformations from

c into F. This example and others of -tensor products which are sequentially

complete under a weak topology and coincide with an associated operator space

are found in [i]. Similar examples exist where the sequential completeness is

under the weak topology. For instance, let E and F be reflexive Banach spaces

with bases such that every operator from E* into F is compact. Then E % F is

[4, p. 188], whence E % F is weakly sequentially complete. Moreover,reflexive

since F has a basis it also has the approxlmatlor[ property (a.p.) [7, p. 115]

that the canonical inection E F / L(E,F) C(E*,F) isso surJ ective,

where C(E*,F) is the space of compact operators from E* into F.

Thus, we will show that the above examples are special cases of more

general properties enjoyed by weakly Cauchy sequences in projective tensor

product spaces and that the equivalence class of such a sequence (definition

follows)alays defines a linear transformation from G into H* (Theorem i)
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which is continuous if the equivalence class is, in a sense, bounded (Theorem

3). Further, if G and H contain the extreme points of the unit cells SE, and

SF,, we show that these equivalence classes are, algebraically, precisely the

functionals in the weak star sequential closure of E @ F in its second dual

and if H is norm-closed that these functlonals are operators from G into

(Theorem 5). Consequently, for reflexive spaces E and weakly sequentiallycomplete

spaces F such that every operator from E* into F is compact, we obtain that

E @ F is weakly sequentially complete if E or F has the a.p. (Corollary 6).

In addition to notation already introduced, J will be the usual embedding

of a normed linear space F in its second dual If H is a subspace of F*
F / H* is defined by (y)h h(y), y F, h e H. K(F) will be the weak-

star (O(F**, F*)) sequential closure of JF in F**, and (F) the

sequential closure of F in H* (this last space arising in a natural way in

our work). Thus, ,(F) K(F) and (F) F if F is O(F,H)-sequentlally

complete. The sense of the last equality (algebraic isomorphism, homeomorphism,

isometric isomorphism) depends on results in [I0] and its bibliography which

can be used to generate corollaries to Theorems 1,3 and 5.

RESULTS:

It is simple to show that G and H are total subspaces (GO {0}) of the

duals of the normed linear spaces E and F, respectively, if and only if o(E @ F,

G @ H) is Hausdorff on E @ F. Also, if at least G is total over E, then

E (R) F is algebraically isomorphic to a subspace of the linear transformations

from G into F by

(Y. x
i

@ Yi)g =g(xi)Yi
where x

i
E E, Yi E F, g e G.

We define (E,F,G,H) to be the set of equivalence classes of

o(E F, G H) Cauchy sequences in E @ F where equivalence of sequences
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means agreement in the limit at points of G @ H. This becomes a vector space

when given the natural addition and scalar multiplication and as such contains

a copy of E 0 F:

E e F -+ (E,F,G,H)

defined by

t / z where (t,t,t, z

THEOREM I: Let E and F be normed linear spaces, G a total subspace

of E* and H a norm-closed total subspace of F*. Then (E,F,G,H) is

algebraically isomorphic to a subspace of the linear transformations from

PROOF: Let {zi} z (E,F,G,H), where

s

zi=r.
k=l xk’ i Yk, i

for Xk, i E, Yk,i F, i 1,2,-.-

exists N > 0 such that

Then if > 0, g G and h H there

s s
n m

h( gCx
k n

) n h( g roll < e
k=l

Yk, (Xk,m)Yk,
k=l

for m,n > N. Fixing g G and varying and h, we see that for each g G

n
the sequence {X g(xk l)Yk i

} in F is (F,H) Cauchy.
k-I

Thus
i

h*--cr(H*,H) limi ,IF.k=lg(xk,l)yk,i]
is uniquely defined since H is total, is independent of the choice {zi} z,

and lles in (F). Define (U(z))g h*. It is straight forward that U(z) is

a linear (not necessarily continuous) map from G into (F) and that U is

linear.
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Put U(z) 0, z (E,F,G,H). Then for all g G, and consequently for

every h H,
i

llm r. g(xk i)h(Yk, i)- 0
i k=l

si
showing that {k=ZlXk,i_ (R) Yk, i

} converges to the null sequence in the o(E @ F,

G (R) H) topology. Thus, z 0 and U is inJective.

The following points out that if G E* and H F*, every functional in

K(F) can be reached by a Um map.

PROPOSITION 2: Let E and F be normed linear spaces. Then U has the

property that given y** K(F) there exists z m(E,F,E*,F*) and

* E*x II x*II I, such that (z))x* y**. Further, there exists a

sequence {zi} z such that for all cross norms T on E @ F, T(zi) "II Y**II
i 1,2,

PROOF: Let {yn} c__ F converge o(F**,F*) to y** K(F), fix x E,

II xll I, and let z
i

x @ Yi" Then {zi} is o(E @ F, E* @ F*) Cauchy in

E @ F. There exists x* e SE, II x*ll i, such that x*(x) i, whence

(U(z))x* y**. Since [5, Lemma 2] holds for normed linear spaces, we may

assume IIY**II I[ Ynll so that T(zn) =11 xll llYnll IIY**II for any cross

norm T.

Below, A(E,F,G,H) will denote the subspace of those z E (E,F,G,H) such

that sup A(zi) < + for some {zi} e z.
i

TEOR4 3: Let G and H be total over the normed linear spaces E and F

and H be norm closed in F*. Then A(E,F,G,H) is algebraically isomorphic to

a subspace of L(G,(F)) by the mapping U, and

II (z) ll ! nf sup (z).
{zi} z i
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PROOF: Let {zi} z e ml(E,F,G,H), with

s
i

zi __E Xk,i @ i-- 1 2,
k 1

Yk,i’ Then

s
i

sup [I (u(z))ll -sup sup
geSG geSG hS

H
i k-I

_< sup sup llm l(zl)
geSG heSH i

<_ sup A (z i)
i

The central result, Theorem 5, provides an algebraic characterization

of the weak-star sequential closure of E @ F in (E @l F)** (i.e. in the

dual of the space of integral bilinear forms on E x F [3]). The proof keys

on [6] and [9] and we cite [6] explicitly:

LEMMA A: (Rainwater): Let {x } be a norm bounded sequence in a normed

linear space X and M the set of extreme points of SX,. If {x } is M-Cauchy,

then {x is weakly Cauchy.
n

LEMMA 4: Let X be a normed linear space and W a total subspace of X*

which contains the extreme points of Sx,, and {Xn}’ {yn} two norm bounded

(X,W)-Cauchy sequences in X such that llm f(xn) llm f(yn for eery f e W.

Then {Jxn} and {Jyn } are o(X**,X*) convergent to the same functional in X**.

PROOF: Both sequences converge in X** to the same limit as the weakly

Cauchy sequence {Wk} where W2k_l xk, W2k Yk’ k 1,2, .-..

THEOREM 5: Let E and F be normed linear spaces with G and H total

subspaces of E* and F*, respectively If G and H contain the extreme points

of SE, and SF, then I(E,F,G,H) is algebraically isomorphic to K(E @. F).

If also H is norm closed in F*, K(E 8 F) is algebraically isomorphic to a
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subspace of L(G,(F)) by a mapping T which is continuous withll TII <_ I. If

G and H determine the norm in E and F (i.e. have Dixmier characteristic one),

PROOF: The extreme points of the unit ball of (E 0% F)* are precisely

those functionals of the form x* 8 y*, where x* and y* are extreme points of

SE, and SF,, respectively [9]. Let z (E,F,G,H) and choose {zi} e z so

that sup %(zi) < + =. By Lemma A, {zi} is weakly Cauchy in E O% F. Define
i

V: m%(E,F,G,H) / K(E 0% F) by V(z) llm J(zi) where the limit is in the

weak-star topology of (E 8% F)**. By Lemma 4, V is well-defined, and clearly

it is linear and inJective. Moreover, V is surjective. For if z**E K(E 8 F)

then z** is the weak-star limit of a weakly Cauchy, hence norm bounded,

sequence {zi} in E 8 F. Thus, for some z, {zi} e z e (E,F,G,), and V(z) z**.
-I

To establish the second claim, consider that V is an algebraic

isomorphism of K(E @ F) onto mk (E ,F ,G ,H) and by Theorem 3 U is inJective

from m%(E,F,G,H) into L(G,(F)). We take T UV-I. Thus, T is the required

-I
isomorphism, and we claim that T when restricted to J(E @% F) is J (consider-

ing E @% F algebraically embedded in L(G,(F))). Let t J(E @ F). Now

V-I (t) z, where {J-! (t), j-I (t), --.}z. Consider U(z) L(G,(F)).
Recalling that the action of U(z) on g G is independent of the choice of

sequence {zi} z, we choose {J (t),J (t), --.}z. Then if

t J( @ yk), (U(Z))g o(H*,H) I [g()yk ( @ yk)g
for each g G, ence T(J(E @ yk)) @ Yk for every @ Yk E E @% F.

Let {zi} E E @% F converge weak-star to z** in K(E @% F). We y take

%(zi) [[z**[[ [5] and fromr 3 obtain

Tz** -Iz** z** whence ]T! i. If G a H deteine the norms

in E and F and x y E (R) F,
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gSG

geS
G

sup sup g(x) h(y)
gSG hcSH

sup sup g(x) h(y)

(x s y)

COROLLARY 6: Lt E and F be Banach spaces such that every operator

from E* into F is compact with E or F having the a.p. Then if E is reflexive

and F is weakly sequentially complete, E F is weakly sequentially complete.

PROOF: The a.p. insures that E F coincides with the space of

compact operators from E* into F , p. 113], whence L(E*,F) E F. In

Theorem 5 use G E* and H F*. Since the weak-star sequential closure of

a normed linear space is equal to that of its norm completion, K(E F)

is algebraically isomorphic under T to a subspace of L(E*,F). Since T, when

restricted to J(E (R) F), is the canonical map of E F into L(E*,F), it

follows that T, when restricted to the subspace E F of K(E (R) F), is

extended to E D F. Thus,

J(E F) __c TK(E F) !L(E*,F) E F

where each inclusion is isometric. It follows that T is an isometric

isomorphism of K(E F) onto E F, completing the proof.

Theorem 5 and Corollary 6 give information in a variety of special cases.

For instance, every operator from a reflexive space E into I is compact

[2, p. 515], and I, by having a Schauder basis, has the a.p. Thus,



WEAKLY CAUCHY SEQUENCES IN BANACH SPACES 453

EXI is weakly sequentially complete by Corollary 6. In particular,

the spaces are weakly sequentially complete (q > i) Forq X

q >r > I the spaces are reflexive [4, p. 189], and thusq-1 q X r

weakly sequentially complete. However, if p q
q i _< r, the spaces

q X r are not reflexive and there exists a non-compact operator from p
into r [4, p. 189]. Thus L(p,4 + q X r" But by [3, p. 122] we have

r/r_i L so

is not weakly sequentially complete, qTherefore,
"-q r < r.

q-i

Following Theorem 5 one naturally seeks conditions under which T is

a homeomorphlsm. Among the more interesting questions Is that of K(E 0X F)

being homeomorphic to the whole of L(G,(F)). Aside from Corollary 6, in

dealing with some of the possibilities surrounding G and H we obtain results

which are accessible through the piecing together of several theorems in [3].

For instance, let E be a Banach space with separable dual E and F a separable

reflexive Banach space. Put G E* and It F*. If E* or F* has the a.p. one

can show via Theorem 5 or [3] that K(E @X F) is linearly homeomorphic to L(E*,F).

The author wishes to acknowledge his major professor, Dr. R.D. McWilliams,

for his continuing encouragement and support since graduation from Florida

State University, 1969.
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