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ABSTRACT. A Mazur space is a locally convex topological vector space X such that

every f Xs is continuous where Xs is the set of sequentially continuous linear

functionals on X; Xs is studied when X is of the form C(H), H a topological

space, and when X is the weak * dual of a locally convex space. This leads to a

new classification of compact T2 spaces H, those for which the weak * dual of

C(H) is a Mazur space. An open question about Banach spaces with weak * sequen-

tially compact dual ball is settled: the dual space need not be Mazur.
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i. INTRODUCTION.

By a E.c. space we shall understand a locally convex Hausdorff topological
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vector space over the real numbers, and use the terminology and ideas of

standard texts such as [9], [14]. For a E.c. space X, its dual X’ is the set

of continuous linear functionals (= real valued functions) and X
s

is the set

of sequentially continuous linear functionals, so that X’ c Xs. Let H be a

completely regular Hausdorff space; C(H), (respectively, C*(H)) is the set of

real, continuous (respectively, continuous and bounded) functions on H; 8H, uH

are, respectively, the Stone-Cech and real compactifications of H. (See [13],

8.6). As usual we identify C*(H) with C(BH), C(H) with C(uH).

REMARK 0.i. We shall refer several times to GB spaces. A G.B space is

a Banach space X such that weak * convergent sequences in X’ are weakly

convergent. An example is =. See [14], 14-7.

A Mazur space, [15, p. 51, is a E.c. space such that X
s X’. The study

of such spaces leads naturally to a new class of compact T
2
spaces H called

spaces; those for which C(H)’ with its weak * topology is a Mazur space.

These include he Eberlein compacts and lie at the opposite end of a spectrum

from the G spaces, those for which C(H) is a GB space. See 4 for details.

The study of Mazur spaces had its origins in an unpublished result of

S. Mazur, which is the last sentence of Th i.i. The Theorem is known [8], [12].

We give a new and somewhat simpler proof.

In Section 2 a generic method is given for constructing non-Mazur spaces.

Section 3 shows that the important class of weakly compactly generated Banach

spaces have Mazur duals and lays the groundwork for proving that Eberlei

compacts are spaces in 4. Whether the converse holds is an intriguing

question. Heredity properties are studied in Section 5 and in Section 6 are

considered relevant properties of Banach spaces whose duals have weak *

sequentially compact unit discs.

I. POI..NW,ISE C(H). Each point t of uH may be considered as a linear



HAZUR SPACES 41

functional on C(H), namely, to f C(H} C(VH) we assign the number f(t).

This functional is called the evaluation at t. For any set S in a vector

space, IS ]denotes the span of S.

THEOREM i.i. Let H be a completely regular T
2

space, X C(H) with the

pointwise topology. Then Xs= [UH] i.e. a linear functional is sequentially

continuous iff it is a linear combination of evaluations at points of uH. In

particular X is a Mazur space Iff H is realcompact.

PROOF. First let z uH and define F(x) x(z) for x X. Now for

each x e X there exists h s H such that x(h) x(z); see for example [13,

Problem 8.5.9. If {xn} is a sequence in X we apply this to

a r. Ian-Xn(z) A2-n and obtain h H such that xn(h) x (z) for each
n

n i.e. F(xn) xn(h) for each n. Hence F is sequentially continuous.

The converse will be proved after three Lemmas, the first two of which

are due to A. K. Snyder.

LEMMA 1.2. Let be a finite positive regular Borel measure with

infinite support S on a regular T
2

space H. Then there exist sequences

{Fn} of closed sets and {Gn} of open sets with {G } pairwise disjoint
n

F C G and (Fn) > 0 for each n.
n n

PROOF. Call a set G considerable if G is open, S N G is infinite

and (SN G) > 0. We show first that if G is considerable, there exists

s e S N G which has a closed neighborhood U such that G U is also

considerable: Namely, choose s S N G which has a neighborhood V such

that (S N G) V is infinite. Now ({s}) < (S G) since (S G) {s)

is not the support of , so s has a closed neighborhood U with U c V,

(U) < (SN G).

Apply this with G H obtaining U
1

with considerable complement; again

with G H U
1

yielding s
2

S U
1

with a closed neighborhood U
2

disjoint
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from U
1

such that (H UI) U
2

is considerable. Continuing, we obtain a

disjoint sequence {Un} whose interiors {Gn } have (Gn) _> (Gn S) > 0. Since

is regular each G includes a closed F with (F) > 0.n n n

LEMMA 1.3. Let H be a completely regular T
2

space, X C*(H) C(SH)

X
swith the pointwise topology, and f Then there exist Zl,Z2,...,zn E 8H

such that f(x) E uix(zi) for all x X.

PROOF. Since uniform convergence implies pointwise convergence, f is

II-II= continuous on X and the Riesz theorem gives a measure on SH

with f(x) / x d. If the result is false, the support of is infinite

and we may apply Lemma 1.2 to lI on H. The Radon-Nikodym theorem implies

that d udlB with u LI(H,)and lu(h) i. Let Cn E L
1

be the

characteristic function of Fn and choose Un E C*(H) with lUn-Cnl Ii < tn
II (Fn)- We may assume also that u 0 on SH G for it can ben n

multiplied by a continuous function which is 1 on F 0 off G Now for any
n n

h, un(h) 0 for all but one value of n, and so I u / 0 pointwise for anyn n

choice of scalars I Since this implies that f(u f(% u / 0 itn n n n n

follows that f (un) 0 for sufficiently large n. This is contradicted by

noting that f(un)-tnl f (Un-Cn) dI < IUn-CnIIl< tn for all n.

LEMMA 1.4. Let H be a completly regular T
2

space, z E 8H uH, and

Zl,Z2,...,zn H. Then there exists x e C*(H) with x(z) 0, x(t) # 0

for t E H and t Zl,Z2,...,zn
PROOF. Let f H / R

+
(the one point compactification of R) have

f(z) =-, f e C(H). Let g i/(Iflvl). Then g(z) O, g(h) # 0 for

h H. Let u E C*(H), 0 _< u _< 1, u(z) 0, u(zi) 1 for i 1,2,...,n.

Finally let x g+u.

To complete the proof of Theorem I.i in which now X C(H), let

xs [uH], f glC*(H). By Lemma 1.3, the first half of Theorem andg e
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the fact that C*(H) is dense in X, we may assume that

f(x) ux(z) + Zn Uix(zi) with u 0, z E 8H UH. Choose x as in
i=l

Lemma 1.4 and set 1 /(l+kx2) for k 1,2 Then u
k
/ 0 pointwise

on H but f(uk) u + 7. ui/ [l+kx(zi)2] / u 0.

EXAMPLE 1.5. Using Theorem i.I we can give a very easy example to show

that Mazur is not inherited by closed subspaces. (See [I0] for an example

involving distribution spaces. Let H be a Banach space; as a metrizable

space, H is realcompact (at least for spaces of non-measurable cardinal; for

example, all known spaces.) Then H’ with its weak * topology is a closed

subspace of C(H), (in addition it is sequentially complete.) Now C(H) is

Mazur by Theorem I.i but H’ is not if, for example, H See Remark 0.i.

It follows that there is no extension theorem for sequentially continuous

linear functionals.

REMARK 1.6. The Nachbin-Shirota theorem has been extended in [I],

Prop. 5.2: C(H) wit. the compact op..en topolocjy is Mazur iff H is real-

compact and iff C(H) is Mazur in its weak topology.

2. SAME CONVERGENT SEQUENCES. In this section we give a generic method for

constructing non-Mazur spaces. Among the applications are an improvement of

Example 1.5 and a simplified treatment of a result of J. Isbell.

THEOREM 2.1. A .c. space (X,T) is a non-Mazur space if X has another

.c. Topology T
1

such that (X,TI) ’ (X,T)’ and T, T
1

have the same

convergent sequences.

PROOF. A slightly stronger result is true. Suppose that (X,T) is Mazur

and that every T convergent sequence is T
I

convergent. Then

s s
(X,TI)’ C (X,TI) C (X,T) (X,T)’. //

We give three applications. First let B be a non-reflexive GB space,

Remark 0.i, and X (B’,weak *). Then X is not Mazur.
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EXAMPLE 2.2. D. J. H. Garling (see [14], Prob. 14-2-107) showed that

I1
c (the Mackay topology) and II-If 1

have the same convergent sequences.
O

Hence (, i,Co)) is not a Mazur space. Thus a space with the Mackey

topology need not be Mazur.

EXAMPLE 2.3. Let B be a Banach space and S a dense barrelled proper

subspace of (B’, norm). Then (B,S) and w, the weak topology of B, have

the same convergent sequences. See [14], 15-1, 15-2, Problems 12-2-107,

9-3-104, Theorem 9-3-4. (Apply these to the natural embedding of B in B’.)

By Theorem 2.1 [B,(B,S)] is not Mazur.

EXAMPLE 2.4. A non-Mazur closed subspace of C(H) (pointwise) with H a

compact metric spa.ca. Compare Example 1.5. Let B be a Banach space and H

a weak * compact set in B’ such that S, the span of H, is a barrelled dense

proper subspace of (B’, norm). (See Example 2.6). Then [C(H), pointwise] is

Mazur by Theorem I.i. Let X BIHc C(H), considering Bc B’. Then X is

not a Mazur space by Example 2.3 since its (pointwise) topology is

(X,S) (B,S). That X is closed in C(H) will now be proved under

weaker hypotheses.

LEMMA 2.5. Let B be a .c. space, H C B’, X BIH (as in Example 2.4).

Then X is a pointwise closed subspace of C(H).

PROOF. Note that H has the topology (B’ ,B). Let x
u

be a net in X,

F e C(H), xU(h) / F(h) for h e H. Extend F to S, the span of H in B’,

by F(7. tihl Zt.F(hi). This extension is well-defined, hence linear, since
1

.h
i

if s 7. t h
i

7. u we have 7. t.F(h
i

lira 7. t.xu(hi lim xu(s)
1 1 1 1

.X
u .(hi) Now F is a linear functional on S which islim 7. u (h

i
7. u

1 1

continuous, thus F e B.

EXAMPLE 2.6. In [7], p. 223, J. Isbell gives a non-Mazur subspace X of

C(H) in which H is the Cantor set, not considering whether X is closed.
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His ultimate aim was to find such a subspace of countable dimension. We shall

show that his example has the properties we require. (Our proof in 2.4 of the

non-Mazur character of the subspace is different from Isbell’s). Let H be

the set of all sequences of O’s and l’s. So H c and, on H,

(=,i) coincides with the product topology of 2 so that H is the Cantor

set. Our task fs completed by Rxample 2.4 and the observation that the span of

H is dense and barrelled: see [14], Example 15-1-13.

3. WEAK * DUALS. In many situations involving a .c. space X, the object of

greatest interest is the Space X’ with the weak * topology. To mention only

three examples: interesting forms of the closed graph theorem have been

given involving X such that (X’,weak *) is sequentially complete: see [14],

Problem 15-3-110; Banach spaces in which the dual disc is weak * sequentially

compact have been studied as members of a variety in [4]; and Grothendieck’s

famous discovery that is a GB space deals with the weak * dual of this

space.

In this and the next 3 sections we pursue the study of these duals. For

any c. space X, let sX (X’, weak *)s the set of weak * sequentially

continuous linear functionals on X’. Taking X to be a Banach space we have

X sX c X". It is clear that sX X" iff X is a GB space. We shall call

X a BB space iff sX X i.e. (X’, weak *) is a Mazur space. Obviously a

Banach space is BB and GB iff it is reflexive.

We remark that a GB space X satisfies [X’,T(X’,x)]S=x but the latter

condition is not sufficient [Take X c and apply 2.2.]
o

It is convenient to work in more generality to show the role of complete-

ness. Let a Z.c. space X be called a DEc space if sX X i.e.

(X’ weak *) is Mazur.

THEOREM 3.1. A Bc space is complete in its strong topology.
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PROOF. This is by [14], Cor. 8-6-6. A special case is that a barrelled

space is complete. This is improved by:

THEOREM 3.2. A sequentially barrelled c space is complete.

PROOF. Let F be an aw* continuous linear functional on X’. (For

this and the rest of the proof see [14], 12-2.). Then A # is weak *

sequentially closed for if f e A, f / f, the hypothesis yields that {f }
n n n

is equicontinuous so that A {f } is weak * closed in A; hence f e A.
n

Thus F is weak * sequentially continuous and so, by hypothesis it is

continuous. The result follows by Grothendieck’s completeness theorem.

In the converse direction we give a quite general criterion. A

topological space T is called N sequential if for A C T, t e A, A contains

a sequence converging to t.

THEOREM 3.3. Let X be a .c. complete space such that each equicon-

tinuous set in X’ with the weak * topology is N sequential. Then X is a

c space.

PROOF. Let F e sX and let E be an equicontinuous set in X’ with

the weak * topology. Let A C E, f e A. Then there exists a e A with
n

a / f, hence F(f) lim f(a
n

E F[A]. Thus F[] F[A] and so FIE is
n

continuous, i.e. F is aw* continuous. By Grothendieck’s theorem, F

is continuous.

COROLLARY 3.4. A separable complete .c. space is a c space.

COROLLARY 3.5. Every closed subspace Y of a weakly compactly generated

Banach space X is a BB space.

PROOF. Let i Y / X be inclusion. Then i’ Dx
/ Dy (The unit discs)

is onto. Now Dx is an Eberlein compact by [3], Corollary 5.2.3 and so Dy

is also by [2]. The result follows from 3.3 since Eberlein compacts are N

sequential [14], 14-1.
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REMARK 3.6. Some of these results can be deduced from Prop. 4.1 of [i]

whose language we use without explanation. If X is separable m(X)D T (X,X’)

since each equicontinuous set is metrizable. So X complete implies m(X)

complete, equivalently X is c. This is 3.4. Also 9(X) is the

smallest sequentially barrelled topology so, if (X,T) is sequentially

barrelled; 9 (X) c T and so T is complete, yielding 3.2.

EXAMPLE 3.7. The converse of Corollary 3.5 is false, i.e. a B space

need not be weakly compactly generated, or even a subspace of such a space.

Our example assumes the continuum hypothesis. Let X i(I) with

If c. This is a B space by [i], p. 29, Remark. To prove the assertion,

it suffices by the argument of 3.5 to show that the disc D c X’ is not

weak * sequentially compact, hence not N sequential. Take

I [0,i], X’ E[I]. Let f (h) 1 if 2k/n < h < (2k+l)/n for some
n

k 0 i,.. [1/2(n-l)]; -i otherwise. If {f } has a subsequence gn / g
n

weak * (hence pointwise) then fJ gn / 0 for every interval j c I. Hence

g 0 almost everywhere. But g(h) 1 for all h.

4. p AND G SPACES. A G space (p space) is a compact T
2

space H such

that C(H) is a GB space, (a pB space. G spaces have been extensively

studied. See [14] 14-7. Only a finite space is both p and G.

THEOREM 4. i. Each Eberlein compact H is a space.

PROOF. This is by 3.5 since C(H) is weakly compactly generated; [3]

Prop 4.2.1.

This includes all compact metric spaces, a result which also follows from

3.4; and the one point compactification of a discrete space.

We conjecture that the converse is false; that p spaces exist which are

not Eberlein compacts. This is made even more plausible in the next section.

5. HEREDITY. The four properties GB, G, B, obey the following table
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whose entries will be discussed below:

GB G BB B

Q yes no no yes

c no yes yes ?

The row headed Q signifies that a quotient of a GB (respectively,

space is a GB (respectively, B) space; but a quotient of a G (respectively,

B) space need not be a G (respectively, B) space. The row headed C

signifies that a closed subspace of a G (respectively, B) space is a G

(respectively, B) space but a closed subspace of a GB space need not be a

GB space. It is thus most natural to conjecture that a closed subspace of a

space need not be a space. An example to verify this would also settle

the conjecture of 4 since a closed subspace of an Eberlein compact is also an

Eberlein compact.

The properties given for GB are well known. The natural map form

+ ( integers) is a quotient map from a G space onto a non-G space.

Since a quotient of a GB space is a GB space it follows that a closed

subspace of a G space is a G space. The natural map from i(I) / =
is a quotient map from a B space to a non-B space. Inheritance of B by

quotients will follow when we show (Corollary 5.2) that B is inherited

by closed subspaces.

We need the concept of a Tauberian map u X / Y i.e. a map with the

property that F X" u"F e Y implies F e X All we need is that the

inclusion map from a closed subspace is Tauberian; see [14], Th. 11-4-5.

LEMMA 5.1. Let Y be a B space, X a Banach space and suppose there

exists a Tauberian u X + Y. Then X is B.

PROOF. If F e sX, then u"F sY Y hence F X.

COROLLARY 5.2. BB is inherited by closed subspaces.
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There is also a 3-space theorem:

COLLARY 5.3. If X has a reflexive supspace S with X/S B then X

is B.

PROOF. If F E sX, q"F E s(X/S) X/S. Since q is Tauberian, the

result follows.

6. SEQUENTIAL COMPACTNESS. Let us call a Banach space X an SCB space if

the unit disc in X’ is weak * sequentially compact. Every closed subspace

of a weakly compactly generated space is an SCB space as shown in 3. Some

interest attaches to the study of SCB spaces due to the proof in [5] that every

non-SCB space has a separable quotient. It was conjectured by Faires [4]

that every SCB space is a B space. That this is false is shown by means of

Example 6.1 due to W. Schachermayer which is published here with his kind

permission. (The slightly stronger condition of 3.3 is sufficient. By 3.5

it follows that an SCB space need not be (a closed subspace of) a weakly com-

pactly generated space.

By analogy with 4 a compact T
2

space H is called an SC space if

C(H) is an SCB space. Each Eberlein compact is an SC space but not

conversely (Example 6.1). Every SC space is sequentially compact

[Hc D(X’)] but not conversely: M Talagrand presented an example at the 1979

Kent State conference of a first countable space H such that DC C(H)’

includes a copy of 8N. (This shows that even an N sequential space

need not be an Eberlein compact.

EXAMPLE 6.1. (W. Schachermayer). Let H [0,] where is the first

uncountable ordinal. (See [1311 14.5.) H is not a G space since it has

convergent sequences, and not an Eberlein compact since is not a sequential

limit, or because it is not a space as will be shown. Let X C(H) and

define F e X" by F() ({}). Then if F e X, we would have (letting h
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be the point mass at h e H, h ), 0 F() f Fd F(h) and so F 0

which is false. Thus F X and when we show F e sX we will know that H

is not a B-space.

LEMMA 6.1.1. Let { }c X’. Then there exists h e H, h , such that,
n

for all n, Bn(e) 0 whenever e c (h,).

PROOF. -Let B e X’. Since ({i}) 0 for only countably many i there

exists h such that ({i}) 0 for i e (h,). For any conpact subset e

of (h,), H e is open, thus includes some (b,]; hence eC [0,b] is

countable and (e) 0. By regularity this is true for all Borel sets.

Doing this for each n we obtain hn and may take h < , an upper bound

for all h
n

Note that H is a co)act T
2

space which supports no measure.

MMA 6.1.2. let {nX’. There exists x e X such F(n) f xdBn

for all n.

PROOF. Choose h as in 6.1.1 and let X be the characteristic function

of the open and closed set [h+l ] Then f xd ([h+l )) +
n n

({n}) ({n}) F( ).
n n n

It follows that F e sX as claimed. To prove that H is SC let

{n D, the unit disc in X’. Choose h as in 6.1.1. Let

N {x e X x(i) 0 for 0 < i < h and i }, N { e D (x) 0

for x e N}. Since each e N the result will follow when it is shown
n

that is weak * metrizable. It is sufficient, since it is compact, to show

that it has a sller metric. For this it is sufficient to find a sequence

{x } X which is total over Let x () l, x 0 on [0,hi. For
n o o

each isolated point b < h let x
b

be the characteristic function of b.

For each non-isolated b < h, [0,b) is countable, say {Ck}, let xb(i) i
n

Since [0,h] isif i b and 0 if i > b or if i c_
I

c_
2 Cn
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b b
countable we have named in all a countable set of functions {x0,x ,x }. It

n

N.t.is total over for let 0 e N If ({}) 0, then, since is

supported on [0,hi U {}, (x0) f x0d f[0,a] x0d + ({}) =({}) M 0.

If ({}) 0 then (e) 0 for some ec [0,hi; hence ({b}) 0 for

some b < h. If b is isolated, (xb) ({b}) 0; if not, x
b
/ f, the

n

characteristic function of {b}, lintise lundedly and so by the l:unded

convergence theorem, 1,.ICXnb) / xbn d / ({b}) 9 0 hence some (Xnb) 0.

7. FURTHER RESULTS

It is clear that if (X,T) is Mazur and T
I

is a smaller compatible

topology, (X,T1) is Mazur. This is not necessarily true if T
1

is larger,

for T(l,co is not Mazur by 2.2 while (I,co is by 3.4. Also

"compatible" cannot be omitted since T(1, c0) is not Mazur while the norm

ion is.

The following result is due to J. H. Webb.

THEOREM 7.1. Let X be a .c. space with a Schauder basis such that

(X’ weak *) is sequentially complete Then X is a Mazur space

X
s

b
i

(b
iLet f e For x e’X, x Z t. f(x) Z t.f lira f (x) where

1 1 n
n

fn 7"i=i f--(bl)t" X’.. Thus f E X’
1

THEOREM 7.2. This result generallzes Theorem 2 of [6] and leads

similarly to the result that for a space X with Schauder basis, weak *

sequential completeness of X’ leads to its strong sequential completeness.

Neither hypothesis can be omited in 7.1 as shown by [14], Prob. 10-3-301 (in

which X is barrelled:), and T(1,c ), respectively.
o

EXAMPLE 7.3. [=,T((R),I)] is a Mazur space. This follows from 7.1.

The Schauder basis is given in [14], Prob. 9-5-107. This is in contrast with

[1 T(1 c )] Example 2 2 The difference lies only in the completeness part.
O
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THEOREM 7.4. Equivalent conditions for a .c. space (X,T) are:

i. Every sequentially continuous linear map u X / Y, Y any .c.

space, is continuous.

ii. X is C-sequential

+
iii. T T

+
PROOF. Webb’s topology T is the largest .c. topology with the same

convergent sequences as T; X is called C-sequential if every absolutely

convex sequential neighborhood U of 0 (x U eventually whenever x / 0)
n n

is a neighborhood of 0. That i => iii follows from consideration of

i (X,T) / (X,T+). The rest is [14], 8.4, Probs. 128, 201.

The conditions of 7.4 do not imply that X has the Mackey topology;

indeed there may exist two such comparable compatible topologies, for example,

with X c let W (respectively, n) be the weak (respectively, norm)
o

+ +
:pologies. Now w n; further T

++
T
+

for every T so w is

+
C-sequential. Finally w n by the next result.

+
THEOREM 7.5. Let (X,T) be a .c. space. Then T is compatible with

T iff (X,T), is Mazur.

PROOF. /: (X,T)
S =(X,T+), (X,T)’. / (X,T+)’ (X,T)

s

(x,)’c (x,+) ’.

COROLLARY 7.6. A Mazur space which has the Mackey topology must be

C-sequential, but need not be bornological.

PROOF. This follows from 7.3, 7.4 and 7.5. It has the interesting

application that every sequentially continuous linear map from [=,T(=,I)]
to an arbitrary .c. space is continuous (by 7.3) even though this space is

not bornological. Along the same lines one might conjecture that if (X,T)

is C-sequential then T (X,X’) is also; but this is false: take X ,
T 0(i,c + I,

o
then T( c0 is not even Mazur.
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QUESTIONS. Must a space be a Eberlein compact? Must a closed

subspace of a space be a space?
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