A RESULT ON CO-CHROMATIC GRAPHS

E.J. FARRELL

Department of Mathematics The University of the West Indies St. Augustine, Trinidad.

(Received December 17, 1979 and in revised form April 18, 1980)

<u>ABSTRACT</u>. A sufficient condition for two graphs with the same number of nodes to have the same chromatic polynomial is given.

KEY WORDS AND PHRASES. Graph, Co-chromatic, Chromatic polynomial.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: Primary 05 C15, Secondary 26 C10.

1. INTRODUCTION.

We prove a theorem which gives a sufficient condition for two graphs to be co-chromatic i.e. to have the same chromatic polynomial.

The chromatic polynomial $\chi(G;\lambda)$ of a graph G with p nodes has degree p and constant term equal to 0. Hence the chromatic polynomial has p coefficients. If the graph has at least one edge, then the sum of these coefficients is equal to 0. Hence the chromatic polynomial is uniquely determined if p-1 of the coefficients are known. Our result is a generalization of this.

2. MAIN RESULTS.

THEOREM 2. If two graphs with p nodes have chromatic numbers \geq n and have at least p+l-n corresponding coefficients of their chromatic polynomials equal, then they are co-chromatic.

In the proof we shall use a special case of the following Lemma.

LEMMA 2.1

Let $P(x) = c_1 x^{n_1} + c_2 x^{n_2} + \ldots + c_s x^{n_s}$, where c_i and n_i are real numbers for i = 1, 2, ..., s. We assume that $c_i \neq 0$ for all i and that $n_i \neq n_j$ for $i \neq j$. Then the equation P(x) = 0 has at most s-1 real positive solutions.

PROOF OF THE LEMMA 2.1 By induction over s. For s = 1 the statment is obvious. Suppose that it is true for s - 1 and let P(x) be the above expression. The expression

$$Q(x) = x^{-n_1} \cdot P(x) = c_1 + c_2 x^{n_2 - n_1} + \dots + c_s x^{n_s - n_1}$$

has the derivative

Q'(x) =
$$c_2(n_2-n_1)$$
 . $x^{n_2-n_1-1} + \dots + c_s(n_s-n_1)$. $x^{n_s-n_1-1}$

By induction, Q'(x) = 0 for at most s-2 positive x. But between any two positive solutions of $P(x) = x^{n_1}$. Q(x) = 0, there exists a solution of Q'(x) = 0. Hence P(x) = 0 for at most s-1 positive x.

Q.E.D.

PROOF OF THE THEOREM 2. Let G and H be the two graphs. Let us assume that m of the coefficients of $\chi(G;\lambda)$ and $\chi(H;\lambda)$ are equal. Then $m \ge p + 1 - n$, by our assumption. Let us assume that m < p. We can therefore write

$$\chi(G;\lambda) = f(\lambda) + g(\lambda)$$

and

 $\chi(H;\lambda) = f(\lambda) + h(\lambda),$

where $f(\lambda)$ contains m terms and $g(\lambda)$ and $h(\lambda)$ are the remaining terms of $\chi(G;\lambda)$ and $\chi(H;\lambda)$ respectively.

Since G and H have chromatic numbers \geq n, all integers 1,2, ..., n-1 are roots of $\chi(G;\lambda)$ and $\chi(H;\lambda)$.

366

Let

$$g(\lambda) = a_1 \lambda^{n_1} + a_2 \lambda^{n_2} + \dots + a_{p-m} \lambda^{n_{p-m}}$$

and $h(\lambda) = b_1 \lambda^{n_1} + b_2 \lambda^{n_2} + \dots + b_{p-m} \lambda^{n_{p-m}}$ If r is an integer such that $1 \le r \le n-1$, then g(r) = h(r), i.e.

$$(a_1^{-b_1})r^{n_1} + (a_2^{-b_2})r^{n_2} + \dots + (a_{p-m}^{-b_{p-m}})r^{n_{p-m}} = 0.$$

Since $n - 1 \ge p - m$, this is a contradiction by the Lemma.

<u>Q.E.D</u>.

3. ILLUSTRATIONS

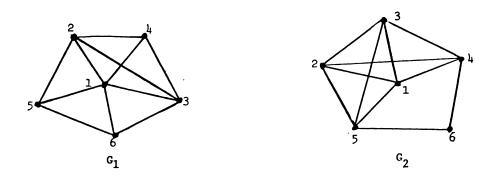
We will now illustrate the theorem. We will assume that the chromatic polynomial of a graph G with p nodes is written in descending powers of λ .

i.e.
$$\chi(G;\lambda) = \sum_{k=0}^{\Sigma} a_{p-k} \lambda^{p-k}$$
.

It is well known that if G contains p nodes and q edges, then a_p , a_{p-1} and a_{p-2} are 1, -q and $\binom{q}{2}$ - A respectively, where A is the number of triangles in G. It was also shown in Farrell [1] (Theorem 1) that

$$a_{p-2} = -\binom{q}{3} + (q-2)A + B - 2C,$$

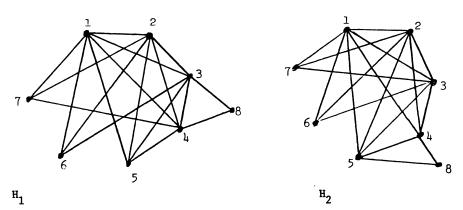
where B and C are the numbers of subgraphs of G which are quadrilaterals (without diagonals) and complete graphs with four nodes. Let G_1 and G_2 be the graphs shown below

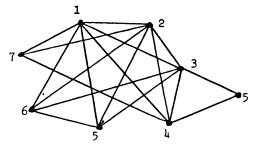


Let $\chi(G_1; \lambda) = \sum_{k=0}^{\infty} a_{6-k} \lambda^{6-k}$ and $\chi(G_2; \lambda) = \sum_{k=0}^{\infty} b_{6-k} \lambda^{6-k}$. Then $a_6 = b_6 = 1$ and and $a_5 = b_5 = 11$. Since G_1 and G_2 contain 7 triangles, $a_4 = b_4 = \binom{11}{2} -7 = 48$. Therefore G_1 and G_2 have 6 nodes, their chromatic number is $\geq 4 = n$ and (p+1-n)=3of their corresponding coefficients are equal. It follows from the above theorem that G_1 and G_2 are co-chromatic.

The chromatic polynomial of G_1 and G_2 has been computed. It is $\chi(G_1; \lambda) = \chi(G_2; \lambda) = \lambda^6 - 11\lambda^5 + 48\lambda^4 - 103\lambda^3 + 107\lambda^2 - 42\lambda$.

Consider the graphs H_1 , H_2 and H_3 shown below.





н

All three graphs contain 8 nodes and 18 edges. Each contains 17 triangles. Therefore, the third coefficient of their chromatic polynomial is $\binom{18}{2}$ - 17 = 136. Finally, each contains 7 subgraphs which are complete graphs with 4 nodes and 0 quadrilaterals without diagonals. Therefore the fourth coefficients are equal. Hence from the above theorem H_1 , H_2 and H_3 are co-chromatic.

The chromatic polynomial of H_1 , H_2 and H_3 has been computed. It is $\chi(H_1;\lambda) = \chi(H_2;\lambda) = \chi(H_3;\lambda) = \lambda^8 - 18\lambda^7 + 136\lambda^6 - 558\lambda^5 + 1339\lambda^4 - 1872\lambda^3 + 1404\lambda^2$ - 432 λ .

REFERENCES

 Farrell, E.J., On Chromatic Coefficients, <u>Discrete Mathematics</u>, <u>29</u>(1980), 257-264.