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ABSTRACT. Let Fmxm denote the algebra of mm matrices over the finite field
q

F of q elements, and let denote a group of permutations of F It is well
q q

known that each e can be represented uniquely by a polynomial (x)eF [x] of
q

degree less than q; thus, the group naturally determines a relation on

Fmm as follows: if A,BsF
mm

then AB if (A) B for some e. Here (A) is
q q

to be interpreted as substitution into the unique polynomial of degree < q which

represents

In an earlier paper by the second author [i], it is assumed that the relation

is an equivalence relation and, based on this assumption, various properties of

the relation are derived. However, if m > 2, the relation is not an

Fmxm.equivalence relation on It is the purpose of this paper to point out the
q

above erroneous assumption, and to discuss two ways in which hypotheses of the

earlier paper can be modified so that the results derived there are valid.
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I. INTRODUCTION.

Let F denote the finite field of order q and let Fmm denote the algebra of
q q

mm matrices over Fq. If is a group of permutations of Fq, then can
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Fmmbe used to define a relation on as follows: since each fl can be expressedq

uniquely as a polynomial #(x)F [x] of degree <q, we take A to be related to B
q

(written AB) if B (A) for some where (A) is the substitution of A into

the unique polynomial #(x) representing

In [I] it is assumed that the relation thus defined is an equivalence rela-

tion on Fmm and, based on this assumption, various properties of the relation
q

are derived. However, for m > 2, the relation is not an equivalence relation.

One of the purposes of this note is to point out the above erroneous assumption.

Another is to discuss ways in which the hypo=heses in [i] can be modified so

that the results derived there are valid. In section 2 we discuss why is

not an equivalence relation and in section 3 we briefly indicate how the

results of [i] can be made valid after a simple modification of the group

In section 4 we keep fl as defined in [i], but.we restrict the domain on which it

is acting to be a subset of From; namely, the diagonalizable matrices. The
q

relation, thus restricted, becomes an equivalence relation and again the results

of [I] are valid provided suitable enumeration formulas for diagonalizable

matrices are known. These needed formulas are derived as a part of section 4.

2. THE ERRONEOUS ASSUMPTION.

In [i] it was taken for granted (referring to the relation defined above)

-i
that if B (A) for some eR then A (B). To explain why this is not

-i
necessarily true, consider a particular #fl. Let #(x) and (x) denote the

-i -i -I
polynomials representing # and # Then for all aeF ( (a)) # ((a)) a.q’

This identlt, in F translates to F [x] by the polynomial congruenceq q

(#-l(x)) -l((x)) x (mod(x
q x)). Thus

#-l(#(x)) x + h(x)(x
q

x)

for some h(x)eF [x]. Hence, if AB by #( le; if (A)= B) we have
q

#-I(B) -I((A)) A + h(A)(Aq A) (2.2)
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which is not in general equal to A. Consequently, the relation’ is not

symmetric.

For a specific example, consider q 5 and take to be the permutation of

3 -IF
5

represented by (x) x Then the polynomial representing # is also

(0 (00#-l(x) x Thus for {X,X3}, A 0 0 is related to B
0

as

B A3 however, B is not related to A.

3. A MODIFICATION OF .
It is quite natural to use the polynomial representation of e to define

Fmxm Fmxmthe relation on because polynomial functions can act on or any
q q

algebra over F as easily as on F indeed, this idea is the basis behind
q q

most notions of extending functions on a field F to functions on Fmxm (e.g.,

see [2]). However, permutation polynomials on F do not in general become

permutation polynomials on Fmxm. The failure to account for this fact led to

the error in [i] and the reaizatlon of it leads to the following modification.

It is known [3] that there are polynomials f(x)eF [x] in addition to the
q

Fmxmobvious linear polynomials ax + b, a # 0, which, when acting on viaq

substitution do indeed define permutations of Fmxm. These polynomials have
q

been characterized in [3] where it is shown that f(x) and g(x) represent the

same function on Fmxmq if and only if f(x) g(x)(rood Lm(X)) where

m m i
L (x) (xq -x)(xq
m x)’"(xq x).

Thus, if G denotes the set of all polynomials of degree less than the degree

m m i Fmxmof L (x) ( q + q + + q) which act as permutations on then Gm q

is a group under composition modulo Lm(X). The group G is studied in [4] where

among other things the order IGI is found.

Let be a subgroup of G. Then can be used to define an equivalence re-

lation on Fmxm by defining AB if there is a e such that B (A). With thisq

new group playing the role of the group used in [i, section 2], the results

and proofs of [I, section 2] are valid. Moreover, if this new is also cyclic,

the results and proofs in [I, section 3] are also valid provided the typograph-
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ical error in [i, equation (3.1)] is corrected to read

M(t,m) N(E ,m) l M(u,m).
n/t tluln

dbius inversion can of course be applied to the above expression to give

M(t,m) E ()N(E ,m)
tluln n/u

where is the classical fdbius function.

Corollary 3.2 of [i] for the number () of equivalence classes of is

now valid with the above modifications. However, a straight forward use of

Burnsides lemma (e,g,, see [5, p. 136]) together with the results of Hodges

[6] perhaps give the simplest expression for the number of equivalence classes;

namely,

i>,() () (3.1)

where (#) is the number of matrix roots of the equation (x) x 0. In [6]

Hodges finds the number of matT,ix roots of f(x) 0, f(x) arbitrary in F [x].q

We comment that the main difficulty in using the results of [i] as now

comrected or the above formula (3.1) in conjunction with Hodges’ formulas is

that the polynomials f(x) must be known explicity and in factored form.

As a .simple example where this difficulty is readily handled, we take

{ax +bla beF a # 0}. Then II q(q i) and it is easily seen (inde-
q

pendent of Hodges’ work) that
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(ax + b)

I if a# 1

0 if a i, b # 0

2qm if a i, b 0

so that

2 2_1qm + q(_q 2) qm + q 2l() q(q i) q- i

As an illustration of the theory of [i] in the case where fl is a cyclic

subgroup of G, suppose m 2 and consider <> where (x) 2x + i over F5.
2x2Clearly (x) is a permutation polynomial on F5 and ]f[ 4 so that from

Theorem 3,1 of [i] we have M(I,2) 624, M(2,2) 0 and M(4,2) i. Thus by

Corollary 3.2. of [i] there are_156classes_of order 4 and i class of order I so

that %() 157, a result which also follows quite readily from (3.1).

4. AN ALTERNATE MODIFICATION.

We now cons%der another way to modify the hypotheses in [i] in order to

oStain a valid equivalence relation. This time, in contrast to the above

alternative, we use the same group of [i] but alter the set on which it is

acting,

Let be a g=Qup of permutations of F so that each #e is represented byq

a unique polynomial #(x) Eaixi e Fq[X] of degree less than q. Let (m,q) de-

note the set of m m diagonalizable matrices over Fq; i.e. an m x m matrix

A over Fq is in (m,q) if and only if A is similar over F to a diagonal matrix.q

It is shown in [3, Theorem 5] that each (x)e defimes, via substitution, a

permutation of (m,q). This also follows easily fom (2.2) since Aq A 0

for all As(m,q).- Hence, the relation defined on.(m,q) by A%B if (A) B for

some (x)e is an equivalence relation on m,q).
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For this particular equivalence relation on (m,q), results identical to

those stated in [i] can be deri=ed (using identical proofs) provided the follow-

ing agreement is made: whenever a formula or statement in [i] calls for the

number of matrices AFmm satisfying f(x) 0 where f(x) #(x- x, #(x), weq

instead use the number of matrices A(m,q) satisfying f(x) 0. The former

number was determined by Hodges in [6] while the latter number is given in the

next theorem, the proof of hlch is an adaption of Hodges’ methods to our

situat ion.

THEOREM i. Let f(x)eF Ix] have t > 0 distinct roots (with various multi-q

pllcties) in F Then the number Z(f(x)) of matrices A(m,q) satisfyingq

f (A) 0 is

z (f (x)) .
Y(kl)Y(k)’’’y(kt) (4.1)

where the sum is over all t- (kl,...,kt) of nonnegative integers saris-

fying Ek
i

m and where

r r -Iy(r) (qr l)(q q)-..(q q (4.2)

is the well known number 6f invertlhle r x r matrices over F
q

PROOF. A matrix A is in (m,q) and also satisfies f(x) 0 if and only if the

minimum polynomial of A factors into distinct linear factors and also divides

f(x). This is equivalent to saying A is similar to a unique diagonal matrix

of the form

dSag (allh,a22
a
t

)Ikt (4.3)

where (al,a2,...,at) is a fixed ordering of the t distinct roots of f(x) and

where the klae nonn4gatVe ntegers whose sum is m. (If some k
i 0, we

understand that the corresponding 51ock does not appear in (4.3)). An m m
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matrix P is invertible and commutes _th (2.2) if

Pt where P
i

is k
i

x k
i

and invertible. Thus from [6] the number of matrices

similar to (4.3) is y(m)/(Y(kl)...Y(kt) and the result follows by summing over

all (kl,k2,...,kt).
We should comment that in case f(x) has no roots in F the sum (4.1) isq

the empty sum which by convention is zero.

Formula (4.1) can also be used in conjunction with Burnside’s lemma [5] to

give the following number (R) of equivalence classes:

1l(R) T- Z Z(%(x) x) (4.4)

where Z(%(x) x) is given in (4.1).

If we take R to be the trivial group fl {#(x) x}, then (4.4) counts the

number ID(m,q) of m’x m diagonalizable matrices over F and simplifies usingq

(4.1) to

ID(m,q) r. y(m)
(kl) y (k2)’’’y(kq) (4.5)

where the sum is overall q-tuples (kl,k2,..., kq) of nonnegative integers

with 7.k
i

m.

3As a second illustration, if (x) x over F
5 and fl < # > so that

RI 2, then as was pointed out in section 2, is a permutation on F
5 but

22
is not an equivalence relation on F

5 However, by restricting R to act on

the ID(2,5) 305 d.lagonallzable 22 matrices over F5, we do indeed have a

bonafide equivalence relation on D(2,5). Using (4.1) it is not difficult to

show that Z(x3 x) 93 so that by (4.4) l(R) 1/2(93 + 305) 199 distinct

equivalence classes.

For R--S (the symmetric group of all permutations of F rather than use
q q

formula (4.4) which results in a complicated expression, we shall give an

independent derivation which utilizes the following theorem whose proof resembles
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that of Theorem i and will thus be omitted.

Theorem 2. The number of diagonalizable matrices over F with exactly t
q

eigenvalues is

E(m,t) E (q) (s
I

t (m) (4.6)
(m t) ,s2 ,s

m
s s

2
s

(i)i(2) .(m) m

sI s s
where the sum is over all partitions (m,t) [I 2 2 m

m o__f m into exactly

t parts (Eis. m Is t)where (r) is given in (4 2) and where (qt) and
i i

t
are binomial and multinomial coefficients, respectively.

Sl,S2, ,s
m

Now consider a matrix Ae(m,t) with exactly t distinct eigenvalues, and

let P be a fixed matrix such that p-lAp D where D is a diagonal matrix. Let

si be the number of eigenvalues of A (or diagonal entries of D) of multiplicity

i so that Eis. m and Zs. t. Hence, associated with A (or D) there is a

s12s2 Sm]partition (m,t) [i --.m of m into t parts As (x) runs over S ,
q

(D) runs over all diagonal matrices related to D of which there are clearly

-i -I
q(q- l)’’’(q t + i) q!/t!. Since P(D)P (PDP (A), it follows

that the number of matrices related to A is also q!/t! and each such matrix has

exactly t distinct eigenvalues. Hence, the number of equivalence classes

determined by those matrices with exactly t eigenvalues is t!E(m,t)/q! where
m

E(m t) is given by (4 6). Thus (S 7. t!E(m,t)/q! is the number of
q t=l

equivalence classes and this simplifies to

I(S E y(m) (4.7)
q s

1
s
2

s
(i) Sl!(2) s2!’’’(m) msm!

s12s2 Sm]where the sum is over all partitions [i ---m of m

It is interesting to note the similarity in appearance of (4.7) to Cauchy’s

formula for the number m! of elements in S namely,
m

m!
sSl s2

!...m msi Sl!2 s
2 m"

s12s2 Sm]where [i ...m again ranges overll partitions of m
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