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ABSTRACT. This work considers differential equations of the form

(py")" + qy" + ry 0

where p,q and r are positive continuous functions defined on [0,). The main

concentration is on the oscillatory and asymptotic behavior of the solutions.

Such an investigation is important because the above equation often arises in the

study of mechanical vibrations.
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i. INTRODUCTION.

In this paper we are concerned with the asymptotic and oscillation proper-

ties of solutions of the differential equation

(py")" + qy" + ry 0. (i.i)

The following assumptions will be made:

(HO) p, q, r are continuous real-valued functions defined on [0,).

(Hi) p(x) > 0, dx
o p(x)

r(x) > O, q(x)> 0.

(H2) For each solution y of (i), Q(y",y) py,,2 + qy,,y + ry2 > 0.

The adjoint equation of (i.I) is

(pz" + qz)" + rz 0. (1.2)

Note that if q is a constant, then (i.I) is selfadjoint. A nontrlvlal solution
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of (l.l){(l.2)}is termed oscillatory if it changes signs for arbitrarily large

values of x. We also say equation (i.i) {(1.2)) is oscillatory whenever it has

an oscillatory solution. Nonoscillatory solutions of (i.I) {(1.2)} are those

which fail to oscillate.

If it happens that all solutions of (i.i) I(1.2)) are oscillatory we say that

(I.i) {(1.2)} is strongly oscillatory. If no solution oscillates then (I.i) I(1.2)}

is termed nonoscillatory. In either of these cases the solutions of (i.i) {(1.2)}

are said to have the same oscillatory character. Finally, we say that (I.i) {(1.2)}

is (2,2)-disconjugate if no nontrivial solution satisfies y(a) y’(a) 0 y(b)

y’(b) for some a and b on [0,).

Some special cases of (i.I) have been studied in detail. In particular, the

selfadjoint equation

iv
y + r(x)y O, (1.3)

has been studied extensively by Svec [1,2]. Svec examined the asymptotic pro-

perties of certain solutions and proved that all the solutions of (1.3) have the

same oscillatory character. Leighton and Nehari [3] in their fundamental work

concerning the more general selfadjoint equation

(p(x)y")" + r(x)y O, (1.4)

obtained oscillation and nonoscillation criteria for solutions of (1.4).

Schneider [4] proved that solutions of a (2,2)-disconjugate selfadjoint fourth

order equation must all have the same oscillatory character. That the condition

of selfadjointness is necessary can be seen by studying the following example:

EXAMPLE. The (2,2)-disconjugate nonselfadjoint Euler differential equation

iv 1 1 (1.5)
y +-y +-y 0

x x

has both oscillatory and nonosc+/-llatory solut-ons, s+/-nce the character+/-st+/-c equat+/-on

for (1.5), r
4

6r
3 + 12r

2
7r + i 0 has exactly two real roots.

We also refer to some recent related work of Kreith [5].

2. PRELIMINARY RESULTS.

Consider the following functional defined on the solution space of (i.i):

F[y(x)] y(x) (py")’ (x) y’ (x) (py") (x).
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Computing the derivative of F[y(x)] and making appropriate substitutions we find

that

F’[y(x)] -Q (y" (x) ,y (x)

from which it follows that F[y(x)] is nonincreasing. This fact will be of consider-

able importance for the remainder of this work. The monotone property of F[y(x)]

implies that (i.i) is (2,2)-disconjugate.

A solution y(x) of (i.i) is called a type I solution if F[y(x)] > 0 for all

x >_ O. A .type .II solution is one which fails to be type I. It is clear that (i.i)

always has type II solutions. However, it is not obvious that nontrivial type I

solutions exist. Before proceeding further, we establish the existence of such a

solution.

THEOREM 2.1. There exists a nontrivial Type I solution.

PROOF Suppose a > O. Let {x }=
n n 1

be an increasing sequence of numbers such

that a < xI
< x2... < Xn... and lira Xn "

Let Y!(X)’ Y2(X)’ Y3(X) be three linearly independent solutions of (i.i) which

vanish at x a, then let

u (x) (x) + (x) + (x)
n ClnYl C2nY2 C3nY3

be a solution of (i.i) satisfying

u (a) o
n

u (x) u’(x 0
n n n n

2 + 2 + 2
iCln C2n C3n

Note that F[u (x)] > O on [O,x for each n.
n n

The sequences {Cin} for i 1,2,3 are bounded and hence there exists an
n= 1

increasing sequence of positive integers {n.#. such that {Cinj} j 1
is con-

vergent fom i 1,2,3.

Let c.m lim C.mnj., for i 1,2,3 and let u(x) ClYl(X) + c2Y2(X) + c3Y3(X).
j--

Since c21 + c22 + c23 i, u(x)is a nontrivial solution of (i.i).

We now show that u(x) is a type I solution. Suppose the contrary, then there

is a number c > a such that F[u(c)] < O. Since u o(C) / u(c), we can infer that
nj
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F[Unj(C)] / Flu(c)] < O. Choose a positive integer N such that for all j > N,

F[Unj (c) < 0 and Xnj > c. Since F[Unj (x) is decreasing and F[Unj (Xnj)] O, for

j > N, we get 0 F[Unj(Xnj)] < F[Unj(C)] < O, a contradiction. Thus u(x) is a

type I solution of (i.i).

If x b is a number such that u(b) O, then using the same procedure we can

construct a type I solution which is independent of u(x). Consequently, (I.I) has

at least two linearly independent type I solutions.

Before we proceed with some results on type II solutions we state the so-called

"fundamental" lemma used so extensively in [5].

LEMMA. Suppose u, v C’[a,b] with u(xI) u(x2) O, a < xI
< x

I
< b, and

u(x) # O for xI
< x < x2. If v(x) # 0 on [Xl,X2] then some linear combination of

u(x) and v(x) has a double zero in (Xl,X2).
THEOREM 2.2. All type II solutions have the same oscillatory character.

PROOF. Let Ya(X) be the solution of (i.I) satisfying

Ya (a) Ya(a) Ya(a) O, (py)’(a) i

where a > O. We assert that if Ya(X) is oscillatory and b > a, then Yb(X) is

oscillatory. Suppose the contrary, i.e. assume Ya(X) is oscillatory and that

there is a c > b such that Yb(X) > 0 for x >_ c. We can assume without loss of

generality that Ya(b) >_ O.

If < 8 are consecutive zeros of Ya in (c,) for which Ya(X) > 0 for e < x < 8,

then there is a constant k > 0 such that the solution z(x) Ya(X) kyb(x) has a

double zero in (,8). Thus F[z(b)] > O, since b < . But F[z(b)] F[Ya(b)
kya(b) < O. This contradiction proves our assertion.

Now let u(x) be an arbitrary type II solution of (I.i). If u(x) is nonoscilla-

tory and positive on some interval [e,) where e is chosen large enough so that

F[u(e)] < O. The y (x) is oscillatory, assuming Ya(X) oscillatory. Consequently,
e

there is a linear combination W(x) y (x) ku(x), k > O, have a double zero at
e

eI >_ e. Thus F[W(el)] O. But F[W(e)] -k U(e) + k2F[U(e)] < O, a contradiction

since eI >_ e and F[W(x)] is decreasing.

Thus, an arbitrary type II solution is oscillatory whenever Ya(X) is oscillatory
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for some a > O. In a similar manner it can be shown that the existence of an

oscillatory type II solution implies that Ya(X) is oscillatory and our theorem

follows.

3. PROPERTIES OF NONOSCILLATORY SOLUTIONS.

We now focus on the asymptotic behavior of nonoscillatory solutions. We begin

by relating the zero behavior of a solution y(x) with the zero behavior of y"(x).

This theorem is essential to the study of the nonoscillatory solutions of (i.i).

Note the role played by the functional F[y(x)].

THEOREM 3.1. Let y(x) be a nontrivial solution of (i.i). There exists a

point c > 0 such that either F[y(x)] # 0 on [c,) or Fly(x)] --- O on [c,). If

Fly(x)] # 0 on [c,), then the zeros of y(x) and y"(x) separate on [c,=). If

F[y(x)] --- O on [c,=), then the zeros of y(x) and y"(x) coincide.

PROOF. Suppose F[y(x)] # 0 for all x > c and let Xo < xI be consecutive zeros

of y(x) on [c,=). Assume y"(x) > 0 on [Xo,Xl]. Then

(py_.,,), V[yl
(py,,) 2

(3.1)

Integrating (3.1) from Xo to xI yields

y(xI) Y(Xo
0 (py,,) (Xl) (py,,)(x)

O

xI
F[y(t)]dt 0

x
(PY")2(t)

O

which is a contradiction. Thus between consecutive zeros of y(x), y"(x) has a

zero. Exchanging the roles of y(x) and y"(x) we can prove that the zeros of

y(x) separate the zeros of y"(x) for sufficiently large x.

Now consider the case F[y(x)] 0 on [c,). Then

2 y2F’[y(x)] -p(x)y" (x)- q(x)y"(x)y(x)- r(x) (x) --O

on (c,). From which we see that if d > c and y(d) O, then y"(d) O.

Similarly if y"(d) O, then y(d) O. So the zeros of y(x) and y"(x) coincide

on (c,). This completes the proof of our theorem.

For nonoscillatory solutions of (i.I) it follows immediately that there is a

number c such that
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y(x)y’(x)y"(x) # 0 for all x >_ c.

More explicit information concerning the nonoscillatory solutions of (I.i) can

now be given.

THEOREM 3.2. Let y(x) be a nonoscillatory solution of (i.i). Then there

exists a number a > O such that for all x > a, either

(i) sgn y(x) sgny’ (x) sgn y"(x) sgn (py") (x)

or

(ii) sgny(x) sgny’(x) # sgn y"(x).

Moreover if y(x) satisfies (i) then limly(x) limly’(x)x->=o x-+oo

In case y(x) satisfies (ii) then lim y’(x) exists and lim infly"(x) O
X->Oo X->Oo

THEOREM 3.3. A nonoscillatory solution y(x) of (i.i) is type I if and only if

sgny(x) sgn y’(x) # sgn y"(x),

for all x sufficiently large.

PROOF. Let y(x) be a nonoscillatory solution satisfying

y(x) > O, y’(x) > O, y"(x) < O.

Consider the functional F[y(x)] y(x)(py")’(x) y’(x)(py")(x).

If there is a number x > c such that F[y(c)] < O, then F[y(x)] < 0 on [c,),

but

y(x) > O, y’(x) > 0 and y"(x) < O

for x > c, together with F[y(x)] < 0 for x > c, implies (py")’(x) < 0 for x > c.

This inequality, however, will force y(x) to become negative eventually, contradicting

y(x) > 0 on [c,). Thus F[y(x)] > 0 for all x. To prove the converse, let y(x) be

a nonoscillatory type I solution, then from a preceding theorem there is a number

b such that either

(i) sgn y(x) sgny’(x) sgny"(x) sgn (py")’(x), or

(ii) sgny(x) sgn y’(x) # sgny"(x) for all x > b.

We will show that being type I excludes the possibility of (i.i). Suppose

the contrary.

Let y(x) be a solution of (I.i) satisfying (i) and suppose F[y(x)] > O on [c,).
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Then Fly(x)] > O and y(x) > 0 implies

(py")’ (x) > y’ (x) (PY") (x)
y(x) (3.2)

The positivity of F[y(x)] also implies
(py")(x)

y(x)
is positive and increasing, so

(3.2) implies (py")’(x) + as x . But this is impossible since (py")"(x) < 0

on [c,). Consequently (i) is inconsistent with being type I.

COROLLARY. A nonoscillatory solution y(x) is type II if and only if there

exists c > 0 such that

sgny(x) sgny’ (x) sgn y"(x) sgn (py")’ (x)

for all x > c.

e now compare y(x) and (py")(x) for nonoscillatory solutions The proofs

are easy and will be omitted.

THEOREM 3 4 Let y(x) be a nonoscillatory solution of (I.i). Then xl
(PY")(x.)

y(x)

exists. Moreover, in case y(x) is type I, then lim (PY") (x) O
x- y(x)

The next result yields a necessary and sufficient condition for (i.i) to be

nonoscillatory.

THEOR 3.5. These are equivalent:

(A) Equation (i.i) is nonoscillatory.

(B) Equation (i.I) has both a type I nonoscillatory solution and a

type II nonoscillatory solution.

PROOF. We prove only (B) implies (A) since (A) implies (B) is obvious

Suppose (i.i) has an oscillatory solution u(x). Then it follows from Theorem 2.2

the u(x) is type I. Let z(x) be a type I nonoscillatory solution. Then there is

a combination y(x) kz(x) + u(x), k # O, which has a double zero. Note that y(x)

is nonoscillatory, since all type II solutions are nonoscillatory. Solving for

u(x) we find that u(x) y(x) kz(x). However limly’(x) l+ and z’(x) is bounded
X_>o

on some ray [c,), so u(x) is not oscillatory. This contradiction shows that

(I.i) is nonoscillatory.

EXAMPLE. The equation

iv 5 y, 35
y + + y 0 (3 3)

48x
2

64x
4
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314has both a type I nonoscillatory solution y(x) x and a type II solution non-

oscillatory solution y(x) x
5/2

hence by Theorem 3 5 Equation (3 3) is non-

oscillatory.

We now examine some relationship between (i.i) and its adJoint (1.2) in the

form
(pz" + qz)" + rz O.

As a notational convenience we define the differential operators

D2z pz" + qz, D3z (D2z)’ D
4 D3zz--( )’.

For a solution of (1.2), assuming Q(z",z) pz
2,,2 + qz"z + rz > o we see that

the functional

G[z(x)] z(x) D3z(x) z’(x)D2z(x)
is nonlncreasing. This follows immediately from the fact that G’[z] -Q(z",z) < o.

Proceeding as before, we shall say that a solution z(x) of (1.2) is a type I*

or if and only if G[z(x)] > 0 for all x > O. All other solutions of (1.2) will

be called type II* solutions.

THEOREM 3.6. All type II* solutions have the same oscillatory character. The

proof of this theorem is analogous to the proof of Theorem 2.2 and will be omitted.

The following lemma will be used to establish a connection between the oscilla-

tion of (i.i) and (1.2).

LEMMA. Suppose y is a solution of [i.I) and z is a solution of (1.2), then

z(p(x)y")’ z’(p(x)y") + y’DzZ YD3z kI

kI, constant.

THEOREM 3.7. If type II* solutions oscillate, then type I solutions oscillate.

PROOF. Suppose type II* solutions are oscillatory while y(x) is a type I non-

oscillatory solution of (i.i). Assume y(x) > 0 on [a,) for some a >_ O. Let

z (x) denote the solution of (1.2) satisfying
a

z (a) z’(a) D2za(a) O, D3za(a) i.
a a

Then z (x) is oscillatory. Let e and 8 be consecutive zeros of z (x) and suppose
a a

z (x) > O on (e,8). Consider the following
a

(D2Z.a), YD3Za Y’D2za (3.4)
Y 2

Y



FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS 771

From the previous lemma

YD3Za Y’D2Za + Z’a(py") Za(py")’ -= k.

Thus we see that YD3z Y’D2z z (py")’ z’ (py") + k so making a substitution
a a a a

in (3.4) we obtain

D z z (py")’ z’(py") + k
2a,= a a
y 2 (3.4a)

Y

Integrating (3.4a) by parts from x a to x B we get

(pz) (8) (pz) () Ix 2za(X) F[y(x)] + ky(x)

y(8) y() 3 dx, (3.5)

8
y (x)

where k y(a) > O.

Since z (x) > 0 on (e 8), G[z ()] =-p(e)(z’ z")(e) < 0 and G[z (8)]
a a a a a

-p(8)z’(8)z"(8) < O, we conclude that z’() > O, z"(e) > O, z’(8) < 0 and
a a a a a

z"(8) < O. This implies that the left side of (3.5) is negative, but note that
a

the right side of (3.5) is positive. This contradiction proves that y(x) must

oscillate.

COROLLARY. All type I solutions have the same oscillatory character. The

companion Theorem of Theorem 3.7 is also true. We state it without proof.

THEOREM 3.8. If type I* solutions oscillate, then type II solutions oscillate.

Immediately it follows that if all solutions of (i.i) have the same oscillatory

character then all solutions of (1.2) have the same oscillatory character.

OSCILLATION CRITERIA. In this section we establish some sufficient conditions

for all solutions of (I.i) to be oscillatory. One such condition makes use of the

nonoscillation numbers rij studied by Peterson [6]. We describe these briefly.

Let i and j be nonnegative integers such that i + j 4. A solution y(x) is said

to have an (i ,j )-distribution of zeros on an interval I if there are two numbers

x
i

and xj in I such that x i
< xj and y(x) has a zero of multiplicity at least i

at x
i

and a zero of multiplicity at least j at x. and y(x) # 0 in (xi,xj). If on

It,=) there are solutions with (i,j)-dlstributions of zero then rij(t) for equation

(I.i) is the infimum of the numbers b > t such that there exists a solution y(x)
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of 41.1) having an (i,j) distribution of zeros on [t,b). If no such distribution

exists on I then we write r.. on I.

THEOREM 3.9. If r31(t) < and rl3(t) < for all t on some ray [=,), < O,

then all solutions of (i.i) are oscillatory.

PROOF. We only show type I solutions oscillate, since the proof is similar to

show type II solutions oscillate.

Suppose y(x) > 0 on [b,) for some b > e and F[y(x)] > O on [b,). Let u(x)

be a nontrivial solution of (i.i) having a (l,3)-distribution at x c and x d,

b < c < d; we assume (pu")’(d) i. Since y(x) > O on [b,) and u(x) < O on (c,d),

there is a positive constant k such that v(x) y(x) + k u(x) has a double zero in

(c,d). Since F[v(x)] is decreasing and F[v(x)] vanishes in (c,d) we conclude that

F[v(d)] < O. But F[v(d)] F[y(d)] + k y(d) > O. This contradiction proves that

y(x) must have a zero between x c and x d. Now, since rl3(t) exists for every

t > 0 it is easy to show that type I solutions have infinitely many zeros on [,).

io q(x)
THEOREM 3.10. If r(x)dx and < r(x) and p(x) bounded, then all

o
p(x)

solutions of (1.2), hence 41.1), are oscillatory.

PROOF. Suppose z(x) is a nonoscillatory solution of 41.2) satisfying z(x) > O

on [a,). Then D4z(x) < 0 on [a,) and D3z(x) is decreasing. If D3z(b) < O for

some b > a then D3z(x) < 0 for x > b and D2z(x) /-. Choose c >_b such that

i
p(x)z"(x) < -i for x > c. Then z"(x) < on [c,). Integrating this

p(x)

inequality we obtain z’ (x) < z’ (c) dt which implies z’ (x) + as x / .
p()

But this contradicts z(x) > 0 on [c,). So D3z(x) > 0 for all x > a. Note how-

ever that D3z(x) > 0 and decreasing implies

r(x)z(x)dx < .
a

Now let us examine D2z(x). We know D2z(x) is increasing. If D2z(x) < O on [b,),

b > a, then z(x) is increasing on [c,) for some c > b.

So z(x) > z(c) for x > c and

i
x IxD3z(x D3z(c r(t)z(t)dt < -z(c) r(t)dt
c c
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Ix D3As x + , r(t) dt / , but this forces z(x) to be negative at some point
c

greater than a, clearly a contradiction. Therefore, D2z(x < 0 on some ray [b,)

is impossible. Now consider the case where D2z(x > 0 on [b,). If M is an

upper bound for p(x) then using our hypothesis we obtain

M[z" + r(x)z] > M(z"(x + q(x) q(x)
p(x) z(x)) > p(x)[z (x) + z(x)]

D2z(x) > D2z(b) for x > b. (3.6)

Integrating (3.6) we see that

0 < D2z(b)(x-b) < M r(t)z(t)dt + Mz’(x) Mz’(b)
b

which implies z’ (x) / as x - . Thus z(x) is increasing on some ray [d,),

d > c.

But this leads us to a contradiction, since r(x)dx . Consequently, all
a

solutions of (1.2) are oscillatory.

THEOREM 3.11. If x r(x) dx and xq(x) < M, then all solutions (i.I)
o

are oscillatory.

PROOF. Suppose (i.i) has a nonoscillatory solution y(x). Assume without loss

of generality that y(x) > O, for all x > b. If y(x) is a type I solution then

there is a number c such that for all x > c

y(x) > O, y’(x) > 0, y"(x) < O.

Multiplying (i.i) by x and integrating we get

i
x

i
x

x(py")’(x) c(py")’(c) + t q(t)y"(t)dt + t r(t)y(t)dt O.

Let M be an upper bound for xq(x). Then we have

x(py")’ (x) c(pu")’ (c) + M[y’ (x) 5?’ (c)] + t r(t)y(t)dt <_ O.
c

Since y(x) is positive and increasing the integral tends to infinity. Noreover,

since y"(x) < O, y’ (x) has a finite limit. Thus (py")(x) is negative for large x

B
and (py")(x) is decreasing. Let B < 0 be a number such that y"(x) < for

p(x)

x > c. Integrating this inequality from c to x we conclude that lim y’ (x) -,

which is absurd since y’ (x) is bounded.

If y(x) is a positive type II solution, then since y’ (x) and y"(x) are
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positive there exists a positive number in such that y(x) > mx for large x.

Substituting in (I.i) and integrating we get

(py")’ (x) (py")’ (c) <_. q(t)y"(t)dt N t r(t)dt.

We conclude from this inequality that (py")’(x) /- as x + , a contradiction.

Thus type II solutions must be oscillatory.
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