ON FREE RING EXTENSIONS OF DEGREE N

GEORGE SZETO

Mathematics Department Bradley University Peoria, Illinois 61625 U.S.A.

(Received June 25, 1980)

<u>ABSTRACT</u>. Nagahara and Kishimoto [1] studied free ring extensions B(x) of degree n for some integer n over a ring B with 1, where $x^n = b$, $cx = x\rho(c)$ for all c and some b in B (ρ = automorphism of B), and {1, x, . . ., x^{n-1} } is a basis. Parimala and Sridharan [2], and the author investigated a class of free ring extensions called generalized quaternion algebras in which b = -1 and ρ is of order 2. The purpose of the present paper is to generalize a characterization of a generalized quaternion algebra to a free ring extension of degree n in terms of the Azumaya algebra. Also, it is shown that a one-to-one correspondence between the set of invariant ideals of B under ρ and the set of ideals of B(x) leads to a relation of the Galois extension B over an invariant subring under ρ to the center of B. <u>KEY WOKDS AND PHRASES</u>. Free ring extensions, separable algebras, Azumaya algebras, Galois extensions.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: 16A16, 13A20, 13B05.

1. INTRODUCTION.

Kishimoto [3], and Nagahara and Kishimoto [1] studied free ring extensions of

degree 2 and n for an integer n > 2: (1) B(x) is a free ring extension over a ring B with 1 with a basis $\{1, x\}$ such that $x^2 = xa + b$ for some a and b in B, and $cx = x\rho(c)$ for each c in B, where ρ is a ring automorphism of B of order 2. (2) B(x), a free ring extension of degree n > 2 is similarly defined with a basis $\{1, x, \ldots, x^{n-1}\}$, and $x^n = b$ for some b in B and $cx = x\rho(c)$ for each c in B, where ρ is of order n. Some special free ring extensions called generalized quaternion algebras were investigated by Parimala and Sridharan [2] and the author Szeto ([4] - [5]). One of their results is a characterization of the Galois extension of B over a subring ([2], Proposition 1.1): Let B(x) be a generalized quaternion algebra ($x^2 = -1$) over a cummutative ring B with 2 a unit in B. Then B is Galois over A (={a in $B/\rho(a)$ = a for an automorphism ρ of order 2}) if and only if $B\Theta_{A}B(x)$ is a matrix algebra of order 2. The above characterization was generalized to a free ring extension of degree n, B(x) with $x^n = -1$ ([4], Theorems 3.4 and 3.5). The purpose of the present paper is to continue the above generalization to a free ring extension. Also, we shall show that there is a one-to-one correspondence between the set of invariant ideals of B under ρ and the set of ideals of B(x). This correspondence will lead to a relation of the Galois extension B over the invariant subring A under ρ to the center Z of B over A.

2. PRELIMINARIES.

Throughout, we assume that B is a ring (not necessarily cummutative) with 1, ρ an automorphism of B of order n for some positive integer n, A = {a in B/ ρ (a) = a}, and B(x) a free ring extension over B with a basis {1, x, . . ., x^{n-1} } such that $x^n = b$ and $ax = x\rho(a)$ for some b and all a in B (hence $\rho(b) = b$ ([1], p. 20)). Let T be a ring containing a subring R with 1. Then T is called a <u>separable</u> <u>extension</u> over R if there exist elements { u_1 , v_1 / i = 1, . . ., m for some integer m} such that a ($\sum u_1 ev_1$) = ($\sum u_1 ev_1$) a for all a in T where e is over R and $\sum u_1 v_1 = 1$ ([6], [7]). Such an element $\sum u_1 ev_1$ is called a <u>separable idempotent</u> for T. If R is in the center of T, the separable extension T is called a <u>separable R-algebra</u>. In particular, if R is the center of T, the separable R-algebra T is called an Azumaya R-algebra ([6], [7]). A commutative ring extension S of R is called a <u>splitting ring</u> for the Azumaya R-algebra T if $S \mathfrak{B}_R T \stackrel{\sim}{=} \operatorname{Hom}_S(P,P)$ for a progenerator S-module P ([6], [7]). The ring extension T over R is called a <u>Galois extension</u> with a finite automorphism group G (Galois group) if (1) R = {a in T / $\alpha(a) = a$ for all α in G}, and (2) there exist elements { u_i , v_i in T / i = 1,. . ., m for some integer m} such that (1) $\sum u_i v_i = 1$, and (2) $\sum u_i \alpha(v_i) = 0$ for each $\alpha \neq$ the identity of G ([7], [8]).

3. A GENERAL PARIMALA-SRIDHARAN THEOREM.

In this section, we shall generalize the Parimala-Sridharan [2] theorem to a free ring extension B(x) of degree n for an integer n such that $x^n = b$ and $ax = x\rho(a)$ for some b and all a in B where ρ is an automorphism of B of order n. We note that if B(x) is separable over B then b is a unit ([1], Proposition 2.4). The converse holds if n is also a unit:

LEMMA 3.1. If n and b are units, then B(x) is a separable extension over B. PROOF. Since b is in A ([1], p. 20) and since ρ^n = the identity, it is straightforward to verify that the element $u = b^{-1} n^{-1} (\sum_{i=0}^{n-1} x^i \Re x^{n-i})$ satisfies the equations: au = ua for all a in B(x), and $b^{-1} n^{-1} (\sum_{i=0}^{n-1} x^i x^{n-i}) = 1$, where \Re is over B.

We remark here that there are separable extensions with n (= 2) not a unit ([4], Theorem 4.2). With the same proof as given for Proposition 1.2 in [7] we have a characterization for Galois extensions of non-commutative rings:

LEMMA 3.2. Let B be a ring extension of A with a finite automorphism group G such that A = B^G (={a in B / $\alpha(a)$ = a for each α in G}). Then B is Galois over A if and only if the left ideal generated by {a- $\alpha(a)$ / for a in B} = B for any $\alpha \neq$ the identity of G.

THEOREM 3.3. Let n and b be units in B. If B is Galois over A which is contained in the center Z of B with a Galois group $\{1, \rho, \ldots, \rho^{n-1}\}$ of order n, then the free ring extension B(x) of degree n is an Azumaya A-algebra, where $x^n = b$ and $cx = x\rho(c)$ for each c in B.

PROOF. By Lemma 3.1, B(x) is separable over B. Since B is Galois over A, B is separable over A. Hence B(x) is separable over A ([4], the proof of Theorem 3.4). So, it suffices to show that the center of B(x) is A. Let $u = \sum_{i=0}^{n-1} a_i x^i$ be in the center. Then xu = ux. Noting that $\{1, x, \dots, x^{n-1}\}$ is a basis for B(x) over B, we have that a_i are in A. Also, au = ua for all a in B, so $a_i(a-\rho^i(a)) = 0$ for each $i \neq 0$. Hence the central elements a_i are in the left annihilators of the left ideal generated by $\{a-\rho^i(a) / a \text{ in } B\}$ for $i \neq 0$. By hypothesis, B is Galois over A, so $a_i = 0$ for each $i \neq 0$ by Lemma 3.2. Thus $u = a_0$ in A. Clearly, A is in the center of B(x).

By the Parimala-Sridharan theorem ([3], Proposition 1.1), let B(x) be a generalized quaternion algebra ($x^2 = -1$) over a commutative ring B. Then, B is Galois over A (= {a in B / $\rho(a)$ = a for an automorphism ρ of order 2}) if and only if BQ_AB(x) is a matrix algebra of order 2 over B. Hence, Theorem 3.3 generalizes the necessity of the Parimala-Sridharan theorem. For the sufficiency, we first give a one-to-one correspondence between the sets of ideals of B, of B(x), of A, and the center Z of B. An ideal I of B is called a <u>G-ideal</u> if $\rho(I) = I$. Since $\rho(Z) = Z$, a G-ideal J of Z is similarly defined, where $G = \{1, \rho, \dots, \rho^{n-1}\}$.

THEOREM 3.4. Let B(x) be an Azumaya A-algebra. Then there exists a one-toone correspondence between (1) the set of G-ideals of B, (2) the set of ideals of B(x), and (3) the set of ideals of A.

PROOF. At first, we want to give a structure of a G-ideal I of B. Since $\rho(I) = I$, $xIB(x) \subset \rho^{-1}(I)B(x) = IB(x)$. Hence IB(x) is an ideal of B(x). By hypothesis, B(x) is an Azumaya A-algebra, so $IB(x) = I_OB(x)$ where $I_O = IB(x) \cap A$ ([7], Corollary 3.7, p. 54). Noting that $\{1, x, \ldots, x^{n-1}\}$ is a basis for B(x) over B, we have $I = I_O B$ and $I_O = I \cap A$. Next, it is easy to see that $J_O B$ is a G-ideal of B for any ideal J_O of A. Thus the set of G-ideals of B are in one-to-one correspondence with the set of ideals of A from the above representation $I_O B$ of a Gideal I of B. By hypothesis again, B(x) is an Azumaya A-algebra, so the set of ideals of B(x) and the set of ideals of A are in one-to-one correspondence under $I_O B(x) \leftrightarrow I_O$ for an ideal I_O of A. Thus the theorem is proved.

COROLLARY 3.5. Let n and b be units in B. Suppose B is Galois over A which is contained in Z. Then there exists a one-to-one correspondence between the set of G-ideals of Z and the set of ideals of B(x). PROOF. Since B is Galois over A, B is a separable A-algebra. Hence B is Azumaya over its center Z ([7], Theorem 3.8, p. 55). Thus the set of G-ideals of B and the set of G-ideals of Z are in one-to-one correspondence; and so Theorem 3.4 implies the corollary.

Now we show a generalization of the sufficiency of the Parimala-Sridharan theorem. The set {a in B / $\rho(a) = a$ } is denoted by B^{ρ}. Let G' be an automorphism group, {1, \ldots, ρ^{m-1} } obtained from G (= {1, \ldots, ρ^{n-1} }) by taking m as the minimal integer such that ρ^{m} = the identity on Z. We denote the ideal generated by $\{a-\rho^{i}(a) / a \text{ in } Z\}$ by I_{i} for $i = 1, \ldots, m-1$. It is easy to see that each I_{i} is a G-ideal such that $I_{m-1} \subset I_{m-2} \subset \ldots \subset I_{1}$. We shall show that the chain of I_{i} 's characterizes the Galois extension of Z over A. That is:

THEOREM 3.6. If B(x) is an Azumaya A-algebra such that $I_1 = I_2 = ... = I_{m-1}$, then Z is Galois over A with a Galois group G'.

PROOF. In case Z = A, the theorem is trivial. Let $Z \neq A$. Then $m \neq 0$. Clearly, $A = B^{G} = \mathbf{y}^{0} = Z^{0} = \mathbf{z}^{G'}$. Now we assume Z is not Galois over A. Then the ideal I_{1} of Z is not Z ([7], Proposition 1.2, p. 80) since $I_{1} = I_{2} = \ldots = I_{m-1}$ by hypothesis. Since I_{1} is a G-ideal, $I_{1} = IZ$ for some ideal I of A by Theorem 3.4. Hence $B(\mathbf{x})/I_{1}B(\mathbf{x}) \neq A/I \oplus_{A} B(\mathbf{x})$ is an Azumaya A/I-algegra ([7], Proposition 1.11, p. 46). But $\overline{a} = \rho(\mathbf{x})$ in $B(\mathbf{x})/I_{1}B(\mathbf{x})$ for each a in Z, so $\overline{a}\overline{\mathbf{x}} = \overline{\mathbf{x}_{0}(\mathbf{x})} = \overline{\mathbf{x}}\overline{\mathbf{a}}$. This implies that \overline{Z} is contained in the center A/I of the Azumaya A/I-algebra A/I \oplus_{A} B(\mathbf{x}). This is impossible since Z is not contained in A. Thus Z is Galois over A.

COROLLARY 3.7. By keeping the notations of Theorem 3.6, if B is Galois over A with a Galois group G (= $\{1, \rho, \ldots, \rho^{n-1}\}$) such that $I_1 = I_2 = \ldots = I_{m-1}$, then Z is Galois over A with a Galois group G', where b and n are units in B.

PROOF. Theorem 3.3 implies that B(x) is an Azumaya A-algebra, so the corollary is a consequence of Theorem 3.6.

As given in Theorem 3.6, let B(x) be an Azumaya A-algebra. If B is commutative, B = Z. Now assume B is not Galois over A. Then there is an I_i for some i = 1, ..., m-1such that $I_i \neq Z$. One can show as given in Theorem 3.6 that $A/I_i {\bf e}_A B(x)$ is an Azumaya algebra such that x^i is in the center A/I_i . Thus we have a contradiction. This proves that B is Galois over A. So, Theorem 3.6 generalizes Theorems 3.4 and and 3.5 in [4].

4. SPLITTING RINGS.

In this section, we shall show that if B(x) is an Azumaya A-algebra in which b and n are units, then A(x) is a splitting ring for B(x) such that A(x) is a chain of Galois extensions of degree 2 (that is, $A(x) \supset A(x^2) \supset \ldots \supset A(x^n) = A$, such that $A(x^1)$ is Galois over $A(x^{21})$).

THEOREM 4.1. Let A be a commutative ring with 1, $x^n = b$ in A, and ax = xa for each a in A. If b and n are units in A with n a power of 2 (= 2^m for some m), then A(x) is a chain of Galois extensions of degree 2.

PROOF. We define a mapping α : $A(x) \rightarrow A(x)$ by $\alpha(x) = -x$ and $\alpha(\sum_{a_1} x^1) = \sum_{a_1} (\alpha(x))^1$ for $i = 0, 1, \ldots, n-1$. Then it is straightforward to check that α is an automorphism of A(x) of order 2 such that $(A(x))^{\alpha} = A(x^2)$. Since $n (= 2^m = 2 \cdot 2^{m-1})$ and $b (= x^n = (x^2)^{2^{m-1}})$ are units in A, 2 and x^2 are units in $A(x^2)$. Now we claim that A(x) is Galois over $A(x^2)$ with a Galois group $\{1, \alpha\}$. In fact, let $a_1 = (2x^2)^{-1}x$, $a_2 = 2^{-1}$, $b_1 = x$ and $b_2 = 1$. Then we have $a_1b_1+a_2b_2 = 1$ and $a_1^{\alpha}(b_1)+a_2^{\alpha}(b_2) = 0$. Thus A(x) is Galois over $A(x^2)$ of degree 2. Similarly, we can show that $A(x^2)$ is Galois over $A(x^4)$ with a Galois group $\{1, \beta\}$ with $\beta(x^2) = -x^2$ of order 2. Therefore, an induction argument concludes the existence of a chain of Galois extensions of degree 2.

For the class of free ring extensions B(x) of degree n as given in [1], Section 2 such that c and $(1-c^{1})$ are units in A where $c^{n} = 1$ and i = 1, 2, ..., n-1, we have:

THEOREM 4.2. Let A be a commutative ring with 1, $x^n = b$ which is a unit in A, and ax = xa for each a in A. If there is an c in A such that n and $(1-c^{1})$ are units in A for i = 1,...,n-1 with $c^n = 1$, then A(x) is Galois over A.

PROOF. We define a mapping α : $A(x) \rightarrow A(x)$ by $\alpha(x) = cx$ and $\alpha(\sum_{i=1}^{n} a_{i}) = \sum_{i=1}^{n} (cx)^{i}$. Then one can check that $(A(x))^{\alpha} = A$ and that α is an automorphism of A(x) of order n (for 1-c¹ are units in A for i = 1,2,...,n-1). Moreover, since (1-c) is a unit in A, $(x-\alpha(x)) = x-cx = (1-c)x$ is also a unit (for x is also a unit). Therefore, A(x) is Galois over A with a Galois group $\{1, \dots, \alpha^{n-1}\}$ ([7], Proposition 1.2, p. 80). As given in Theorem 3.3, if B is Galois over A, B(x) is an Azumaya A-algebra. We are going to show the existence of a splitting ring for the Azumaya A-algebra B(x).

THEOREM 4.3. Let B(x) be an Azumaya A-algebra with b and n as units in A. Then A(x) is a splitting ring for B(x). Moreover, if n is a power of 2, the splitting ring A(x) is a chain of Galois extensions of degree 2, and if c and $(1-c^{1})$ are units in A where $c^{n} = 1$, then A(x) is Galois over A.

PROOF. Since b and n are units in A, the element $u = (nb)^{-1} (\sum_{i=0}^{n-1} x^i \mathbf{0} x^{n-i})$ satisfies the equations: ua = au for each a in A(x) and $(nb)^{-1} (\sum_{i=0}^{n-1} x^{i} \mathbf{0} x^{n-i}) = 1$. Hence A(x) is a separable A-algebra. Moreover, one can show directly that A(x) is a maximal subcommutative ring of B(x) by showing that the commutant of A(x) in B(x) is A(x). Thus A(x) is a splitting ring for B(x) ([7],Theorem 5.5, p. 64). The other results of the theorem are consequences of Theorems 4.1 and 4.2.

Theorem 4.1 is a generalization of Theorem 4.2 in [4] for quadratic free ring extensions, while Theorem 4.3 proves the existence of a splitting ring for B(x), other than B when B is commutative ([2], Proposition 1.1 and [5], Theorem 3.2).

REFERENCES

- NAGAHARA, T. and KISHIMOTO, K. On Free Cyclic Extensions of Rings, <u>Math.</u> J. Okayama Univ. (1978), 1-25.
- PARIMALA, S. and SRIDHARAN, R. Projective Modules over Quaternion Algebras, J. Pure Appl. Algebra 9 (1977), 181-193.
- KISHIMOTO, K. A Classification of Free Extensions of Rings, <u>Math. J. Okayama</u> <u>Univ.</u> <u>181</u> (1976), 139-148.
- SZETO, G. On Generalized Quaternion Algebras, <u>Internat. J. Math. Math. Sci.</u> <u>2</u> (1980), 237-245.
- SZETO, G. A Characterization of a Cyclic Galois Extension of Commutative Rings, J. Pure Appl. Algebra 16 (1980), 315-322.
- AUSLANDER, M. and GOLDMAN, O. The Brauer Group of a Commutative Ring, Trans. Amer. Math. Soc. <u>97</u> (1960), 367-409.
- DeMEYER, F. and INGRAHAM, E. Separable Algebras over Commutative Rings, Springer-Verlag- Berlin-Heidelberg-New York, 1971.
- CHASE, S., HARRISON, D. and ROSENBERG, A. Galois Theory and Galois Cohomology of Commutative Rings, <u>Mem. Amer. Math. Soc</u>. <u>52</u> (1965).
- MIYASHITA, Y. Finite Outer Galois Theory of Non-commutative Rings, <u>J. Fac.</u> Sci. Hokkaido Univ. Ser. I, 19 (1966), 114-134.