ON UNIFORM CONVERGENCE FOR $(\ddot{\mu}, v)$ - TYPE RATIONAL APPROXIMANTS IN c^n - II

CLEMENT H. LUTTERODT

6935 Spinning Seed Road Columbia, Maryland 21045 U.S.A.

(Received June 3, 1980)

<u>ABSTRACT</u>. This paper shows that if f(z) is analytic in some neighborhood of the origin, but meromorphic in \mathbb{C}^n otherwise, with a denumerable non-accumulating pole sections in \mathbb{C}^n , and if for each fixed ν , the pole set of each (μ,ν) - unisolvent rational approximant $\pi_{\mu\nu}(z)$ tends to infinity as $\mu' = \min(\mu_1) \rightarrow \infty$, then f(z) must is entire in \mathbb{C}^n . This paper also shows a monotonicity property for the "error sequence" $e_{\mu\nu} = ||f(z) - \pi_{\mu\nu}(z)||_K$ on compact subsets K of \mathbb{C}^n .

KEY WORDS AND PHRASES. Uniform convergence, entire functions, approximations and expansions.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 41.

1. INTRODUCTION.

Two earlier papers by Lutterodt [1,2] gave results on uniform convergence under restricted assumptions made about the (μ,ν) - rational approximants. In [1], the B¹-type (μ,ν) -rational approximants, were assumed to be uniformly bounded on a polydisk; whereas, in [2], the $(\mu,1)$ -rational approximants were under the assumption that the coefficients of the denominator polynomial of degree $\nu = (1,1,\ldots,1) = \underline{1}$ vanished as $\mu \neq (\infty,\ldots,\infty)$ except for $b_{0\ldots,0}^{(\mu)} \neq 0$. In fact, $b_{0\ldots,0}^{(\mu)}$ is normalized to unity.

In this paper, we attempt to provide a general result about uniform convergence of (μ, ν) -rational approximants to entire functions in C^n .

The main results of this paper are Theorems 1 and 2. Theorem 1 establishes uniform convergence for (μ, ν) unisolvent rational approximants with infinite pole sections that tend to infinity as $\mu \rightarrow (\infty, \dots, \infty)$ on compact subsets of \mathbb{C}^n ; Theorem 2 introduces an "error sequence"

$$e_{\mu\nu} = ||f(z) - \pi_{\mu\nu}(z)||_{K}$$

2. NOTATION AND DEFINITIONS.

Let z: = $(z_1, \ldots z_n)$ be an n-tuple point in \mathbb{C}^n ; let μ : = (μ_1, \ldots, μ_n) and ν : = (ν_1, \ldots, ν_n) be n-tuples of non-negative integers in \mathbb{N}^n .

Let $\mathbf{\hat{k}}_{UV}$ be the class of all rational functions of the form

$$R_{UV}(z) = P_{U}(z)/Q_{V}(z), Q_{V}(0) \neq 0$$

where $P_{\mu}(z)$ and $Q_{\nu}(z)$ are polynomials of multiple degree of at most μ and ν , respectively, with $(F_{\mu}(z), Q_{\nu}(z)) = 1$ in some neighborhood of the origin.

DEFINITION 1. Suppose f(z) is analytic at the origin and f(0) \neq 0. An $R_{\mu\nu}(z) \in f_{\mu\nu}$ is said to be a (μ , ν)-type rational approximant to f(z) at z = 0 if

$$\frac{\partial |\lambda|}{\partial z^{\lambda}} \left(Q_{v}(z)f(z) - P_{\mu}(z) \right) \Big|_{z=0} = 0$$
(2.1)

for $\lambda \in E^{\mu\nu} \subset \mathbf{N}^n$, a lattice interpolation set with the following properties:

(i) $0 \in E^{\mu\nu}$ (ii) $\lambda \in E^{\mu\nu} = \gamma \in E^{\mu\nu}, \gamma_i \leq \lambda_i \quad i = 1, ..., n$ (iii) $E_{\mu} := \{\lambda \in \mathbb{N}^n : 0 \leq \lambda_i \leq \mu_i, \quad i = 1, ..., n\} \subset E^{\mu\nu}$ (iv) $|E^{\mu\nu}| \leq \prod_{i=1}^n (\mu_i + 1) + \prod_{i=1}^n (\nu_i + 1) - 1$ (v) Each projected variable has the Padé index set (vi) Each $\nu_i \leq \mu_i \quad i = 1, ..., n$. Here $|E^{\mu\nu}|$ is the cardinality of $E^{\mu\nu}$ and

$$\frac{\partial^{|\lambda|}}{\partial z^{\lambda}} \equiv \frac{\partial^{\lambda_{1}} + \dots + \lambda_{n}}{\partial z_{1}^{\lambda_{1}} \dots z_{n}^{\lambda_{n}}}$$

DEFINITION 2. An $R_{\mu\nu}(z) \in R_{\mu\nu}$ is said to have multiple degree $\mu^* = (\mu_1^*, \dots, \mu_n^*)$ if, in the z_j -variable, $R_{\mu\nu}(z)$ expressed as a quotient of two pseudo-polynomials in z_j , has degree given by $\mu_j^* = \max(\mu_j, \nu_j), 1 \le j \le n$.

It follows from property (vi) of $E^{\mu\nu}$, that the multiple degree of a (μ,ν) -type rational approximant is always μ .

We shall refer the reader to the definition of a unisolvent (μ, ν) -type rational approximant to f(z) in Lutterodt [3]. We shall denote this by

$$\pi_{\mu\nu}(z) = P_{\mu\nu}(z)/Q_{\mu\nu}(z).$$

We then normalize the denominator polynomial $Q_{\mu\nu}(z)$, dividing numerator and denominator by the modulus of largest coefficient of the denominator polynomial. Thus, we get

$$\pi_{\mu\nu}(z) = P^{\star}_{\mu\nu}(z)/Q^{\star}_{\mu\nu}(z)$$

where $Q_{UV}^{*}(z)$ is a normalized polynomial.

3. CONVERGENCE.

The uniform convergence for the (μ,ν) -rational approximants to f(z) entire in \mathbb{C}^n rests on the assumptions made about f(z) and the hypothesis that, for each fixed multiple denominator degree ν of $\pi_{\mu\nu}(z)$, the pole set tends to infinity as $\mu \rightarrow (\infty, \ldots, \infty)$. In Theorem 1 below, we assume that f(z) is possibly meromorphic, not with a finite pole set as in Theorem 2 of [3], but with a pole set having infinite sections such that only a finite number of such pole sections overlap with any given polydisk. Thus, Theorem 1 of this paper extends the result in [3].

THEOREM 1: Suppose f(z) is analytic at the origin and is possibly meromorphic with an infinite pole set in \mathbb{C}^n without accumulation of pole sections such that given $\rho > 1$, the polydisk

$$\Delta_{\rho}^{n} := \left\{ z \in \mathbb{C}^{n} : |z_{j}| < \rho, \quad j = 1, \dots, n, \quad \rho > 1 \right\}$$

overlaps with only a finite number of these pole sections.

Suppose $\pi_{\mu\nu}(z)$ is a unisolvent (μ,ν) -rational approximant to f(z) such that for each fixed ν , the pole set of $\pi_{\mu\nu}(z)$ tends to infinity as $\mu \neq (\infty, \dots, \infty)$. Then

(i) f(z) must be entire in C^n

(ii) $\pi_{\mu\nu}(z) \rightarrow f(z)$ uniformly on every compact subset of \mathbb{C}^n .

THEOREM 2: Suppose the conditions of Theorem 1 are satisfied. Let K be any compact subset of \mathbb{C}^n . Let

$$e_{\mu\nu} = ||f(z) - \pi_{\mu\nu}(z)||_{K} = \sup_{z \in K} |f(z) - \pi_{\mu\nu}(z)|$$
(3.1)

for each fixed v.

Then for sufficiently large ν , $e_{\mu\nu}$ is monotonic in ν and satisfies

$$e_{\mu,\nu+1} \leq e_{\mu\nu}$$
 with $\nu_j \leq \nu_j + 1$, $1 \leq j \leq n$.

LEMMA 1. Let ν be fixed and let $Q_{\mu\nu}^{\star}(z)$ be a normalized denominator polynomial of $\pi_{\mu\nu}(z)$. The zero set of $Q_{\mu\nu}^{\star}(z)$ tends to infinity as $\mu \neq (\infty, \dots, \infty) = Q_{\mu\nu}^{\star}(z)$ tends to a constant.

PROOF. Suppose the result is false; i.e., for fixed $v_{,Q}^{-1}_{\mu\nu}(0)$ tends to infinity, but $Q_{\mu\nu}^{*}(z)$ does not tend to a constant.

By Lemma 1 in [3], given ρ > 1 and a polydisk $\Delta_{\rho}^{n},$ and μ sufficiently large,

$$Q^{-1}_{\mu\nu}(0) \cap \Delta^{n}_{\rho} = \emptyset$$
 (3.2)

Suppose that $Q_{\mu\nu}^{*}(z) \neq Q_{m}^{*}(z)$ is not constant as $\mu \neq (\infty, ..., \infty)$ where $m = (m_{1}, ..., m_{n})$ $m_{i} \leq v_{i}$, $1 \leq i \leq n$ and that $Q_{m}^{*}(z)$ is a polynomial of multiple degree in less than v in a partial ordered sense. Then since $Q_{m}^{*}(z)$ is non-constant, it has a set of non zero coefficients. Thus, $Q_{m}^{-1}(0)$, the zero set of $Q_{m}^{*}(z)$ cannot be empty. Now, taking $\rho_{0} > 1$, we find that

$$Q^{-1}_{m}(0) \cap \Delta^{n}_{\rho_{0}} \neq \emptyset$$
(3.3)

a contradiction. Hence the above supposition must be false and the Lemma holds.

PROOF OF THEOREM 1. f(z) is analytic at z = 0 and is possibly meromorphic with an infinite pole set

$$G = \overset{\infty}{U} G_{\sigma_k}$$

where

$$G_{\sigma k} \subset G_{\sigma k+1}$$

and

$$G_{\sigma_k} := \{z \in \mathfrak{C}^n : q_{\sigma_k}(z) = 0\}$$
.

 $\boldsymbol{q}_{\boldsymbol{\sigma}}$ (z) is a polynomial of at most multiple degree, \boldsymbol{k}

$$\sigma_k = (\sigma_{k1}, \dots, \sigma_{kn})$$

Given any real number $\rho > 1$, and a polydisk Δ_{ρ}^{n} , then $\Xi k_{\rho} = k_{\rho}(\rho)$ such that the zero set $G_{\sigma k_{\rho}}$ overlaps the polydisk Δ_{ρ}^{n} . Now, by Theorem 1 of [3], if we choose $\nu = \sigma_{k_{\rho}}$, then we must have on Δ_{ρ}^{n} as $\mu \neq (\infty, \dots, \infty)$ $\Delta_{\rho}^{n} \cap Q^{-1}_{\mu\nu}(0) \neq \Delta_{\rho}^{n} \cap G_{\sigma_{k}}$ (3.4)

But by hypothesis, the pole set of $\pi_{\mu\nu}(z)$ tends to infinity as $\mu \neq (\infty, ..., \infty)$ for each fixed ν . Therefore, for the given $\rho > 1$ above as $\mu \neq (\infty, ..., \infty)$, we must have

$$\Delta_{\rho}^{\mathbf{n}} \cap Q^{-1}_{\mu\nu}(\mathbf{0}) = \emptyset$$
 (3.5)

Thus by (3.4) and (3.5) we must have

 $\Delta_{\rho}^{n} \cap G_{\sigma_{k_{\rho}}} = \emptyset .$

Since $k_0 = k_0(\rho)$ and ρ is arbitrary, it follows that G_{ok_0} must tend to infinity as $k_0 \rightarrow \infty$. Hence, all the poles of f(z) must tend to infinity and f(z) must therefore be entire. This completes (i).

To prove (ii), we note that the result follows immediately from Theorem 1 of [3] and the (i) part just proved above.

PROOF OF THEOREM 2. Let K be any compact subset of \mathbb{C}^n . Then we can find $\rho > 1$ and a polydisk \mathbb{C}^n such that $K \subset \Delta_\rho^n$. Then, for μ sufficiently large and $z \in K$, we find by the hypothesis of Theorem 1, that for each fixed \vee ,

$$Q_{UV}^{*}(z) \neq 0$$
 i.e. $\delta > 0$

such that

$$|Q_{\mu\nu}^{*}(z)| > \delta$$
.

Hence, under these conditions, we get

$$||\pi_{\mu,\nu+1}(z) - \pi_{\mu\nu}(z)||_{K} \leq \frac{2||P_{\mu\nu}^{*}(z)||_{K}}{\delta^{2}} ||Q_{\mu,\nu+1}^{*}(z) - Q_{\mu\nu}^{*}(z)||_{K}$$

By Lemma 1, we know that $Q_{\mu\nu}^{*}(z)$ tends to a constant as $\mu \rightarrow (\infty, \dots, \infty)$ for any fixed ν . Hence, given $\varepsilon > 0$, $\mu_0 = (\mu_{10}, \dots, \mu_{n0})$ such that for $\mu_{10} < \mu_1$, $1 \le i \le n$

$$||q_{\mu,\nu+1}^{*}(z) - q_{\mu\nu}^{*}(z)||_{K} < \varepsilon \frac{\delta^{2}}{2M_{\rho}}.$$
 (3.7)

 $M_{\rho} = ||P_{\mu\nu}^{\star}(z)||_{\Delta_{\rho}^{n}} \geq ||P_{\mu\nu}^{\star}(z)||_{K} \text{ by the maximum modulus principle, and } M_{\rho}$ is dependent on ρ but independent of μ . Hence, by combining (3.6), (3.7) and (3.8) for each fixed ν and $\mu_{10} < \mu_{1}$, $1 \le i \le n$, we obtain

$$|\pi_{\mu,\nu+1}(z) - \pi_{\mu\nu}(z)||_{K} < \varepsilon$$
 (3.8)

To get the desired inequality, we note by triangular for sup-norms on K that

$$e_{\mu,\nu+1} \leq e_{\mu\nu} + ||\pi_{\mu,\nu+1}(z) - \pi_{\mu\nu}(z)||_{K},$$
 (3.9)

where we have used the definition of e_{110} as in (3.1).

For $\mu_{i0} < \mu_i$, $1 \le i \le n$, and for each fixed ν ,

 $e_{\mu,\nu+1} < e_{\mu\nu} + \varepsilon$

Since $\varepsilon > 0$ is arbitrary, the results follows.

ACKNOWLEDGEMENT. This paper was written while I was at the Mathematics Department, . University of South Florida, Tampa, Florida.

REFERENCES

- 1. LUTTERODT, C.H. J. Phys. A. Math. Gen. 7, 1027-1037, 1974.
- 2. LUTTERODT, C.H. Complex Analysis and Applications 111, 25-34, 1AEA, 1976.
- 3. LUTTERODT, C.H. "On a Theorem of Montessus de Ballore for (μ, ν) -type Rational Approximations in C^{n} " <u>Approximation Theory III</u>, 603-609 A,P, 1980.