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ABSTRACT. This paper shows that if f(z) is analytic in some neighborhood of the

origin, but meromorphic in n otherwise, with a denumerable non-accumulatlng pole

sections in n and if for each fixed the pole set of each ( ) unlsolvent

rational approxlmant w (z) tends to infinity as ’ min(i) + oo, then f(z) must
i<_n

be entire in n. This paper also shows a monotonicity property for the "error

sequence" e lf(z) H(z) m on compact subsets m of n.
KEY WORDS AND PHRASES. uniform convergence, ee functions, approximations and
expansions.
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I. INTRODUCTION.

Two earlier papers by Lutterodt [1,2] gave results on uniform convergence

under restricted assumptions made about the (,9) rational approximants. In [i],

the Bl-type (,v)-rational approximants, were assumed to be uniformly bounded on a

polydisk; whereas, in [2], the (,l)-rational approximants were under the assumption

that the coefficients of the denominator polynomial of degree (i,I,...,i) I

vanished as +(,...,) except for bo()...O # O. In fact, bO()...O is normalized to

unity.

In this paper, we attempt to provide a general result about uniform conver-

gence of (,9)-rational approximants to entire functions in n.
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The main results of this paper are Theorems i and 2. Theorem i establishes

uniform convergence for (,) unlsolvent rational approximants with infinite

pole sections that tend to infinity as - (=o, ,oo) on compact subsets of n
Theorem 2 introduces an "error sequence"

e If(z) (z)p K

on any compact-subset of n and shows that e is monotonic in for sufficiently

large values of .
2. NOTATION AND DEFINITIONS.

Let z: (zI zn) be an n-tuple point in cn., let : (l"’’’n) and 9:

(l,...,n) be n-tuples of non-negatlve integers in .
Let be the class of all rational functions of the form

R) (z) P]j (z) 1% (z), O (0) # 0

where P(z) and %(z) are polynomials of multiple degree of at most and 9, respect-

ively, with (F(z), Qv(z)) i in some neighborhood of the origin.

DEFINITION i. Suppose f(z) is analytic at the origin and f(0) # 0. An

R (z) s is said to be a (p,)-type rational approxlmant to f(z) at z 0 if

% ((z)f(z) P(z))Iz=O 0
z

for X e E
p

c ,a lattice interpolation set with the following properties:

(i) 0 e E
p

(il) X e EPD T e EPg’ i < %1 i l,...,n

(iii) EU:{% E n: 0 %i Ui’ i 1 n} c E
up

n n
(v)

(2.1)

(v) Each projected variable has the Pad6 index set

< i i i’"" n"(vi) Each vi

Here Ep] is the cardinality of E
p9

and

+ +81I 8
1 n

zX XI X
n

1 n
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DEFINITION 2. An Rv(z ev is said to have multiple degree *,
(I "’’’n if in the z.-variable, R(z) expressed as a quotient of two pseudo-

,
polynomials in zj, has degree given by j max(j,j), I < J < n.

It follows from property (vi) of E, that the multiple degree of a (,)-type

rational approximant is always

We shall refer the reader to the definition of a unlsolvent (,9)-type rational

approxlmant to f(z) in Lutterodt [3]. We shall denote this by

w].l)(z) P].Iv(z)/QI/x)(z)"

We then normalize the denominator polynomial Q(z), dividing numerator and denomin-

ator by the modulus of largest coefficient of the denominator polynomial. Thus,

we get

WV (z) P*(z) /Qv* (z)

*where Qv(z) is a normalized polynomial.

3. CONVERGENCE.

The uniform convergence for the (,v)-rational approximants to f(z) entire in

n rests on the assumptions made about f(z) and the hypothesis that, for each fixed

multiple denominator degree 9 of (z), the pole set tends to infinity as

/ (oo,...,oo). In Theorem i below, we assume that f(z) is possibly meromorphlc,

not with a finite pole set as in Theorem 2 of [3], but with a pole set having infin-

ite sections such that only a finite number of such pole sections overlap with any

given polydisk. Thus, Theorem 1 of this paper extends the result in [3].

THEOREM I: Suppose f(z) is analytic at the origin and is possibly meromorphic

with an infinite pole set in n without accumulation of pole sections such that

given O > i, the polydisk

An (nE < 0, j i n, 0 > i}

overlaps with only a finite number of these pole sections.

Suppose wv(z) is a unisolvent (,9)-rational approximant to f(z) such that

for each fixed 9, the pole set of w (z) tends to infinity as / (oo,... ,oo). Then

(i) f(z) must be entire in n
(ii) w9(z) / f(z) uniformly on every compact subset of n.
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THEOREM 2: Suppose the conditions of Theorem i are satisfied. Let K be any

compact subset of n. Let

e lf(z) (z) llK sup If(z) v(z) (3.1)
z e K

for each fixed

Then for sufficiently large 9, e is monotonic in 9 and satisfies

< with 9j _< 9. + i, I _< j _< ne,+l e 3

* (z) be a normalized denominator polynomialLEMMA I. Let be fixed and let

* (z) tendsof (z). The zero set of (z) tends to infinity as / (oo,...,oo) Q
to a constant.

Q-ll;PROOF. Suppose the result is false; i.e., for fixed , (0) tends to infin-
,

ity, but Q(z) does not tend to a constant.

By Lemma 1 in [3] given 0 > 1 and a polydisk An
0’

and sufficiently large,

Q-I9(0) n An=0 (3.2)

,
Suppose that Q* (z) / Q re(z) is not constant as

(ml ’ran) mi < i’ 1 < i < n and that Q*m(Z) is a polynomial of multiple degree

* (z) is non-constant, itin less than in a partial ordered sense. Then since Q
m

has a set of non zero coefficients. Thus, Q-im(0), the zero set of 0".m(Z) cannot

be empty. Now, taking 0o > i, we find that

An # (3.3)Q-I
m
(0)

a contradiction. Hence the above supposition must be false and the Lemma holds.

PROOF OF THEOREM i. f(z) is analytic at z 0 and is possibly meromorphic

with an infinite pole set

G= U G
k=l Ok

where

and



UNIFORM CONVERGENCE FOR RATIONAL APPROXIMANTS 659

Gok =’ e’ qOk(Z) 0}

qo (z) is a polynomial of at most multiple degree,
k

k (kl kn
Given any real number 0 > i, and a polydisk An then k k (0) such thatp’ o o

the zero set G overlaps the polydisk An Now, by Theorem i of [3], if we choose
k

o
An (o

k
then we must have on as + ,)

o P

Anp Anp G
k

n Q i(0) + n (3 4)

o

But by hypothesis, the pole set of (z) tends to infinity as - (,...,=)

for each fixed . Therefore, for the given p > i above as / (oo,...,), we must

have

Anp n Q-I(0)
Thus by (3.4) and (3.5) we must have

AnnG =P ak
o

(3.5)

Since ko ko (p) and p is arbitrary, it follows that Gok must tend to infinity as

o
k / oo. Hence, all the poles of f(z) must tend to infinity and f(z) must thereforeo

be entire. This completes (1).

To prove (ii), we note that the result follows immediately from Theorem i of

[3] and the (i) part just proved above.

PROOF OF THEOREM 2. Let K be any compact subset of n. Then we can find

Anp > i and a polydisk n such that K c Then, for sufficiently large and
P

z e K, we find by the hypothesis of Theorem i, that for each fixed ,
* (z) # 0 i.e. > 0QU

such that

lQu(z) >

Hence, under these conditions, we get

I,+l(z) (z) ll K < o K

2
* (z) *
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By Lemma i, we know tat (z) tends to a constant as + (,...,) for any

fixed . Hence, given E > 0, 0 (i0 ,n0 such that for i0 <

lin

* (z) * (z) ll < e (3 7)1Qu,+l Q K 2M

M
0 --lIP* (z)[IAn >- liP* (z) ll

P
K

by the maximum modulus principle, and M
P

is dependent on p but independent of . Hence, by combining (3.6), (3.7) and (J.8)

for each fixed and i0 < i’ i -< i < n, we obtain

< (3 8),(z)l K

To get the desired inequality, we note by triangular for sup-norms on K that

< + lw (z) (z) ll (3.9)e ,+i e +i K

where we have used the definition of e as in (3.1).

For i0 <i’ i < i < n, and for each fixed

<ee,+i
Since e > 0 is arbitrary, the results follows.
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