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ABSTRACT. Let G be a locally compact group, H a closed subgroup and L a Banach rep-

resentation of H. Suppose U is a Banach representation of G which is induced by L.

Here, we continue our program of showing that certain operators of the integrated

form of U can be written as integral operators with continuous kernels. Specifically,

we show that: (i) the representation space of a Banach bundle; (2) the above oper-

ators become integral operators on this space with kernels which are continuous cross-

sections of an associated kernel bundle.
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i. INTRODUCTION.

Let G be a locally compact group with right Haar measure dx, H a closed subgroup

of G with right Haar measure dt, and :Cr+X, the canonical projection onto the right

coset space X G/H. Suppose L is a (strongly continuous) representation of H on the

Banach space E. Suppose also that U is a representation of G on a certain Banach

space F
U
which is induced by L in the sense of [i, sec. 3]. The integrated form of U

is the representation of LI(G) determined by the bounded operators U() on FU, where

U() | (x)U(x)dx
G
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for a continuous function on G with compact support, i.e. e C (G) It is

well-known [2] that these operators can be written as integral operators with contin-

uous kernels in the following sense: for f in a certain dense subspace of F
U

we have

U()f(x) I I (x,y)f(y)d((y)) x e G
x

where d((y)) is a quasi-invariant measure on X and I is a continuous mapping

of G G into t’he bounded operators Horn(E) on E The existence of the integral

is determined by the fact that for each x in G the mapping I (x,.)f(-) is

constant on cosets. Thus, the kernel I for U() is defined on G G while

the integration is over X Moreover, the mapping I is not constant on cosets

in general.

Our primary objective in [2] was to represent the operators U() as integral

operators with continuous kernels in a consistent fashion, i.e. where the kernels and

integration are defined over the same space. There are two canonical choices for

this space namely G and X In Chapter II of [2] we acomplished our objective

over each of these spaces.

In section 3 of [2], we constructed a representation V of G on a Banach

function space F
V

which was isometrically equivalent to U In particular, each

operator V() was written in the following form: for each continuous g in a

certain dense subspace of F
V

we have

V()g(x) J- J (x,y)g(y)dy x G
G

where J is a continuous mapping from G G into Hom(E) Although this result

is satisfactory from the consistency viewpoint, there is a significant shortcoming.

The space F
V

is a proper closed subspace of a vector-valued LP-space. Thus, many

of the important existing results for integral operators cannot be used with this

model of the integrated form of U

In section 4 of [2], we next turned our attention to the quotient space X We

constructed a representation W of G on a continuous sum F
W

of Banach spaces

{E : X} which was also isometrically equivalent to U Each operator W()
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was written as follows: for each "continuous" vector field h in a certain dense

subspace of F
W

we have

W()h() f K(,n)h(n)d] g X
X

where K is a "continuous" field of bounded operators in Hom(E ,E) and

K(,) g Hom(EA,E)T! This model requires the knowledge of continuity structures

and LP-theory for vector fields [3,4], as well as the theory of kernels and integral

operators for such Lebesque spaces [4]. (The latter was developed by the author

expressly for this purpose.) Since the space FW is a full LP-space, this model of

U does not have the shortcoming that V has. In fact, it proved to be quite useful

in studying certain compactness properties of the integrated form of U [2, Ch. IV].

However, W has two minor shortcomings which are more akin to mathematical utility

and aesthetics than to mathematical substance. First, a continuity structure (and

its implications) is quite complicated and is a less intuitive object to work with

than is the more fundamental and familiar notion of topological continuity. Second,

although the kernels K do belong to a continuity structure in Hom(E ,E) this

structure partially loses a desirable property in the transition from G to X

(See pp. 25-29 of [2] for a rigorous explanation.)

Since the writing of [2], it has been discovered [5] that the theory of contin-

uity structures is equivalent to the theory of Banach bundles [6]. Moreover, in the

bundle context, the appropriate mappings are cross-sections, so that continuity is

simply topological continuity. These facts suggest:

(i) The representation W can be reconstructed in the setting of Banach bundles.

(2) The kernels K should be continuous cross-sections for a suitable bundle.

The main objectives of this paper are to show exactly how to accomplish (i) and (2).

Section 2 is devoted to recalling the necessary preliminaries. In sections 3

and 4, we construct the Banach bundles corresponding to the continuity structures in

NE and NHom(E ,E) respectively. Finally, in section 5, we show that the kernels

K are continuous cross-sections for the bundle of section 4.
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2 PRELIMINARIES.

The following is a brief summary of sections i and 2 of [2].

Let AG and AH
be the modular functions for G and H respectively. The

quotient function AH/(AGIH) is a continuous homomorphism of H into the positive

reals which we shall denote by 6 Let p be a continuous, non-negative function

on G satisfying p(tx) 6(t)p(x) t H,x G Also let d d((x)) be the

quasi-invariant measure on X corresponding to p

The representation L of H on E is "Banach inducible up to G" if there

exists a pair (p,q) such that i <_ p <_ 0 < q <_ and

8(t)i/qllL(t)l <_ b6(t) I/p t e H

for some b > i Given such a pair, we can construct [i] an isometric representa-

tion of G on a certain Banach function space as follows. Let C (G,L) denote the
q

linear space of all continuous mappings f:G E such that: (i) f has compact

support modulo H i.e. (supp(f)) is compact. (ii) f is (L,q)-homogeneous,

ioeo

f(tx) 6(t)i/qL(t)f(x) t g H x g G

For a suitable LP-norm on C (G,L) [i, sec. 3], we find that right translation
q

f fx by an element x of G is an isometry. Hence, its extension to the comple-

tion F
U

of C (G L) is also an isometry which we denote by U(x) The resulting
q

mapping U is then an isometric representation of G on F
U

which we call the

induced Banach representation corresponding to (L,p,q) We refer the reader to

[i] for a thorough development of such representations.

In this setting, the operators U(), g C (G) may be written as follows:

p(y) 8(t) (x-lty)L( dt f(y)d((y))
X

for f in C (G L) (where q:p i/q- i/p) Thus, the mapping I referred to
q

in the introduction is given by

I (x,y) AG (x)-I
-i f I (x-ltyP(Y) 8(t)

q: )L(t)dt x,y g G
H
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Before concluding this section, observe that if we let M 6q:PL then M is

a bounded representation of H on E with bound b Hence, we may renorm E by

defining

[IvllM sup{[IM(t)v[[:t s H} v e E

We thus obtain a Banach space which is equivalent to E since

llv[l <_ [IVllM <_ bl[vl] v s E

The Banach spaces Horn(E) and Hom() are also equivalent with

I[T[I <_ IIT[IM <_ bl[Tll T s Horn(E)

The following result will be useful in what follows:

LEMMA 2.1. The mapping (t,v) L(t)v of H E into E is continuous.

PROOF. This follows from the fact that L is strongly continuous and locally

bounded [1,3.3].

It will also be convenient to fix in advance a compact neighborhood Z of the

identity e in G for use later on.

3. THE VECTOR FIELD BUNDLE

In order to construct the bundle version of W we begin as in section 4 of

[2]

Consider the space G x E with equivalence relation defined as follows: if

x,y s G and v,w s E then (x,v) (y,w) if there exists t in H such that

y tx and w L(t)v Denote the resulting space of equivalence classes (with

quotient topology) by E and let o: G x E- E be the canonical projection. Also

let : X be the (well-defined) projection given by (o(x,v)) (x) We

then have the following composition:

G x E-+ - X

LEMMA 3.1. The mapping o is continuous and open.

PROOF. The openness of o follows from the fact that the saturation

-l(o(A x B)) of a basic open subset A x B of G x E is of the form
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U {(tA) x (L(t)B) T e H}

which is open in G x E

LEMMA 3.2. The mapping is continuous and open.

PROOF. The continuity and openness of follow from the continuity and open-

ness of and

PROPOSITION 3.3. The space E is Hausdorff.

PROOF. Let {8i } be a net in E converging to 8 and 8’ in where

o(x,v) and 8’ o(x’,v’) Since o is open, passing to a subnet if neces-

sary, we may assume there exists a corresponding net (xi,vi) } in G E such

that o(xi,vi) 8i
i 1,2, and (xi,vi) (x,v) in G E Similarly, we may

’)} in G E such thatassume there exists a corresponding net {(xi,vi
o(x.,v[.) 8

i
and (x.,v[.)- (x’ ,v’) Since o(xi,vi o(x.,vi)’ there exists

-i
t g H such that x’ t.x. and v’ L(ti)v Consequently, t x’x is an
i i i i

-ielement of H since the net {t
i

x’.xI} converges to x’x and H is closed
1 1

in G Moreover, by I.i and the triangle inequality, we see that v’ L(t)v

Thus, 8 8’ and is Hausdorff.

The next step is to make (E,X,) into a Banach bundle. As on p. 12 of [2],

-i -i
define E () X For fixed x in " ()" each element of E
is uniquely of the form (x,v) v e E Thus, E becomes a Banach space

equivalent to E and under the following (well-defined) operations:

(x,v) + (x,w) (x,v+w)

=(x,v) (x,=v)

llo(x,v)ll p(x)q:PllvllM v,w E

LEMMA 3.4. For each x e G v e E

llo(x,v)ll-- sup{p(y)q:Pllwll (y,w) (x,v)}

PROPOSITION 3.5. The bundle (,X,) is a Banach bundle (as in section i of

[6]).
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Let S(X,E) denote the linear space of cross-sections from X into E

CS(X,) those that are continuous and CS (X,) the continuous cross-sections with
C

compact support. Analogously, recall [2, sec. 4] that there is a continuity

structure A in NE given by A {Sf} where

Sf((x)) Sf(x) o(x,o(x)-I/qf(x)) x G

for f in H (G L) N C(G E) where H (G L) is the space of (L,q)-homogeneous
q q

functions on G (In [2], A was denoted by Aq.) As in sections 1 and 5 of [4],

we then have the space C(A) of A-continuous vector fields and the subspace C (A)
C

of compactly supported such fields. Note that S(X,) HET
which in turn is in

bijective correspondence with H (G,L) via the above mapping f Sf Also,
q

C(A) A [2, 4.15], so that

C(A) S(Hq(G,L) N C(G,E))

The continuity structure A yields a topology (the A-topology) on making

(E,X,) a Banach bundle having the property that the elements of C(A) are the

continuous cross-sections relative to the A-topology [6, Prop. i. 6]. Actually, the

space COl) is also the space of quotient-continuous cross-sections. [7, sec. i]

THEOREM 3.6. The quotient and A-topologies are the same.

Before proving this theorem, observe that we then have CS(X,E) C(A) and

CS (X,E) --C (A) Furthermore if is the measure d on X then LP(A,)
C C

[4, sec. 6] is the same as the space LP((,X,) ) [6, sec. 2], which is the

LP-completion of CS (X ) However LP(A,) is isometrically isomorphic to the
C

representation space F
U

of U and is the representation space F
W

of W Hence,

the representation space of the bundle version of W will be LP((E,X,) )

PROOF OF 3.6. A basic A-open subset of is of the form

W(h,A,e) {19 s E:’T(E)) e A lle Sh,’.’(e))ll < e}

where h H (G,L) C(G,E) A is an open subset of X and e > 0 Let
q

8 o(x,v) be an element of W(h,A,e) so that (e) (x) s A and
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lle Sh(ie))ll llo(x,v)

llo(x,v p(x)-i/qh(x))ll
p(x)q:Pllv p(x)-i/qh(x)llM

< g

The function y _+p(y)q:Pllv p(y)-i/qh(y)llM is continuous on G Hence, the set

N of y in G where this function is less than e/2 is open in G Also,

x g N so that x g N N Zx 0 -I(A) which is a neighborhood of x in G Thus,

this set contains an open neighborhood B of x For

a max{P(y) q:p y g Zx}

define

C {w s E llv- wll < e/2ab}

Then C is an open subset of E containing v Thus, o(B C) is a basic

quotient-open neighborhood of o(x,v) e which can be shown to be in W(h,A,g)

Conversely, let o(B C) be a basic quotient-open subset of E for B open

in G and C open in E Let e g o(B C) Then o(x,v) for some

x B v C There exists r > 0 such that the ball {w E llw vll< r/a}

is contained in C Choose c sufficiently large so that c > 2a/m where

m min{p(y)
q:p

y e Zx} > 0

Since {h(y) h g Cq(G,L)} is dense in E (and hence in ) for each y in G

-1/qh[i, 3.8] and h- p is a bijection of C (G,L) there exists h in C (G,L)
q q

such that

llv p(x)-i/qh(x)llM < r/ac

By the continuity of h there exists an open neighborhood N of x in G such

that N c Zx V and

llv p(y)-i/qh(y)llM < r/ac y g N

Let A (N) and g r/c Then W(h,A,e) is a basic A-open neighborhood of

o(x,v) 0 in E which is contained in o(B C) Therefore, the two topologies

are the same.
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4. THE KERNEL FIELD BUNDLE

Our next objective is to construct another Banach bundle for which the kernel

fields K s C (G) are continuous cross-sections.
c

Let be the equivalence relation on G G Hom(E) defined by:

(x,y,T) (x’ ,y’ ,T’) if there exist r,s in H such that x’ rx y’ sy and

-iT’ L(r)TL(s) Let H denote the space of equivalence classes (with quotient

topology) and G G Hom(E) H the canonical projection. Also, let

:H X X be the (well-defined) projection given by ((x,y,T)) ((x),(y))

x,y s G T s Horn(E) We then have the following composition:

G G Horn(E) H X X

LEMMA 4.1. The mapping is continuous and open.

PROOF. The openness of follows from the fact that the saturation

-i ((A B C)) of a basic open subset A B C of G G Horn(E) is of the

f orm

-iU {rA sB L(r)CL(s) r,s s H}

which is open in G x G x Horn(E)

LEMMA 4.2. The mapping :-+ X X is continuous and open.

-iPROOF. To see that is open, observe that (A) ( )( (A)) for any

subset A of The lemma then follows from the facts that is continuous and

n , is open.

PROPOSITION 4.3. The space H is Hausdorff.

PROOF. Similar to that of 3.3.

The next step is to make (,X X,) into a Banach bundle. For , s X

define H -i(,) For fixed x in y in each element of H is

uniquely of the form a(x,y,T) for T in Horn(E) Define:
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a(x,y,T) + a(x,y,T’) a(x,y,T + T’)

ca(x,y,T) a(x,y,cT)

and

Ila(x,y,T)l]-- (p(x)/p(y))q:PllTI]M T,T’ e Horn(E) c e

where the norm is well-defined Under these operations H,D
In fact:

is a Banach space.

THEOREM 4.4. The space H, is isometrically isomorphic to Hom(E,E)
PROOF Fix a(x,y,T) in H,D and define T’ :ED- E by

T’ (o(y,v)) g(x,Tv) v s E

Then T’ is well-defined, linear and lIT’ll lla(x,y,T)ll as we shall next verify

We have:

lIT’If sup{llT’(a(y,v))ll v e E Ila(y,v)ll i}

where ll(y,v)ll p(y)q:PllvllM Thus, ll(y,v)ll i if and only if llvllM p(y)P:q-

Also,

[[T’ ((y,v))[[ [[g(x,Tv)[[

p(x) q:p[ITvl]
M

(p(x)/9(y))q:P][T(p(y)q:Pv)[[M.

Therefore,

ilT’ll sup{llT’(o(y,v))ll v s E llVlIM p(y)P:q}

sup{(p(x)/p(y))q:PllT(p(y)q:Pv)ll
M v g E llvllM O(y)P:q}

sup{(9(x)/p(y))q:PllTwllM w m IIwllM i}

(p(x)/p(y))q:PllrlIM
II(x,y,T)

Hence, T’ s Hom(E_,E)T] and we have a mapping a(x,y,T) T’ of HE
into

Hom(E,E) which is clearly a linear isometry. We will be done once we show that

this mapping is onto.
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Recall that E, and the E s X are all equivalent Banach spaces.

Thus, the same is true of Horn(E) Hom() and the Hom(E ,E) , s X In

particular, if T s Horn(E) then the corresponding element of Hom(E ,E) is the

operator T’ which is the image of c(x,y,T) under our identification, x s

YS

Consequently, modulo the isomorphisms, the field {Hom(E ,E):, X} of

, x}Banach spaces is the same as the field {,
REMARK 4.5. Recall that in 3.4 we verified that

llo(x,v)ll sup{o(y)q:Pllwll (x,v) (y,w)}

The analogous question here is: does

lla(x,y,T)ll sup{(9(x’)/p(y’))q:PllT’ll (x,y,T) (x’,y’,T’)} ?

The answer depends on the question: does

IITIIM sup{llM(r)TM(s)-lll r,s g H} T s Horn(E) ?

We believe the answer to both questions is yes; however, we have been able to only

partially verify the latter.

PROPOSITION 4.6. The bundle (,X X,) is a Banach bundle.

As in section 3, we obtain the spaces S(X X,H) and CS(X X,H) of cross-

sections and continuous cross-sections respectively. The space CS(X X,) is then

the space of continuous kernels.

The vector field analogue of this space requires the existence of a continuity

structure in Hom(E ,E) This was essentially accomplished in section 4 of [2]

as follows. Let (G G,Hom(E)) denote the linear space of mappings

B:G G- Hom(E) satisfying

-iB(rx,sy) L(r)B(x,y)L(s) r,s s H x,y s G

For each such B define RB(,) E E , s X by

RB(,)((y,v)) (x,B(x,y)v) x s ,Y s v s E
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Then RB(,) e Hom(%E) so that RB g NHom(E ,E and we thus have a mapping

R:HL(G G,Hom(E)) NHom(E ,E

Note that RB(,) B(x,y)’ which is the element corresponding to (x,y,B(x,y))

under the bijection between and Hom(E 4),E) (4.

LEMMA 4.7. The mapping R is a bijection.

PROOF. The onto property is proved using a (possibly non-measurable) cross-

section.

Now consider the linear space

CL(G x G,Hom(E)) (G x G,Hom(E)) N C(G x G,Hom(E))

The set RB:B e CL(G G,Hom(E)) } was observed to be a, precontinuity structure

in Hom(E,E) 2, 4.32]. This means that we were unable to verify that

{RB(,):RB e } is dense in Hom(E ,E , e X If this is not the case, then

the ftopology on is not the same as the quotient topology the latter is

Hausdorff while the former is not. Moreover, our proof in 3.6 (which we would like

to duplicate here) required this density property. This is not a significant

problem since we can bypass it by simply restricting our attention to the appropriate

portion of H Before doing so, the following result shows to what extent the

density property does hold and (more importantly) suggests why it may not hold in

general.

THEOREM 4.8. The subspace {RB(,) RB e } is strongly dense in

Hom(Erl, E) ,r] e X

PROOF. (After section 3 of [i]). Let , be elements of C (G) and T an
c

element of Hem(E) Define

F(x,y) @(x)(y)T x,y G

Then F:G x G Horn(E) is continuous and has compact support. For each x,y in

G consider the mapping
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(r,s) L(r)-(rx,sy)L(s)

of H H into Horn(E) Since L is strongly continuous, so is this mapping.

Hence, for v in E the mapping

(r,s) [L(r)-iF(rx,sy)L(s)] (v)

of H H into E is continuous and has compact support. Thus, it defines an

element FL(x,y) (v) of E where

FL(x,y)(v) ff [L(r)-iF(rx,sy)L(s)] (v)drds
HxH

F
L
(xThe mapping ,y) is easily seen to be an element of Horn(E) in fact,

FL (G G Hom(E)) Moreover, since and are uniformly continuous, we

actually have that F
L

e CL(G G Horn(E)) Unfortunately, however, we are able

to verify only that {FL(e,e) F e T} is strongly dense in Horn(E) using

the strong continuity of L Hence, {B(e,e) B g CL(G G Horn(E))} is strongly

dense in Horn(E) By right translating and by x and y respectively, we

see that {B(x,y) B CL(G G Horn(E))} is strongly dense in Horn(E) x,y e G

The theorem then follows from this fact by the definition of RB for B as above.

It appears from the previous proof that may not be a complete continuity

structure since L is not norm-continuous in general. In any event, as we have

indicated above, this difficulty is easily circumvented.

LEMMA 4.9. The space is a continuity structure if and only if

{B(x,y) B g CL(G G Horn(E))} is dense in Horn(E) for some (equivalently) all

(x,y) e G x G

Let ’HomL(E denote the norm closure in Horn(E) of the span of the set

{B(rx,sy) r,s g H B Horn(E)}

(independent of x,y) Then G G HomL(E is a saturated subset of

G x G Horn(E) i.e. it is a union of equivalence classes. Let

H
L (G G HomL(E))
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and L I Then HL is equipped with the relativized quotient topology of H

(or equivalently, the quotient topology of G x G x HomL(E)) and (L,X x X,L) is

a Banach bundle with

i(,) m (HL), HL N H, HL & -i(,) , e x

Similarly, we let HomL(E,E) denote the closed subspace of Hom(E,E) corre-

sponding to HomL(E) so that

HomL(E,E) (HL), , e X

It is clear that is a (complete) continuity structure in BHomL(ED,E) HL

Consequently, HL is also equipped with the -topology.

THEOREM 4.10. The quotient and -topologies on HL are the same.

PROOF. This is proved in the same way as 3.6 now that has the density

property.

We have thus verified that the continuous cross-sections of the kernel bundle

(HL,X x X,L) correspond exactly to the -continuous kernel fields in

HomL(E,E) Of course, if has the desired density property, then the

L-subscript may be dropped in 4.10, i.e. C() CS(X x X,H) the ideal result.

5. THE CONTINUOUS KERNELS

We are now in a position to complete our project. Recall (section 2) that I

is a continuous mapping of G x G into Horn(E) For in C (G) define
c

by

k G x G G x G x Horn(E)
q)

k (x,y) (x,y,p(x)-I/qf)(y)l’ql/
(x,y)) x,y G

Then k is continuous and constant on cosets. Hence, it defines a continuous

mapping of X x X into G x G x Horn(E) Furthermore, it follows that the following

diagram commutes (modulo isomorphism)
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TT x TT

G xG

X xX

k
G G Horn(E)

K

where K (,) E E is given by [2 p.20]
W

K (,)((y,v)) pCx) -i/qp(y)i/qo(x, I (x,y)v)

for , s X x s y s v s E Hence, the kernel K for the operator W()

is a continuous cross-section. We had already seen [2, 4.33] that it is an

-/q p/qT-continuous kernel field. Finally, since K RB for B @ we

see that K X x X- HL i.e. K e HOmL(E_,E) so that the two notions of

continuity for K are the same.

In conclusion, let us briefly summarize what we have shown. The induced

representation U is isometrically equivalent to a representation W of G on the

bundle space LP((E,X,) ) where W(x) acts on CS (X,E) by right translation

by x x e G The integrated form of W is given by

W()g() f K(,)g()d e X g CS (X,E)
X

c

where K X x X HL
c H is a continuous kernel for W() C (G)

c

Of the four ways we have of realizing the integrated form of the induced

representation (U,V, together with the vector field and bundle versions of W)

the last one is the most satisfying and usable.
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