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ABSTRACT. We define and note some properties of k H-pairs (k Henselian pairs),

k N-pairs, and k N’-pairs. It is shown that the 2-Henselization and the 3-

Henselization of a pair exist. Characterizations of quasi-local 2H-pairs are

given, and an equivalence to the chain conjecture is proved.
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I. INTRODUCTION.

We define a pair (A,m) to be a k H-pair (a k Henselian pair) in case the ideal

m is contained in the Jacobson radical of the commutative ring A and if for every

monic polynomial f(X) of degree k in A[X] such that f(X)A/m [X] factors into

f(X) go(X)ho(X) where go(X) and ho(X) are monic and coprime, there exist monic

polynomials g(x), h(X)A[X] such that f(X) g(X)h(X), g(X) go(X), and

h (X) h (X). It is shown that the 2-Henselization and the 3-Henselization of a
O

pair (A,m) exist. Several properties of k H-pairs are noted. And an equivalence

to the Chain Conjecture is also given.

2. k H-PA!R$ k N-PAIRS AND k N’-PAIRS.

In this section we define and give some facts about k H-pairs, k N-pairs, and
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k N’-palrs. The main result, Theorem (2.10) states that (i) a k H-palr is a k

N-palr, (il) a k N-palr is a k N’-pair, and (ill) an k N’-pair is a J H-palr pro-

vided k _> max {Cj,n In 0,1,...,j}.

We begin be stating several definitions. In these definitions and throughout

the paper a ring shall mean a commutative ring with an identity element, and J(A)

denotes the Jacobson radical of the ring A.

DEFINITION 2.1. (A,m) is a pair in case A is a ring and m is an ideal in A.

DEFINITION 2.2. (A,m) is a k H-pai.r in case

(i) m c J(A) and

(ii) for every monic polynomial f(X) of degree k in A[X] such that

f(X) A/m [X] factors into 7(X) o(X) o(X) where o(X) and o(X) are monic and

coprime, there exist monic polynomials g(X), h(X) A[X] such that f(X) g(X)h(X),

(X) o(X) and (X) o(X)"
DEFINITION 2.3. Let (A,m) be a pair. A monic polynomial X

k + ak_lXk-1 +

+ alX + ao of degree k is called a k N-polynomial over (A,m) in case au m and

aI is a unit mod m.

DEFINITION 2.4. (A,m) is a k N-pair in case

(i) m c J(A) and

(ii) every k N-polynomial over (A,m) has a root in m.

The next results give some facts about k N-polynomials and k N-pairs.

LEMMA 2.5. Let f(X) be a k N-polynomial over the pair (A,m). If m c__ J(A),

then f(X) has at most one root in m.

PROOF. The proof follows from [5, Lemma 1.5], since a k N-polynomial is an

N-polynomial.

RIARK. Every k N-polynomial over a k N-pair (A,m) has one and only one root

PROPOSITION 2.6. If (A,m) is a k N-palr, then (A,m) is an j N-pair for 2

2< j <k.

PROOF. Given a k N-pair (A,m), it suffices to show that (A,m) is a (k-l)

N-pair. Let f(X) be a (k-l) N-polynomial over (A,m). Let u be a unit in A and
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g(X) (X + u)f(X). Then g(X) is a k N-polynomial and thus has a root r in m and

0 g(r) (r + u)f(r). Since (r + u) is a unit, we have f(r) 0. Therefore,

(A,m) is a (k- i) N-palr.

DEFINITION 2.7. Let (A,m) be a pair. A monic polynomial

Xk + dI Xk-I + d2
Xk-2 + + of degree k is called a k N’-polynomial over

(A,m) in case dI is a unit rood m and d2, d
k belong to m.

I)EFINITION 2.8. (A,m) is a k N’-pair in case

(i) m = J(A); an
(ii) every k N’-polynomial over (A,m) has a root in A, which is a unit.

We note that if (A,m) is a k N’-palr, f(X) xk + dlXk-I + + dk
is a k

N’-polynomial over (A,m) and r A is a root of f(X) given by the definition of

a k N’-palr, then r -dl, and f’(r) is a unit.

PROPOSITION 2.9. Let (A,m) be a k N’-pair, then (A,m) is an J N’-palr for

2 <_j <_k.

PROOF. Given a k N’-palr (A,m), it suffices to show that (A,m) is a (k-l)

N’-pair. Let f(X) be a (k-l)N’-polynomlal over (A,m). Then Xf(X) is a k N’-poly-

nomial and has a root u, which is a unit. and uf(u) 0 implies that f(u) 0,

therefore (A,m) is a (k-l)N’-pair.

THEOREM 2.10. (i) A kH-pair is a kN-pair

(li) A kN-pair is a kN’-palr

(iii) A kN’-pair is a ill-pair, provided

k >_max {Cj,nl n 0, i,..., j}

PROOF. Part (i) follows from the definitions.

The proof of (ii) follows from the proof of [i0, Lemma 7]

The proof of (iii) follows from Crepeaux s proof of [3, Prop. i]

3. k N-CLOSURE.

In this section we construct the k N-closure for a given pair (A,m). That

is, we find tSe "smallest" k N-pair which "contains" (A,m). The development of

this section parallels Greco’s development in [5].

In order to construct the k N-closure we need the following definitions.
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DEFINITION 3.1. A .morphism (of pairs) :(A,m) / (B,n) is a ring homomor-

phism :A / B, such that -l(n) m.

DEFINITION 3.2. A morphism (of pairs) 0:(A,m) / (B,n) is strict in case

n (m)B and induces an isomorphism A/m / B/n.

DEFINITION 3.3. Let (A,m) be a pair. A k N-pair (B,n) together with a

morphism :(A,m) / (B,n) is a k N-closure of (A,m) if for any k N-pair (B’,n’)

and any morphism :(A,m) + (B’,n’) there exists a unique morphism ’:(B,n) / (B’,n’)

such that ’o .
DEFINITION 3.4. Let (A,m) be a pair and f(X) a k N-polynomial over (A,m).

Let A[x] A[X]/(f(X)), S i + (m,x)A[x] and B S-IA[x, Then (B,mB) is called

a .s.imple k N-extension of (A.m.).

DEFINITION 3.5. A k N-extension of (A,m) is a pair obtained from (A,m) by a

finite number of simple k N-extensions.

The next two results give some useful properties of simple k N-extensions and

k N-extensions.

LEMMA 3.6. Let (B,n) be a simple k N-extension of (A,m). Let :A / B be

the canonical morphism. Then:

(i) x n.

(ii) -l(n) m and :(A,m) + (B,n) is a morphism of pairs.

(iii) :(A,m) / (B,n) is strict.

PROOF. The proof follows from [5, Lemmas 2.3,2.4, and 2.5] since a simple

k N-extension is a simple N-extension.

COROLLARY 3.7. If (B,n) is a k N-extension of (A,m), then the canonical

morphism :(A,m) / (B,n) is strict.

We note that a k N-extension of a quasi-local ring (A,m) is a quasi-local

ring.

The following lemma is used to show that the partial order defined in Defini-

tion (3.9) is well defined.

LEMMA 3.8. Let (A’,m’) be a k N-extension of (A,m) and let (B,n) be a pair

with n c J(B). Let :(A,m) + (A’,m’) be the canonical morphism. Then for any



PARTIAL HENSELIZATIONS 695

morphism :(A,m) / (B,n) there is at most one morphism ’ :(A’ ,m’) + (B,n) such

that ’ o # .
PROOF. The proof follows from [5, Lemma 3.1] since a k N-extension is an

N-extension.

In particular, the above lemma holds when (B,n) is a k N-extension of (A,m).

DEFINITION 3.9. Define a partial order on the set of k N-extensions of (A,m)

as follows: If (A’,m’) and (A",m") are two k N-extensions of (A,m), then (A’,m’)

s (A",m") if and only if there is a morphism :(A’,m’) / (A",m") such that o ",

where :(A,m) / (A’,m’) and ":(A,m) / (A",m") are the canonical morphisms.

PROPOSITION 3.10. Let (A,m) be a pai. Then the k N-extensions of (A,m) form

a directed set with the order relation and the morphisms defined above.

PROOF. The proof is analogous to [5, Prop. 3.3].

LEMMA 3.11 Let (A’,m’) be a k N-extension of (A,m) and let :(A,m) +(A’,m’)

be the canonical morphism. Let (B,n) be a k N-pair and let :(A,m)/(B,n) be a mor-

phism. Then there is a unique morphism ’:(A’,m’)/(B,n) such that ’o @.
PROOF. The proof is analogous to [5, Prop. 3.4].

THEOREM 3.12. Let (A,m) be a pair and let (AkN,mkN) be the direct limit of the

set of all k N-extensions. Then (AkN,mkN) with the canonical morphism (A,m) +

(AkN,mkN) is a k N-closure of (A,m).

PROOF. The proof is analogous to [5, Thm. 3.5].

We note that if (A,m) is a quasi-local ring; then a k N-closure (AkN,mkN)
of (A,m) is quasi-local, since the direct limit of quasi-local rings is quasi-

local.

4. k H-CLOSURES AND AN EQUIVALENCE TO THE CHAIN CONJECTURE.

In this section, we note the existence of a 2H-closure and of a 3H-closure,

we give some characterization of a quasi-local 2H-pair, and we observe that the

H-closure (or Henselization) of a pair (A,m) can be written as the direct limit or

union of k H-pairs, k 2,3,4 We also give an equivalence to the Chain

Conjecture.

DEFINITION 4.1. Let (A,m) be a pair. A k H-pair (B,n), together with a
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morphism :(A,m)/(B,n) is a k H-closure of (A,m) if for any k H-pair (B’,n’) and

any morphism :(A,m)/(B’n’), there exists a unique morphism ’:(B,n)/(B’,n’) such

that

THEOREM 4.2. Let (A,m) be a pair. Then:

(i) a 2 H-closure of (A,m) is (A2N, m2N).
(il) a 3 H-closure of (A,m) is (A3N, m3N).

PROOF. It suffices to show that a k N-closure (k 2,3) is a k H-palr. And

by Eheorem 2.10, we have that a 2N-pair is a 2H-pair, and that a 3N-pair is a 3H-

pair.

DEFINITION 4.3. If :A/B is a ring homomorphism, then B is said to be k-integral

over A in case each b B satisfies a monic polynomial of degree k over (A).

REMARK. If B is k-integral over A, then B is also J-integral over A for all

j > k.

In the next three items we give examples of rings and elements which are

k-integral over a given ring A.

LEMMA 4.4. If A is an integrally closed domain and f(X) A[X] is a monic

polynomial of degree k, then A[X]/(f(X)) is k-integral over A.

PROOF. Let A[x] A[X]/(f(X)) and let L be the quotient field of A. Then

[L(x):L] < k and thus each = A[x] satisfies a monic polynomial g(X) 6 L [X] of

degree < k. Since is integral over A and A is integrally closed, it follows

that g(X) A [X]. Therefore A[x] is k-integral over A.

LEMMA 4.5. Let A be a ring and let f(X) X2 + uX + 8 6A[X]. Then A[X]/(f(X))

is 2-integral over A.

PROOF. Let A[x] A[X]/(f(X)) and then all of the elements of A[X] are of the

form ax + b where a,b A. To show that A[x] is 2-integral over A, we need to find

F, G A such that

2(ax + b) + F(ax + b) + G 0.

2 2
a
2 2

By expanding the left side, we see that F as 2b and G a 8 b -Fb 8 + b ab=

are the needed values. Therefore A[X] is 2-integral over A.

EXAMPLE 4.6. Each element of EndA(Ak) is k-integral over A by [i, Proposition 2.4].
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In fact, if M is any A-module generated by k elements, each element of EndA(M
is k-lntegral over A.

DEFINITION 4.7. (A,m) is a (k)H-pair in case (A,m) is a J H-pair for 2 _< J < k.

It follows by Theorem 2.10 that if (A,m) is a j N-pair (or J H-pelt),

then (A,m) is a (<k)H-pair provided j > max {Ck,nl n 0, i, .k}. In particular

we have that for k 2,3, or 4, a k H-pair is also a (<k)H-pair.

LEMMA 4.8. Let (A,m) be a quasi-local domain which is a (<k)H-pair. Then

every k-integral extension domain of A is quasi-local.

PROOF. The proof is analogus to [6, (30.5)]

DEFINITION 4.9. A ring A is decomposed if A is the product of finitely many

quasi local rings.

THEOREM 4.10. Let (A,m) be a quasi local ring. Then the following statements

are equivalent.

(i) Every finite 2-integral A-algebra B is decomposed.

(ii) Every finite free 2-integral A-algebra B is decomposed.

(iii) Every A-algebra of the form A[X]/(f(X)), where f(X) E A[X]
is monic and of degree 2, is decomposed.

(iv) (A,m) is a 2 H-pair.

PROOF. (i)(ii) is clear. (ii)(iii) is clear by (4.5). The proofs that

(iii)(i) and that (iii)(iv) follow classical lines; for example, see

[9, Prop. 5, p.2].

THEOREM 4.11. A quasi local domain (A,m) is a 2H-palr if and only if every

2-integral extension domain A’ of A is quasi-local.

PROOF. () is true by (4.8).

(). We will show that (A,m) is a 2H-pair by showing that every finite free

2-integral A-algebra is decomposed. Let B be a finite free 2-integral A-algebra.

Since B is decomposed if and only if B/nil rad B is decomposed, we may assume that

B is reduced. Since B is flat over A, regular elements of A are also regular in B.

Thus the minimal primes of B contract to {0} in A. Let {Pi}li1 be the minimal primes

of B. Then for each liI, B/P
i

is a 2-integral extension domain of A and is quasi

local by the hypothesis. Thus each minimal prime P. is contained in a unique maximal
I
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ideal. By [2, Proposition 3, p. 329], the set of minimal primes of B is finite.

Let lj nPlc._ Mj Pi where Mj j=l n are the maximal ideals of B Then the

I are coprime, and on I 0 since B is reduced So by the Chinese Remainder
j j--1 j

n
Theorem B . B/I and each B/I is quasi local. Thus B is decomposed and there-

j=l j j

fore (A,m) is a 2H-pair.

COROLLARY 4.12. Let (A,m) be a quasi local domain which is 2H-pair. Let A’

be an integral extension domain of A. If b A’ is 2-integral over A, then b 6 J(A’)

or b is a unit.

PROOF. A[b] is a 2-integral extension domain of A and is thus quasi local.

The result follows since all the maximal ideals of A’ contract to the unique maxi-

mal ideal of A[b].

We will now show that the N-closure of a pair (A,m) is the direct limit of the

k N-closures of (A,m). It will follow from this result that the H-closure of (A,m)

can be written as the direct limit of k H-palrs.

DEFINITION 4.13. Let (A,m) be a pair. Then (A,m) is an N-palr (respectively,

a H-palr) in case (A,m) is a k N-palr (respectively, a k H-palr) for k 2,3

DEFINITION 4.14. Let (A,m) be a pair. An N-pair (respectively, an H-pair)

(B,n), together with a morphism @:(A,m)/(B,n) is an N-closure (respectively, an

H-closure) of (A,m) if for any N-pair (respectively, any H-palr) (B’,n’), and any

morphism : (A,m)+(B’,n’), there exists a unique morphism ’: (B,n)+(B’,n’) such

that ’ o @ .
THEOREM 4.15. Let (A,m) be a pair. Then the H-closure of (A,m) is isomorphic

to the N-closure.

PROOF. See [5, Lemma 1.4 and Theorem 5.10].

PROPOSITION 4.16. Let (AN,mN) be an N-closure of (A,m). Then

(AN,mN) air lim (AkN,mkN), where the directed system {(AkN,mkN),kj} of k

N-closures of (A,m), k=2,3,4 is ordered by (AkN,mkN)<(AJN m
jN

iff k < j and

if k _< j, then kj: (AkN’mkN)-(AJN’ mjN) is the unique morphism which makes the

following diagram commute
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where j and k are the canonical morphisms.

PROOF. The proof follows immediately from Definitions (3.3) and (4.14) and

the definition of a direct limit.

COROLLARY 4.17. Let (AH,mH) be the H-closure of (A,m). Then (AH,mH)
dir lim (Ai,Mi) where (Ai,mi) is an i H-pair for i 2,3

PROOF. For a given i, let (Ai,mi) (AkN,mkN) where k max’ {Cj,nln=O,l,...,j}.
Then the corollary follows by results (2.10), (4.15) and (4.16).

We now give an equivalence to the Chain Conjecture. The terminology used is

the same as in [8] or [i0].

THEOREM 4.18. The following statements are equivalent:

(i) The Chain Conjecture holds.

(ii) Every 2 Henselian local domain A, such that the integral closure of

A is quasi-local, is catenary.

PROOF. (1)-(il). This follows by [8, Thm. 2.4].

(il)(1). By [8, Thm. 2.4] it suffices to show that every Hensellan local domain

is catenary. Let A be a Hensellan local domain. Then A is also 2 Hensellan and

the integral closure of A is quasi-local by [6, (43.1.2)]. Thus by the hypothesis

A is catenary.

5. EXAMPLES.

In this section we show that there exist k N-pairs which are not N-pairs and

there exist k H-pairs which are not H-pairs. More precisely, for each prime number

p we give an example of a pair which is not a p N-palr but is a k N-palr for

2 < k < p. This example also shows that for any integer k > 2, there exists a k

H-palr which is not a p H-palr for some sufficiently large prime number p.

Let p > 2 be a prime number. Let (R,q) be a normal quasi-local domain such

that there exists an f(X) Xp + + alX + ao R[X], where at+/- q, a q and f(X)
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is irreducible over R[X].

In particular, let R Z(2 and let f(X) Xp + 3X + 6. Then by Eisensteln’s

Crlterlor, f(X) is irreducible in Q[X], and thus irreducible in Z(2)[X] since f(X)

has content i.

Let K be the quotient field of R and let K be an algebraic closure of K. Let

R’ be the integral closure of R in K and P’ any maximal ideal in R’. Now f(X) as

an element of R’[X] factors completely, and since P’ R q, f(X) has a unique

root E P’. Let L be the least normal extension of K containing e. Then P [L:K]

and by [7, Thm. 6] there is a maximal field M without of exponent p with

KCMC. Let A R’ M and let m P’ A.

Now (A,m) is not a p N-palr since f(X) is a p N-polynomlal over (A,m) which

does not have a root in m. But (A,m) is a k N-palr for 2 < k < p. For, let g(X)

be a (p l)N-polynomial over (A,m). Then g(X) as an element of R’ [X] has a unique

root 86P’. Now [M(8):M] < p i, but by [7, Thm. 2], [M(8):M] p for some i -> 0.

So [M(8):M] I and 8M. Thus 86m P’I A and (A,m) is a (p l)N-pair. It

follows by (2.6) that (A,m) is a k N-pair for 2 < k < p.

REMARK. If j and the prime number p are closen such that p > max {Cj In=0,1
,n

then by Theorem 2.10, the above example is an example of a pair (A,m) such that

(A,m) is not a p H-pair, but (A,m) is a k H-palr for 2 < k < J.

Let the notation be as in the above example. Then (Am,mAm) is as an example

of a normal quasi-local domain which is not a p N-palr, but is a k N-palr for

2<k<p.

6. PROPERTIES OF k N-PAIRS.

We conclude this paper by noting that many of the properties of the Hensill-

zation or N-closure of a pair which S. Greco proved in [5] also hold for a k N-

closure and thus also for a 2 H-closure and a 3 H-closure. Some of these results

are: direct limits commute with k N-closures, cf. [5, Cor. 3.6]; a k N-closure of

(A,m) is flat over A and is faithfully flat over A iff mCJ(A), cf. [5, Thin. 6.5];

a k N-closure of a noetherlan ring is noetherian, and if a k N-closure of (A,m) is

Noetherian and m= J(A), then A is Noetherian, cf. [5, Cor. 6.9]; if A is Noetherlan
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and A has one of the properties , Sk, regular, or Cohen-Macaulay, then a k N-

closure of (A,m) also has that property, and the converse is also true provided

mCJ(A), cf. [5, Cot. 7.7]; a k N-closure preserves locally normal, cf. [5, Thm. 9.7];

and a k N-closure of a reduced ring is reduced, cf. [5, Thm. 8.7].
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