
Internal. J. Math. & Math. Sci.
Vol. 5 No. (1982) 11-20

ii

THE CONVOLUTION-INDUCED TOPOLOGY ON Loo (G) AND
LINEARLY DEPENDENT TRANSLATES IN L I(G)

G. CROMBEZ and W. GOVAERTS

Seminar of Higher Analysis, State University of Ghent
Galglaan 2, B-9000 GENT (Belgium)

(Received October 8, 1980 and in revised form May 7, 1981)

ABSTRACT. Given a locally compact Hausdorff group G, we consider on L (G) the r

topology, i.e. the weak topology under all convolution operators induced by func-

tions in LI(G). As a major result we characterize the trigonometric polynomials

on a compact group as those functions in LI(G) whose left translates are contained

in a finite-dimensional set. From this, we deduce that T is different from the
C

w-topology on L(G)_ whenever G is infinite. As another result, we show that r
C

coincides with the norm-topology if and only if G is discrete. The properties of

are then studied further and we pay attention to the -almost periodic elements
C

of L(G).
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i. INTRODUCTION.

The reader intending to read the following paper should have some familiarity

with such basic texts as Hewitt and Ross or Dunford and Schwartz.

For a locally compact Abelian group G, Argabright and Gil de Lamadrid [i] con-

sidered almost periodicity of measures with respect to several topologies. A spe-

cial case of this general notion, namely almost periodicity with respect to the

-topology on L (G), has been used in Crombez and Govaerts [2] in order to charac-

terize those multipliers from LI(G) to L(G) which are almost periodic in the strong
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operator topology. Throughout this paper, unless explicitly stated otherwise, G

will denote a locally compact Hausdorff group with left Haar measure. For such an

arbitrary G the T -topology is not weaker than the w -topology and not stronger than

the norm topology on L(G). The question as to whether there are neighborhoods in

the r -topology which are also neighborhoods in the w -topology leads us to consider
c

the apparently completely different problem of determining those functions f#O in

LI(G) such that all left translates of f are in a finite-dimensional subspace of

LI(G) (a related problem was recently investigated in Edgar and Rosenblatt [3] for

Abelian groups). We prove that such functions only exist for compact G, and then

they are exactly the trigonometric polynomials. From this result we derive that the

-topology is always different from the w -topology whenever G is infinite. How-

ever, a further investigation shows that for compact G these two topologies coincide

on every norm-bounded subset of L(G), and so we may conclude that for compact G

LI(G) is the dual of (L (G),T). Among the other results we mention that except for
c

discrete G the T -topology is always different from the norm-topology(section 3),
c

and that for fixed g in L(G) the map S/sg from G to (L(G),rc) is continuous (sec-

tion 4). In section 5 we give some further results about r -almost periodic functions.
c

For complex-valued functions f and g on G and a E G, we define the left translate

f and the convolution fg by means of f(x)=f(ax) and (fg)(x)=f(xy)g(y-l)dy (we
a a G
warn the reader that in some of the references, e.g. [4] and [5], different conventions

are used). Each function f in LI(G) induces by convolution an operator T
f

on L(G);
the weak topology on L=(G) under all convolution operators Tf:L(G)-(L=(G),I II)

is denoted by c" By w
m

and II II we denote the (L=(G), LI(G)), i.e., weak

topology, and the essential supremum norm topology respectively, on L(G). All

other nonexplained notation is taken from Hewitt and Ross [6].

2. FUNCTIONS IN LI(G) WITH FINITE-DIMENSIONAL SPAN OF TRANSLATES.

From the definitions we immediately derive w <cZ II II. Investigation of

the possibility that some T -neighborhood is also a w -neighborhood leads to a
c

special class of functions in LI(G) as Proposition 1 shows. For convenience we

take as a subbase at 0 for the sets



CONVOLUTION-INDUCED TOPOLOGY AND LINEARLY DEPENDENT TRANSLATES 13

{hE L=(G) IIf(x)h(x-l)dx <e}, where f, E LI(G and e>O; we write <f,h> for

(x)h (x-l) dx.
PROPOSITION I. For O#fELI(G) the following are equivalent

(i) There exists an e>O such that the "r -neighborhood determined by f and

is a w -neighborhood.

(ii) The set of left translates of f is part of a finite-dimensional subspace

of L
I
(G).

(iii)There exist al,...,a in G such that, for each a in G, scalars Cl,...,cn n n
be found such that f Co f.may

a I a
i=l i

(iv) Given g>O, there exists a
I ,an in G and 6>0 such that, for gL(G),

the inequality

PROOF (i)->(ii) iSupvose that the set {g 6L(G) If fg II= <e} is a w -neigh-

borhood of zero. Then we may find functions f’l(i=l’’’’’r) in LI(G) and 6>0 such

-i)that, whenever gELs(G) and fi(x)g(x dxl< for all i, then llfgll=<e Each

fi determines a linear functional on L=(G); call N the intersection of their ker-

nels. Since for any scalar c, cg EN whenever g EN, there results that cl llfxg<e

I f(y)g(y-l)dy=O for anyfor g EN and for any scalar c; hence fxg=O for g in N, or
a

G
a in G and g in N. This means that, for given a in G, the linear functional deter-

mined by f may be written as a linear combination of the ones determined by thea

f.. (=l,...,r). So, given a in G, there exist scalars a1,...,ar such that

a
f aifi"

i=l

(ii)-(iii). Obvious. We may choose a_l ,a in G such that the set {aif}
n

n i=l

is also a linearly independent set.

(iii)-)(iv). We first remark that the assumption of (iii) implies that G is

necessarily compact. Indeed, whenever (iii) is true the set f:a E G} of left
a

translates of f is a norm-bounded subset of a finite-dimensional subspace of Ll(G),
and so this set is relatively compact with respect to the norm-topology of LI(G).
However, it was shown in Crombez and Govaerts [4] that for non-compact G only f=O

has this property.
n

From this it also follows that there exists B>O such that for all mEG cil<.B
i=l



14 G. CROMBEZ AND W. GOVAERTS

for the scalars figuring in (lii). Indeed the function a+ f from G to LI(G) is
a

continuous, and its range is part of a finite-dimensional subspace M of LI(G);

assuming,n as we may, that {alf}ni=1 is linearly independent, the function

a
f =i= Ici aif/(cI,. ,cn) from M to the n-dimensional complex space is (well-de-

fined and) linear, and hence continuous; so the composition of these two functions

is continuous on the compact group G, from which the result follows.

Suppose then that (iii) is true, and let e>0 be given. Choose 6>0 such that

B6<e, with B as mentioned above. If a
I an are as in (iii) and l<alf,g>l<6 for

all i=l,...,n, then for EG we have
n n

l(fg)(a)l=Ii( . c f)(Y)g(y-l)dyl-< Ici < f g>l<e.
ilia a

i i=l i
(iv>(i). Obvious.

Statement (iii) in Proposition i leads to the following problem: determine

those f E LI(G) for which all left translates are contained in a finite-dimenslonal

subset ef LI(G). As remarked in the proof of the proposition such nonzero func-

tions can exist only for compact G. To solve this problem, we use the theory of

representations of compact groups as explained in Hewitt and Ross [6]. It is

readily verified that the set of functions with the mentioned property is a linear

subspace V of LI(G) containing all trigonometric polynomials. Proposition 2 shows

tha.t there are no other functions in .V. (For related results in the abelian case,

we reefer to Schwartz [7], and to the recent paper of Laird [8] and the references

mentioned there.

PROPOSITION 2. Let 0#f ELI(_G) with G compact. The set {af:a EG} of left

translates of f is contained in a finite-dimensional space iff f is a trigonometric

polynomial on G.

PROOF. We first remark that f is a trigonometric polynomial iff the Fourier

transform of f is such that (o)=0 except for a finite number of elements o in

the dual object [ of G (see Hewitt and Ross [6], 28.39).

Let then f ELl(G) be such that statement (iii) of Proposition 1 is true,
n n

i.e. f [ c (a) f (for fixed n) and [ Ici(a) 16 B (this was shown in the proof
a i a.i=l i i=l

of (iii)’(_iv) above), Taking the Fourier transform we obtain
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[U
(0.) n- c (a)a(’) :(c)=O

a
i-i

i
l"

Let D be the set of those O E . for which (0.) is

different from zero. Then for each ED there is a subspace Mo.#{0} in the repre-
n

sentation space H of U (0")
such that (0.)_ . ci(a)U--a(0") =0 on M Va G We

o. a 0.’
i=l I

choose an element (0.) in Mo with II ()I[ i. Since ()is irreducible, the non-

zero vector (0.) is a cyclic vector for which means that the set of all finite

linear combinations of elements from (0.)(0.). :a( G} is all of HO.; but the seta

{ (o.)():a G} is spanned by the finitely many vectors (o) (0.) --(o)(0.).
a a

1
$ ’Un

hence, if d denotes the dimension of H we always have d ,<n, for each o in D.

With the choice of (0.) we have [<(0")() (0.)>[.<1 for all 0 D and all iE {i n}
a.

where now <,> denotes the inner product on H If D is infinite, we obtain an in-

finite family {(<a( (0.) ,(0")>, ,<(o.)an (0.) ,(0")>} D in a compact set in the

n-dimensional complex space, and so it has a cluster point; this means that, given

0<e4, there exist different Ol and 0.2 in D such that

I<(0"i) (0"11 (0"i)>-<(0"2) (0"2) E(a)>l.<g for all i
a. a.
l 1

For each a in G we then have

I<(0"i)(0"i) (0"i)>_<(0"2)(0"2) (0"2)> [=
a a

n ci(a)(<(o’l)(0"1) (0"I)>_<(0"2) (O2),(O2)
i=l a.l ai

Assuming that the Haar measure of the compact group G is normalised, it follows

that

II(<a(o’l)(o’l) (0.1)>_<(0"2)(0"2)(0"2),)u(O’l)(O’l)(’l)>dal.<e
a a

G
1

Since d .<n (fixed), we arrive at awhile the first member has the value

contradiction by our choice of e.

3. CONNECTION OF WITH OTHER TOPOLOGIES ON L= (G).
c

From Proposition 1 we immediately conclude that for non-compact G the w -to-

pology is always strictly weaker than the -topology. But taking Proposition 2
c

into ccount, we infer that also for infinite compact G these two topologies are

different. Indeed, it suffices to remark that there always exists a function f
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in L (G) which is not a trigonometric polynomial (e.g., choose in a countable

infinite set {o } of different elements; let X be the corresponding character,
n n=l o

Xo (x)
n

and put f(x) . n2 for x in G; then f E LI(G), and f(On n2-2"" IH
n= On o

n n

where IHo is the identity operator on Hn)"

n

Although T and w are different for infinite compact G, they induce the same to-
e

pology on every norm-bounded subset of L,(G),as the following proposition shows.

PROPOSITION 3. If G is compact, and B is a norm-bounded subset of L(G), ten

T and w coincide on B.
c

PROOF. It is sufficient to prove that for any -neighborhood V of 0 there
c

exists a w-neighborhood W of 0 such that WnBcV. Suppose that llhll.<M, hE B, and

let V={h L(G): ]]fih]L< for i=l ,n} with given fi El(G) and e>0. From com-

pactness of G and continuity of a f from G to (L (G) II III) it follows that each f
a i

is almost periodic in (LI(G) II I); this means that there exists elements a
I

a
m

in G such that, for each a in G and each .t {1 ,} a point aj may be found (1.<j.<m)

such that II afi-a.fill < With this choice of a. and for g L (G) we have

j 2M

l(f’g)(a)-(fig)1 (aj)l.<ll afi-a.jfill iii gll ’ or for g in B, l(fig)(a)l<l<ajfi,g>l+
Put W={EL(G):I<a f ,h>l< for all i,j}. Then W is a w-neighborhood of 0, and

for h in WoB we obtain Ifimhl l.<e. B

COROLLARY i. For compact G, any wm-convergent sequence is Tc-COnvergent.

Indeed, the set consisting of the elements in the sequence together with its limit

is w-compact, and hence also norm bounded.

COROLLARY 2. For compact G, LI(G) is the dual of (L=(G),Tc).

PROOF. For a compact group G there is a connection between the c-topology

and the so-called bounded weakm-topology bwm (see Holmes [9], p. 150; this topol-

ogy is called the bounded X-topology in Dunford and Schwartz [i0], p. 427); indeed,

we have rc.<bw. The result then follows from the fact that L (G) is the dual of

(L(G) ,bw m) .|

The following proposition characterizes those groups for which c and II I=
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coincide.

PROPOSITION 4. c coincides with II I iff G is discrete.

PROOF. For discrete G we have that the -topology and the II l=-topologyc

are equal. For if e is the identity of G, then e is a convolution identity for

L (G), and the convolution operator T6 induced by e is the identity map on L(G).
e

Let then G be non-discrete. Given e>0 and fl f in LI (G) choose a compact
n

subset K in G such that I Ifi(x) dx< for each i=l n. Let >0 be such that

G/K

dx<-e for all i=l n and all measurable A=G with (A)<n, where denotes
2

left Haar measure. .Further, let U be a compact symmetric neighborhood of the iden-

tity e of G with 0<(U)<n. Let g be the function defined by g(x)=l for x6 U, and

g(x) 0 on G’\U. For i < i n and xEG we obtain

fig)(x)l< f fi (y) Idy+I f fi (y) g(y-Ix)
G\K K

Both terms on the right-hand side are dominated by , since g(y ix) is zero except

when y(xU-I, and since (xU-I) < . Hence lfig[l<, although lgII=l. This

shows that no T -neighborhood of 0 lies wholly in any II II-ball of radius less
c

than i. Hence T is coarser than II II-|

4. FURTHER PROPERTIES OF THE -TOPOLOGY.

The proofs of Propositions 5 and 8 that follow were kindly suggested to us by

Robert B. Burckel. Both results also appear in Crombez and Govaerts[2].

PROPOSITION 5. Any norm-closed ball in L(G) is T -complete.
c

PROOF. Let _} be a Tc-Cauchy net in a ball in L(G). Let g be a w -cluster

{g fg)point of this net, such that a subnet w -converges to g. Then {( (x)}

converges to(fg)(x) for all x in G and all f in LI(G). Given >0 and f

there exists such that llfg-fg,II for all , ’ . Since all these

functions are continuous and I[ I here is genuine supremum, we derive

for all xEG In this last inequalityI(fg)(x)-(fg )(x)I for all ,’
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we take ’=B and let 8 recede to infinity; then this leads to

l(fg)(x)-(fg)(x)l<g for all > and all xG i e.

In particular, we derive from Proposition 5 that a set in L(G) is T -relatively
c

compact iff it is T -totally bounded We also have that the closed absolutelyc

convex hull of a r -compact set is again -compact. Denoting by cl the closuree c T

in the -topology, we have
C

PROPOSITION 6. If L(G), then g6 cl
T (Ling).
c

PROOF. Given E > 0 and n functions k
i

in LI(G determining a "r -neighborhood

V of g in Loo(G), and denoting by {e%}%6A am approximate identity in LI(G) we see

that l]ki(eg)-kig Io may be made arbitrarily small. Hence V contains elements

of the form e%g.|

COROLLARY 3. Let S be a T -closed Ll-SUbmodule of L (G). Then S=cl (LIS)c T
c

COROLLARY 4. Let S be a c-Clsed Ll-SUbmodule of L(G). Then S is left

translation invariant.

PROOF. Given g in S and a G we show that any r -neighborhood of
c ag contains

a function in LIS from which the result will follow. Denote by & the modular

function of G. Let V be the r -neighborhood of
C ag determined by fl fn in LI(G)

and e > 0. There always exist kLI(G) and h S such that

II (fi)a i a
g-(f (kh) ll (a)" Then II fiag-fia (kh) IIoo < - Hence V contains

the function akhLlS’|

Since w < r Proposition 6 and its corollaries are stronger than the corresponding

resutls in Crombez and Govaerts [5].

Given gL(G), the map s g from G to (Loo(G) Iloo) is continuous iff g
S

is locally a.e. equal to a function in C (G). (Here, as in [ii], C (G) is theru ru

set of all right uniformly continuous, bounded, complex-valued functions on G).

However, using the rc-topology on L (G) we obtain continuity for any g Loo(G).
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PROPOSITION 7. Leg g be a function in L=(G). Then the maps s+g
s

and S+sg from

G to (L(G) T are continuous.
C

PROOF. That the map s+g
s

is continuous is trivial, since for any f in

LI(G fgE Cru(G) and fgs (fg)s" To prove that Ssg is continuous consider

the composition of the maps G-LI(G)xC/L(G) given by s+(fs,A(s))/A(s)fsg=fsg"

Each map is continuous, and so the result follows.|

5. SOME MORE RESULTS ON T -ALMOST PERIODIC FUNCTIONS.
C

In this final section we always suppose G to be Abelian. The notion of r
C

-almost periodic (r -A_P) function in L (G) was introduced in [2] in order to
C

characterize those multipliers which are strongly almost periodic.

PROPOSITION 8. A function g in L (G) is r -AP iff fg is II II -almost
C

periodic for each f in LI(G).
fga for any a in G; so if we setPROOF We first notice that (fg)a

0g {ga:aE G}, then f0g 0fg.
If 0 is relatively -compact then its continuous image f0 0fg in

g c g

(Cru(G), II II) is relatively compact, so fg is norm almost periodic. Conversely,

by definition of T the map
C

N fL= (G)
g+(fg)

f e
I
(G) f 6 e

I
(G)

is a homeomorphism from r into the product of the norm topologies on the right.
c

Evidently the image of 0 lies in the subspace 0 If each fg is norm
g f LI(G)

fg"

almost periodic, then this last product is relatively compact, and so 0 is relative-
g

ly -compact.|
C

Denoting by. AP the II II-almst periodic functions in L(G), we obtained in

[2] that r -AP AP for G discrete and -AP L (G) for G compact (both results
C C

are of course clear now by Proposition 4 and Proposition 3, respectively). We

always have that AP-C T -AP. From Proposition 8 we derive: Ll(G)r -APAP. Since
C C

LI(G)P AP (see Crombez and Govaerts [4]) we also get LI(G)r -AP AP Hence
C

we obtain from Proposition 8 that -AP is the largest linear subspace S of L (G)
C
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such that LI(G)S_ AP. The set Tc-AP is an Ll-SUbmodule of L=(G) which is obvious-

ly T -closed. From Corollary 3 we may conclude that T -AP=cl AP. In particular,
c c Y

c
for compact G we have that L (G) cl C(G) where C(G) denotes the set of continu-

C

ous functions on G.

PROPOSITION 9. G is compact iff T -AP=L (G).
C

PROOF. Suppose that -AP L (G). Then AP Ll(G)r -AP LI(G)L(G) C (G)
c c ru

the last equality coming from Hewitt and Ross [6], 32.45(b). Pick 0 # f E C (G)
ru

with compact support K. If G is not compact there exist infinitely many disjoint

translates a.K of K. Clearly the subset -if}=133 a.
totally bounded.| J

of the left orbit of f is not
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