RESEARCH NOTES

SOME REMARKS ON THE STABILITY ANALYSIS IN ROBE'S THREE BODY PROBLEM

R. MEIRE

Astronomical Observatory Ghent State University Krijgslaan 271 - S9 9000 GENT BELGIUM

(Received October 12, 1979)

<u>ABSTRACT</u>. An improved technique is presented for the stability analysis of Robe's 3-body problem which gives more accurate results for the transition curves in the parameter plane than does Robe's paper.

A novel property of the system of differential equations describing the motion is used, which reduces the computer time by more than 50%. <u>KEV WORDS AND PHRASES</u>. 3-body problem, stability, transition curve, Floquet-theory. 1980 MATHEMATICS SUBJECT CLASSIFICATION CUDES. 85A05

1. INTRODUCTION.

In a recent paper Robe [1] presented a new kind of restricted three body problem, where one body m_1 is a rigid spherical shell, filled with an homogeneous incompressible fluid of density ρ_1 , where a second body m_2 is a mass point outside the shell, and where m_3 is a small solid sphere of density ρ_3 , restricted to move inside the shell, its motion determined by the attraction of m_2 and the buoyancy force due to the fluid ρ_1 .

There exists a solution with m_3 at the center of the shell while m_2 describes a Keplerian orbit around it. Robe investigated the stability of this configuration under the assumption that the mass of m_3 is infinitesimal. The linearized equations of motion in the neighborhood of this equilibrium are

$$\ddot{x} - 2\dot{y} = \left\{ \frac{1+2\mu}{1+e\cos y} - \frac{K(1-e^2)^3}{(1+e\cos y)^4} \right\}$$
 (1.1)

$$\ddot{y} + 2\dot{x} = \left\{ \frac{1-\mu}{1+e\cos y} - \frac{K(1-e^2)^3}{(1+e\cos y)^4} \right\} y$$
 (1.2)

$$\ddot{z} + z = \left\{ \frac{1 - \mu}{1 + e\cos v} - \frac{K(1 - e^2)^3}{(1 + e\cos v)^4} \right\} z$$
 (1.3)

where

$$K = \frac{4\pi}{3} \cdot \frac{\rho_1}{(m_1 + m_2)} \frac{a^3}{(1 - \frac{\rho_1}{\rho_3})}$$
$$\mu = \frac{m_2}{(m_1^* + m_2)}$$

a = semi-major axis of the Keplerian orbit.

These equations are referred to a coordinate system 0xyz, where 0 is the center of m_1 , 0x points to m_2 and 0xy is the plane of the Keplerian orbit.

If $\rho_1 = 0$ (shell empty) or $\rho_1 = \rho_3$, then K = 0 and the equations of motion become

$$\ddot{x} - 2\dot{y} = (1 + 2\mu) r x$$
 (1.4)

$$\ddot{y} + 2\dot{x} = (1 - \mu) r y$$
 (1.5)

$$\ddot{z} + z = (1 - \mu) r z$$
 (1.6)

with $r = \frac{1}{1 + e \cos v}$.

Equations (1.4) and (1.5) describe the motion in the orbital plane. Robe investigated the stability in the orbital plane by means of the Floquet-theory. However, one can separate the fourth-order system (1.4), (1.5) into two independent second-order systems.

2. THE TRANSFORMATION TO SECOND-ORDER SYSTEMS.

Using
$$\xi = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $\eta = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$,

equations (1.4) and (1.5) can be written

$$\begin{bmatrix} \dot{\xi} \\ \dot{\eta} \end{bmatrix} = \begin{bmatrix} 0 & E \\ rC_0 & 2D \end{bmatrix} \begin{bmatrix} \xi \\ \eta \end{bmatrix}$$
(2.1)
where $E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$,
and $C_0 = \begin{bmatrix} 1+2\mu & 0 \\ 0 & 1-\mu \end{bmatrix}$

Now we make the following transformation (Tschauner [2])

$$\begin{bmatrix} \xi \\ n \end{bmatrix} = \begin{bmatrix} E & E \\ P_1 & P_2 \end{bmatrix} \begin{bmatrix} \delta \\ \epsilon \end{bmatrix}$$
(2.2)

and obtain

$$\begin{bmatrix} \dot{\delta} \\ \vdots \end{bmatrix} = \frac{1}{P_2 - P_1} \cdot \begin{bmatrix} P_2 P_1 - rC_0 - 2DP_1 + P_1' & P_2^2 - rC_0 - 2DP_2 + P_2' \\ -P_2^2 + rC_0 + 2DP_1 - P_1' & -P_1 P_2 + rC_0 + 2DP_2 - P_2' \end{bmatrix} \begin{bmatrix} \delta \\ \varepsilon \end{bmatrix}$$

Making the nondiagonal elements zero, we obtain

$$\begin{bmatrix} \dot{\delta} \\ \dot{\epsilon} \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} \begin{bmatrix} \delta \\ \epsilon \end{bmatrix}$$
(2.3)

where P_1 and P_2 are two different solutions of the Riccati equation $\dot{P} = 2DP - P^2 + rC_0 \cdot$

(2.4)

Using
$$P = \begin{bmatrix} p_{11} & p_{12} \\ & & \\ p_{21} & p_{22} \end{bmatrix}$$
,

equation (2.4) becomes

$$\dot{\mathbf{p}}_{11} = 2\mathbf{p}_{21} - \mathbf{p}_{11}^2 - \mathbf{p}_{12}\mathbf{p}_{21} + \mathbf{r}(1 + 2\mu)$$

$$\dot{\mathbf{p}}_{22} = -2\mathbf{p}_{12} - \mathbf{p}_{22}^2 - \mathbf{p}_{12}\mathbf{p}_{21} + \mathbf{r}(1 - \mu)$$

$$\dot{\mathbf{p}}_{12} = 2\mathbf{p}_{22} - \mathbf{p}_{12}(\mathbf{p}_{11} + \mathbf{p}_{22})$$

$$\dot{\mathbf{p}}_{21} = -2\mathbf{p}_{11} - \mathbf{p}_{21}(\mathbf{p}_{11} + \mathbf{p}_{22})$$
(2.5)

Now let

$$p_{11} = w + z$$

$$p_{22} = w - z$$

$$p_{12} = u - v + 1$$

$$p_{21} = u + v - 1$$
(2.6)

٦

Then equation (2.5) becomes

$$\dot{w} = -1 - w^{2} - z^{2} - u^{2} + v^{2} + r(\frac{2 + u}{2})$$

$$\dot{z} = 2u - 2wz + r \frac{3}{2} \mu$$

$$\dot{u} = -2z - 2uw$$

$$\dot{v} = -2vw$$
(2.7)

The last two equations yield

$$w = \frac{v}{2} \left(\frac{1}{v}\right)$$
$$z = -\frac{v}{2} \left(\frac{u}{v}\right)$$

If we use $p = \frac{1}{v}$ and $q = \frac{u}{v}$, we get

$$w = \frac{\dot{p}}{2p}$$

$$z = -\frac{\dot{q}}{2p}$$
(2.8)

Substituting (2.8) into the first two equations of (2.7), we have

$$p.\ddot{p} - \frac{1}{2}\dot{p}^{2} + [2 - r(2 + \mu)]p^{2} - 2 = -2(q^{2} + \frac{1}{4}\dot{q}^{2})$$
(2.9)

$$\ddot{q} + 4q = - 3rp\mu$$
 (2.10)

Now if we let

$$rp = k_0 + k_1 \cos v,$$
 (2.11)

we find as a solution for (2.10)

$$q = -\frac{3}{4} \mu k_0 - \mu k_1 \cos v + k_2 \cos^2 v \qquad (2.12)$$

If we substitute the solutions (2.11) and (2.12) into (2.9), we obtain (by identification) the values for $k_0^{}$, $k_1^{}$ and $k_2^{}$ as functions of μ and e.

For k₀, we obtain

$$k_0 = \pm \frac{4}{c}$$

with c =
$$\sqrt{\frac{4e^4}{(3\mu+1)^2} + \frac{4e^2\mu}{(3\mu+1)^2} - (\mu+3) + \mu(9\mu-8)}$$
 (2.13)

This will yield two different solutions, P_1 and P_2 , if $c \neq 0$ and $c^2 > 0$.

So $c(\mu,e) = 0$ will give vs (analytically) a transtion curve in the $\mu-e$ plane, which corresponds to one of the transition curves (IE) that Robe obtained numerically.

This curve can be written as

$$\frac{4e^4}{(3\mu + 1)^2} + \frac{4e^2\mu}{(3\mu + 1)^2} (\mu + 3) + \mu \cdot (9\mu - 8) = 0$$
(2.14)

The elements P_{ij} of P_1 and P_2 are

$$p_{11} = \frac{-(2\mu + 1)e \sin v}{(3\mu + 1 + e\cos v) (1 + e\cos v)}$$
(2.15)

$$p_{22} = \frac{-(\mu + 1 + 2e\cos v) e \sin v}{(3\mu + 1 e \cos v) (1 + e \cos v)}$$
(2.16)

$$p_{12} = \frac{(3\mu + 1)(1 - \frac{3}{4}\mu \pm \frac{c}{4}) + \frac{e^2}{2} + 2e(\mu + 1)\cos v + e^2\cos 2v}{(3\mu + 1 + e\cos v)(1 + e\cos v)}$$
(2.17)

$$p_{21} = \frac{-[(3\mu + 1) (1 + \frac{3}{4}\mu \pm \frac{c}{4}) + \frac{e^2}{2} + 2(2\mu + 1)e\cos v]}{(3\mu + 1 + e\cos v) (1 + e\cos v)}$$
(2.18)

3. **STABILITY ANALYSIS.**

Now we perform a stability analysis using the Floquet theory, on the two independent second order systems (2.3)

$$\dot{\delta} = P_1 \delta \tag{3.1}$$

$$\dot{\epsilon} = P_2 \epsilon$$
 (3.2)

Both equations admit solutions for which

$$u(v + 2\pi) = s_i u(v)$$
 (i = 1,2)

where s_i are the roots of the characteristic equation

det
$$[X^{-1}(v).X(v + 2\pi) - sE] = 0$$
 (3.3)

where X(v) is a fundamental solution matrix of (3.1) (or (3.2)). Equation (3.3) can be written

$$s^2 - 2\alpha s + 1 = 0$$
 (3.4)

For stable solutions,

or

$$|\alpha| < 1 \tag{3.5}$$

Thus the transition curves in the (μ -e) plane, separating stable and non-stable regions, will be given by

$$|\alpha| = 1$$

s = ± 1 (3.6)

Taking X(v = 0) = E, equation (3.3) becomes

where
$$X(2\pi) = \begin{bmatrix} \alpha & \beta \\ \gamma & \alpha \end{bmatrix}$$
 is the monodromy-matrix and $\alpha^2 - \beta\gamma = 1$.

It can be shown (R. Meire and A. Vanderbauwhede [3]) that

200

$$X(2\pi) = SX^{-1}(\pi)SX(\pi)$$
(3.7)
$$S = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

where

This implies that we only have to integrate the equations over π instead of 2π .

One can also prove that for $s = \pm 1$, one of the elements of $X(\pi)$ becomes zero which saves an additional 10% of computer time.

4. RESULTS.

We applied this method to the equations of (3.1) and (3.2). Equation (3.1) yielded two transition curves: FM and FE. Equation (3.2) yielded one transition curve HM. All results are given in Fig. 1.

The curve IE is the analytically obtained curve from equation (2.14). Along

$$\left\{ \begin{array}{ll} FM \quad \beta=0 \quad \mbox{ and } \quad \alpha=-1 \\ FE \quad \gamma=0 \quad \mbox{ and } \quad \alpha=-1 \\ HM \quad \beta=\gamma=0 \quad \mbox{ and } \quad \alpha=\ 1 \end{array} \right.$$

The intersection of the curves FE and IE can be obtained very accurately (Robe was not able to give precise coordinates).

The point E is determined as that point on the curve IE for which the characteristic roots of (3.1) are -1. The coordinates of the interesting points in the μ -e plane are

point F

$$\begin{cases}
\mu = 0.928053... = \frac{5 + \sqrt{97}}{16} \\
e = 0
\end{cases}$$
point I

$$\begin{cases}
\mu = 0.88888... = \frac{8}{9} \\
e = 0
\end{cases}$$
point E

$$\begin{cases}
\mu = 0.8596848 \\
e = 0.4531741
\end{cases}$$

The stable region consists of the shaded area in Fig. 1 and is now determined much

more accurately than in Robe's paper where the fourth-order system (2.1) was used.

ACKNOWLEDGEMENTS.

The author thanks Prof. Dr. P. Dingens and Prof. Dr. H. Steyaert for reading the manuscript and for their valuable suggestions on this work.

REFERENCES

- 1. ROBE, H. A new kind of 3-body Problem, Cel. Mech. 16 (1978), pp. 343-351.
- TSCHAUNER, K. Die Aufspaltung der Variations-gleichungen des Elliptischen Eingeschränkten Dreikörperproblems, <u>Cel. Mech. 3</u> (1971), pp. 395-402.
- MEIRE, R. and VANDERBAUWHEDE, A. A useful Result for Certain Linear Periodic Ordinary Differential Equations, <u>J. Comp. and Applied Math. 5</u>, N° 1 (1979), pp. 59-61.