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ABSTRACT. A graph is subeulerian if it is spanned by an eulerian supergraph.

Boesch, Suffel and Tindell have characterized the class of subeulerian graphs and

determined the minimum number of additional lines required to make a subeulerian

graph eulerian.

In this paper, we consider the related notion of a subsemi-eulerian graph, i.e.

a graph which is spanned by a supergraph having an open trail containing all of its

lines. The subsemi-eulerian graphs are characterized and formulas for the minimum

number of required additional lines are given. Interrelationships between the two

problems are stressed as well.

KEY WORDS AND PHRASES. Spanning walks, Eulerian graphs, Sub-Elerian graphs, Semi-
Eulerian graphs

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 05C35.

i INTRODUCTION

Although the study of eulerian graphs, initiated by Euler’s solution of the

Knigsberg Bridge Problem in 1736, gave birth to graph theory, there remain inter-
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esting questions concerning related concepts.

The Chinese Postman Problem [1,2] is a celebrated example of such a question.

This problem is concerned with the minimum number of repetitions of lines of a

graph G which are required if one is to traverse the graph in such a way as to visit

each line at least once. Boesch, Suffel and Tindell [3,4] considered the related

question of when a non-eulerian graph can be made eulerian by the addition of lines.

In this paper we consider the problem of when a nonsemi-eulerian graph can be made

semi-eulerian by the addition of lines. We characterize "subsemi-eulerian" graphs,

i.e., those nonsemi-eulerian graphs which are spanning subgraphs of semi-eulerian

graphs. Generalizing the notion of a pairing of points of a graph first introduced

by Goodman and Hedetniemi [5] in their study of the Chinese Postman Problem and

then used by Boesch, Suffel and Tindell in their study of "subeulerian graphs", we

specify the minimum number s+(G) of lines which must be added to a subsemi-eulerian

graph to obtain a semi-eulerian spanning supergraph.

We will consider the following problems:

i) given a (possibly disconnected) multigraph, when is it possible to obtain a

semi-eulerian spanning super multi-graph by the addition of lines and what is the

minimum number of required lines?

2) given a (possibly disconnected) graph, when is it possible to obtain a semi-

eulerian spanning supergraph by the addition of lines (necessarily from the comple-

ment of the graph) and what is the minimum number of required lines?

Although the multigraphs problem is rather easily answered, its solution pro-

vides valuable insight into the second problem. The second problem is treated both

for connected and disconnected graphs.

An answer to the minimum number of additional lines question is given in both

cases.

2 PREL IMINARIES

In this paper, we make use of standard graph-theoretic notions, terminology,

and notation set forth in the book by Harary [6]. For the sake of completenes we

repeat some of the basic ideas and reintroduce some pertinent notions and results
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from a previous paper [4].

A graph G (V,X) has a finite point set V and a set X whose elements, called

lines, are two-point subsets of V. A multigraph is defined similarly except that

more than one line is permitted between two points. A graph H (U,Y) is a sub-

graph of G (V,X) if U V, Y X and the elements of Y join points of U. H s_

G if U V. The degree of a point is a multi-graph is the number of lines incident

to it.

A walk W in a graph is an alternating sequence of points and lines v0, Xl, Vl,

x2, v2, Vn_l, Xn, Vn such that x.1 has end points vi_1
and vi for i i, ...,n.

In a graph, the notation for a walk is redundant, so we shall shorten it to Vo,Vl,...,
v
n

A graph is connected if, for each pair of points there is a walk joining them.

A maximally connected subgraph of a graph is a component of the graph. A walk W:

v0, xI, vI, Vn_I, xn, Vn is closed if v
0 Vn.

A trail is a walk for which x. # x0 whenever i # j, i.e., no line appears
i J

more than once.

An eulerian trail is a closed trail which contains all the lines of the graph

and an eulerian graph is one which has an eulerian trail. In 173g, Euler proved

the first theorem of graph theory: A multigraph is eulerian iff it is connected

and each point has even degree. Of those multigraphs which are not eulerian, the

ones which can be made eulerian by the addition of lines are called subeulerian.

The minimum number of lines needed to produce a spanning eulerian supermultigraph

of the multigraph M is called the eulerian completion number and is denoted by

+
e (M). A subeulerian graph G is a noneulerian graph which is contained in a spanning

eulerian supergraph. The minimum number of lines which must be added to G is de-

noted by e+(G).
THEOREM i. (SUBEULERIAN MULTIGRAPHS) Every noneulerian multigraph is sub-

.ulerian. If P0 denotes the number of points of the noneulerian multigraph M having

odd degree and k the number of components of M containing only points of even
e

degree, then 1
e+(M) P0 + k

e
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Now a path in a multigraph is a walk P: v0,xl,vl,...,Vn_l,Xn,Vn with proper-

ty that v. # v. whenever i # j i.e., no repeated points. The points v
0

and v

are called the end points of P and we write p {v0’Vn }" A collection p of paths

from the graph L with S U P and SP n P’ for all pairs of distinct paths
Pgp

P, P’ g P is referred to as a pairing of S on L. If G (V,X) is a graph, then

G (V,X) denotes the complement of G, i.e., x X iff x X. We will denote by

@(G) the set of all odd degree points of G. A pairing P of @(G) on G will hence-

forth be referred to simply as a pairing. Pairings are needed to "complete" con-

netted subeulerian graphs to eulerian graphs.

A minimum pairing of @(G on is a pairing P with the property that
Pgp

is minimum over all pairings of @(G) on (IX(P) denotes the number of lines in P).

The number of lines in such a pairing is denoted by m(@(G), G.
The complete bipartite graph K consists of a point set V partitioned into

m,n

two parts U and W with IUI m, IVl n and all possible lines joining a point of

U to a point of W but no connections internal to U or W.

Complete multipartite graphs are defined similarly; the only difference being

that the point set V is partitioned into more than two disjoint parts.

THEOREM 2. (SUBEULERIAN CONNECTED GRAPHS) The following are equivalent for a

connected graph G:

i) G is not subeulerian.

2) G is spanned by K2m+l,2n+I for some value of m.

3) G has evenly many points and G has at least two components with an odd

number of points.

If G is subeulerian, then e+(G) m(@(G), ).0 If a graph is disconnected, then

each pair of its points may be joined in the complement by a path of length no great-

er than two. Thus, pairings of odd degree points of a disconnected graph may always

employ paths of length no more than two.

The complete graph K consists of a point set with p points and all possible
P

lines between distinct pairs of points.
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The union of two graphs H (VH,XH) and L (VL,) is the graph

H u L (VH u VL, u ).
THEOREM 3. (SUBEULERIAN DISCONNECTED GRAPHS) With the sole exception of

K
1

u n+l’ all disconnected graphs are subeulerian. If r denotes the number of

paths of length two required in a minimum pairing of the odd degree points of the

disconnected graph G, which is not the union of two eulerian components, then

m(O(G), G) if r > k
e

e
+
(G)

i
m(@(G), G) P0 + k if r k

e e
1
-P0 + k if r < k

e e

If G # K
I

u K2n+l and G E
1

u E
2
where E

1
and E

2
are eulerian, then

e+(G) 4 if E
1

and E
2

are complete; 3 otherwise.

A multigraph may fail to be eulerian and yet may have a trail which includes

all the lines of the multigraph. This is the case when the trail is not closed.

Such a graph is referred to as semi-eulerian and it is known that a .multigraph is

semi-eulerian iff it is connected and has exactly two points of odd degree. Of

those nonsemi-eulerian multigraphs, the ones which are contained in some spanning

semi-eulerian super-multigraph are called subsemi-eulerian. The minimum number of

additional lines required by a subsemi-eulerian multigraph M to produce a semi-

eulerian super-multigraph is called the semi-eulerian completion number and is

+
denoted by s (M. The notion of subsemi-eulerian graph and the symbol s+(G)- are

defined similarly.

3. SUBSEMI-EULERIAN MULTIGRAPHS

As was stated in Theorem i, every non-eulerian multigraph M is sub-eulerian

and e+(M) P0/2 + ke. Thus, by the addition of all but one of the lines required

to make M eulerian, i.e., with Po/2 + ke i lines, we may create a semi-eulerian

spanning super-multigraph of M. Furthermore, if M is a semi-eulerian spanning

super-multigraph of M, only one line need be added to M to obtain a spanning eulerian

super-multigraph of M. Thus, it follows that

i
s+(M) -> e+(M) i p.. + k I

e

and we may state
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THEOREM 4. (SUBSEMI-EULERIAN MULTIGRAPHS) Every noneulerian multigraph M,

1is subsemi-eulerian and s+(M) -D_ + k I. Anynot already semi-eulerian, e

eulerian multigraph M is also subsemi-eulerian with s+(M) i.

4. CONNECTED SUBSEMI-EULERIAN GRAPHS.

First, we observe that if G is complete then it is certainly impossible to add

lines to G from G to make G semi-eulerian. On the other hand, it is clear that any

subeulerian graph, connected or not, which is not already semi-eulerian, can be made

semi-eulerian by the addition of all but one of the lines of a set which would

render the graph eulerian. What if the connected graph G is neither subeulerian

not semi-eulerian? Then, by Theorem 2, G is spanned by some K2m+l,2n+I, or equi-

valently, G has an even number of points and at least two of the components of G

have an odd number of points. Suppose that G has exactly two components with an

odd number of points. Then, denoting the components of G with an odd number of

points by G
1

and G2, those with an even number of points by G3,...,Gn, and the odd

degree points of G lying in G
i
by O@ for i 1 ...,rwe note that 01 and 02 have

odd cardinality while 03,...,0n each have an even number of points. Thus, if P1 is

a pairing of all but one point of 01 on GI, P2 is a pairing of a.ll but one point of

02 on G
2
and Pi is a pairing of the set 0.1 on K for i 3,...,nit follows that

GU u P is semi-eulerian. It is natural to conjective that, in this case,
PgP.

l
n+

s (G) rain m (01 {u}, GI) + rain m(02 {u}, G2) + m (0i,Gi), (4.1)

u01 ue02 i=3

This is indeed the case but, before we can be sure of this, we must first show

that the additional lines needed to make a connected subsemi-eulerian graph a semi-

eulerian graph must include a pairing of all but two of the odd degree points of G

on G. The reason for concern in this regard is that it is possible for a spanning

semi-eulerian supergraph of a graph G to have two odd degree points which were

originally even in G.

DEFINITION i. (SEMI-PAIRINGS) If P {PI’’’" ’Pn is a collection of paths

with lines from G, with u P consisting of all but two points of 0(G), and
PgP

8Pi o SP. for i # j, then P is a semi-pairing of 0(G) on G.
J
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Now, with the aid of this formal notion, we establish

LEMMA 5a. (SEMI-EULERIAN SUPERGRAPHS CONTAIN SEMI-PAIRINGS) If is a span-

ning semi-eulerian supergraph of the subsemi-eulerian (possibly disconnected) non-

eulerian graph then - G contains a semi-pairing of @(G) on .
PROOF. Remove all cycles of G G from G and denote the resulting graph by H.

Now H is a spanning (possibly disconnected) supergraph of G which has precisely

two odd degree points. Furthermore, H-G is a forest so there are line disjoint

paths PI"’’’ Pn with SPi n P.j for each pair of distinct indices i and j and

n
H-G u P.. To see that this is the case, choose PI to be a longest path in H-G,

i=l i

P2 to be a longest path in H-(G u P1 ), and so on until all lines of H-G have been

accounted for. Now, if P {u vi} and each of the points u
i

and v have odd de-
i i’ i

gree in G, then P1 ’Pn is a semi-pairing of @(G) on G. Suppose there exists an

index i such that Uol and v.1 have even degree in G. Then P {Pl,...,Pi_l,Pi+l,...Pn
is a pairing of @(G) on G for all the points distinct from u

i
and v

i
must be even

in H. Of course, removal of any path from P yields a semi-pairing of @(G) on G.

Finally, if there are indices i and j such that u. and u. have even degree in G and

v. and v. have odd degree in G, then P’ {Pklk # i j} is a semi-pairing of @(G) on G.
1 j

Now, in returning to the original problem; we see that, if G has exactly two

components with an odd number of points, a semi-pairing of @(G) on G must leave

exactly one point in each of the odd components with odd degree. Furthermore, it

is also clear that, if the graph G on an even number of points has four or more corn-

ponents with an odd number of points, no semi-pairing exists. Finally, if G is sub-

eulerian and noneulerian, then a semi-pairing would have to leave two odd degree

points in a single component of G. Thus, in this case,

s+(G) rain rain (m(@.- {u,v}, Gi) + E m(@j, Gj)) (4.2)
l<i<n u,vc@

1
i

j#i

(where @. the collection of odd degree points of G within the component G
i

of G).

Summarizing the foregoing discussion, we have

THEOREM 5. (SUBSEMI-EULERIAN CONNECTED GRAPHS) The following are equivalent

for a connected graph G:



560 C. SUFFEL, R. TINDELL, C. HOFFM_AN, AND M. MANDELL

(i) G is not subsemi-eulerian.

(2) G is complete or G is spanned by a complete multipartite graph having

four odd parts.

(3) G is complete or G has an even number of points and G has four or more

components with an odd number of points.

If G is subsemi-eulerian, then s+(G) i if G is eulerian or is given by (2)

or (I), depending on whether G is subeulerian or not.

Before proceeding to the disconnected case, let us consider the natural ques-

tion of whether, for a subeulerian graph, a minimum semi-pairing may be extracted

from a minimum pairing by removing a longest path from the minimum pairing? Doubt

is cast on the validity of such a conjecture when the possibility of completing a

subeulerian graph to a semieulerian nonsubeulerian graph is granted. We illustrate

this situation in our first example.

EXAMPLE I. A CONNECTED SUBEULERIAN GRAPH WITH A SEMIEULERIAN SPANNING SUPER-

GRAPH WHICH IS NOT SUBEULERIAN.

Consider the connected graph G with complement G shown in the accompanying

figure.

Figure i

G has 2k + 6 points with k -> 3. The points

and have odd degree in Gv
0
v
0 Vk+I Vk+I

and it is easy to see that the paths PI
v0,vl,...,Vk+I and PI v0’vl’’’’’Vk+l
constitute a minimum pairing of the odd

degree points of G on G. Thus m(@(G),G)

2(k+l) and it readily follows that

m(@(G),G) less the length of a longest path

’} is k + i On the other hand, the path Pin the minimum pairing P {Pi,Pl Vk+I

u,w,vk+I serves as a minimum semi-pairing of @(G) on G which when added to G yields

a non-subeulerian graph. Thus s+(G) 3 < k + i. Furthermore, the difference be-

tween the numbers k + i and 3 attains all positive integral values as k ranges

over the integers _> 3.
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Next suppose P is a minimum semi-pairing of @(G) on G such that Gu u P is
PeP

subeulerian. Can P be enlarged to a pairing of @(G) on G which contains a path of

length long enough to make the size of the pairing larger than m(@(G), G)?

EXAMPLE 2. MINIMUM SEMI-PAIRING WHICH CANNOT BE EXTENDED TO MINIMUM PAIRINGS.

A minor modification of the graph given in Example I yields a graph G on

2k + 6 points (k > 3) with complement as shown in Figure 2. All the conclusions

reached in Example i, save for one, are valid here.

V. ’V

Figure 2.
Figure 3.

to G yields a semi-eulerian graphIn this case, the addition of P Vk+l,U,W,Vk+1
which is subeulerian. The graph G with complement shown in Figure 3 is an example

of subsemi-eulerian graph on an odd number of points which contains a minimum semi-

pairing that cannot be extended to minimum pairing. In this case, m(@(G),G) 2k+l

(k > 4) so that the value of m(@(G),G) less the length of a longest path in a rain-

+
imum pairing is k. Of cours s (G) 3 so that k > s+(G) whenever k -> 4.

5. DISCONNECTED SUBSEMI-EULERIAN GRAPHS.

We recall that every disconnected graph with the sole exception of K
I

u K2n+l
(n > 0) is subeulerian (Theorem 3). Because the addition of any line from K

1
to a

point of K2n+l yields a semi-eulerian graph, all disconnected graphs are subsemi-

eulerian. Furthermore, since graphs are also multigraphs, it follows by Theorem 1

1 + 1
that s+(G) > P0+k I. In fact in some instances s (G) P0 + k i.

e e

In order to completely determine s+(G), we first verify the following facts:

if G is disconnected, then
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(i) every minimum pairing or semi-pairlng of (G) on G must use paths of

length at most two, and

(2) the size of a minimum semi-pairing of O(G) on is m(O(G),G) 2 or

m(@(G),G) i, the latter being the case only when G contains a complete

matching of @(G).

To begin with, we shall show that semi-pairings and pairings may be found using

paths of length at most two. Let M denote a maximum matching of @(G) in G: if

m
M # @, we write M {ei} i=I. Denote the endpolnts of e

i
by u

i
and v

i
for each

i I ,m. Of the remaining vertices in @(G), of which there are 2n

(m 0 if M l no two are adjacent. If {Um+l,Vm+l} {unr+2,Vm+2} {Um+n,Vm+n}
m

denotes an arbitrary pairing of the vertices of @(G) u {ul,vl) then there are
i=l

paths Pm+l’" ’Pm+n’ of length two, which join the respective pairs. Of course,
n+m

the set of internal points of Pn+l’’"’Pn+m is disjoint from u {ul,vi} so that
i=n+l

paths are mutually edge-disjoint. Furthermore, the paths of P M u {P1}"-lx.mthese

are edge-disjoint. Hence P is a pairing of @(G) on G while, P’ obtained from

by deleting Pm+n if P contains paths of length two or e if P M is a semi-pair-
m

ing of 8(G) on G.

In due cours we shall see that P and P’ are minimum. Suppose that

S {S
I S10(G) I/2} is a minimum pairing of @(G) on G. If each path of S has

length at least two, then it readily follows that P is a minimum pairing and each

path of S has length exactly two. On the other hand, if SI,...,Sk denote the paths

of S with length one, then they constitute a matching of @(G) in G and, therefore,

k < m. Again it readily follows that P is a minimum pairing. In fact, k < m is

impossible so that every minimum pairing must include a maximum matching of O(G).

Furthermore, it is clear that each path Sm+l,...,Sm+n must have length two. The

same argument applies for seml-pairings. Indeed, every minimum seml-palrlng must

use paths of length at most two, P’-descrlbed above is a minimum seml-palrlng,

and every minimum semi-pairlng includes a maximum matching of @(G) in the event

that P has at least one path of length two. Moreover, the size of a minimum semi-

pairing is m(@(G),G)-2 if P contains a path of length two and m(@(G),G)-I otherwise.
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As the final major step in the development, we show that one of the two values

1
P0 + ke i and m(Q(G),G) 2 is always attained. Indeed if P0 0, so that G

is the union of two or more eulerian components, G may be made semi-eulerlan by

the addition of a path of length k I - P0 + k l, (See Figure (4)).
e e

k eulerian componentse

Figure 4

Now, it was stated in the section of preliminaries that, whenever the number of

paths of length two of a minimum pairing of G is less than or equal to k e+(G)
i +(G)P0 + ke. Hence, in this case, s P0/2 + ke l. On the other hand, if the

number of paths of lengths in a minimum pairing exceeds k, then e+(G) m(@(G),).
e

Furthermore, if P is a minimum pairing of (G) on G such that H=G, u P is eulerlan,
PeP

then there must be a path P of length two in P with all three points of P in the

same component of G. Thus removal of P from H yields a seml-eulerian graph and

+
s (G) m(@(G),G) 2.

THEOREM 6. (DISCONNECTED SUBSEMI-EULERIAN GRAPHS) Every disconnected graph

+
is subsemi-eulerian. If we set m(@(G),G) 0 when (G) , then s (G)

1
max P0 + k i m(@(G),G) 2).

e
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