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ABSTRACT. A proof of Whitehead’s second lemma which is independent of the first

Whitehead lemma is given.
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1. INTRODUCT ION.

THE SECOND WHITEHEAD LEMMA FOR LIE ALBEBRAS. Let L be a finite-dimensional

semi-simple Lie algebra of characteristic O, M a finite-dimensional L-module and

(x,y) g(x,y) a bilinear mapping of L L into M such that

g(x,x) O, (1.1)

g([xy],z) + g(x,y)z + g([yz],x) + g(y,z)x + g([zx],y) + g(z,x)y Oo (1.2)

Then there exists a linear mapping x- x of L into M such that

]g(x,y) x y y x- [xy (1.3)

The standard proof of the second Whitehead lenrna for Lie algebras of charact-

eristic 0 [i, p. 89] considers the three cases: F, the Casimir operator, is non-

singular; F is nilpotent; and F is neither non-singular nor nilpotent and; in the

case where F is nilpotent, the proof depends on the first Whitehead lemma. The

purpose of this note is to give a simplification of the proof for the case F is

nilpotent which is independent of the first Whitehead lemma. This, of course, will

simplify the proof of the Levi theorem which is one of the main uses of the lemma.
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For our purposes here we will need the following lemma, the proof of which

follows easily from Theorem 2 of [2] and the properties of the complementary basis.

LEMMA i. If A is a flnite-dimensional Lie algebra which has non-degenerate

(eIKilling form with basis e2, e and complementary basis (e e
2n

e), then for a bilinear mapping f(x,y) of A x A into A

f([ex], [Yek] = f([ekx], [ye]).
k k

2. PROOF OF THE MAIN RESULT.

We introduce the following notation: R is the kernel of the representation

of L determined by M, LI
is an ideal such that L R LI, (ui) and (ul);

i i, 2, m are dual bases of LI relative to the trace form of the given

representation, F is the Casimir operator determined by the dual bases and is the

in M Suppose that F is nilpotent, then m 0, R--L, andmapping x (xui)ui
i

the representation determined by M is the zero representation. Then (1.2) reduces

to:

g([xy],z) + g([yz],x) + g([zx],y) O, (2.1)

Let (ei) and (ei’); i i, 2, n be a dual basis for L and in (2.1) set

and sum over i to getz [wei] y e
i

Since L is non-degenerate in the sense of [2], Theorem 2 of [2] implies that

[we ]] -w and (2 2) reduces to[el i

i{g([xe] [wei])- g(w,x)+ g([eix], [ew]))= 0. (2.3)

We can verify that

([xel], [wei])+ g([xei], [we]))
g([xe], [wei]), by Lemma i.
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Now if we substitute the above result in (2.3), we get

g(w,x) _wg([ei [x]], .) o.

Thus, we obtain a linear mapping e of L into M such that

g(w,x) [wx] g([e
i

[wx]], el).
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