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ABSTRACT. Laminar natural convection flow and heat transfer of a viscous incom-

pressible fluid confined between two long vertical wavy walls has been analysed

taking the fluid properties constant and variable. In particular, attention is

restricted to estimate the effects of viscous dissipation and wall waviness on the

flow and heat transfer characteristics. Use has been made of a llnearlzatlon tech-

nique to simplify the governing equations and of Galerkln’s method in the solu-

tlon. The solutions obtained for the velocity and the temperature-flelds hold good

for all values of the Grahof number and wave number of the wavy walls.
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INTRODUCTION.

Vajravelu and Sastrl [1,2] have reinvestigated Ostrach’s work [3] of laminar

natural convection flow and heat transfer of viscous incompressible fluids confined

between two long vertical walls with a view to estimate the effect of wall-wavlness

on the flow and heat transfer characteristics in two cases, namely, (1) when one of

the walls is wavy and (ll) when both the walls are wavy. The results of their

analyses, however, seem to be meaningful for small values of the Grashof number only
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(the effect of viscous dissipation is likely to be negligible then!). But for

large values of the Grashof number (definitely possible in many free convection

studies), the assumption of constant fluid properties and neglect of viscous

heating effects tend to be questionable. Indeed, Hong and Bergles [4] and Hwang et

al. [5] among several others have pointed out that the assumption of constant fluid

properties is chiefly responsible for large deviations between analytical predict-

ions and experimental data.

The present work is therefore an attempt to re-examine the works mentioned in

[1,2] when viscous heating effects are considered and when the fluid properties are

both constant and variable. Approximate solutions of the governing equations have

been obtained by Galerkin’s method employing orthogonal polynomials which has proved

to give results valid for all values of the wave number of the wavy walls and for

all values of the Grashof number. With the help of these solutions, the flow and

heat transfer characteristics have been evaluated numerically both when the fluid

properties are constant and when they are variable. A comparative study of the

results in the two cases when the viscous heating effects are taken into account

has also been made; a detailed description of which has been given in 5.

2. FORMULATION OF THE PROBLEM.

Consider a channel made up of two long vertical wavy walls parallel to each

other. Take the X-axis vertically upward and the Y-axis perpendicular to it in

such a way that the wavy wall at the left may be represented by Y -d + g cos % X

and the other wall by Y d + Eg cos % X (E, the ratio of the amplitudes of the

wavy walls 0(I)). Let an infinite aount of viscous incompressible fluid be con-

fined between the two walls which are at rest and maintained at two constant temp-

eratures TWL and TWR respectively.

Under the assumptions that the flow is laminar, steady and two dimensional and

that the fluid properties are temperature dependent the basic equations that govern

the flow and heat transfer of the problem under consideration are given in Ostrach

[3]. The boundary conditions are the well-known no-slip conditions of the velocity

at both the walls and that the fluid temperature at the wall is equal to that of the wall.
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Making use of the dimensionless variables (refer to [3])

X Y U V PD T- Ts
x , y , u K. R v K. p KGr.

0oUR2
@ K.

TWL TS
(2.1)

fx 8o(TwL- Ts)d2
with UR

o
assuming that the fluid properties are temperature dependent (refer to [6]), and

using a linearizatlon technique valid for small values of e (e << I, refer to [i]),

we have reduced the governing equations into sets of ordinary differential equations

for the mean parts u @ and the perturbed parts 9, 0 as
o o
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dPo
where C(= -x is taken as zero in the subsequent analysis, a prime denotes differ-

entation with respect to y, the functions @, 0 are related to the perturbed parts

Ul’ Vl’ 01 through the relations

u
I 8y Vl x (2.6)

ilx= RI.{E e (Y)}’ @i RI.{E eilX.0(y)}, (2.7)

with RI(F) denoting the real part of F, and

Pr (=

Gr (=

Co p is the Prandtl number,
k
o

fx o(TWL Ts)d3
the Grashof number

2
o

8 fxd
K (= Pr PrGr.

o
C
P

a dimensionless constant,
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(= PrGr qd
2

ko (TwL TS
the heat source parameter,

TWR Ts
TWL TS

the wall-temperature ratio, and

A (= ao (TwL- To) and B
k

(= b (TwL- To)) are dimensionless numbers describing

the temperature-dependence of the fluid properties (It is worth noting that,

herein, the specific heat C is taken constant as any changes in it would be much
P

smaller than g).

The relevant boundary conditions on u 8 and 0 are
o o

uo(-I) 0 u (+i) 8 (-i) K, 8 (+i) mK,
0 0 0

(2.8)

(-I) 0 (+i) ’ (-I) u’ (-i) O’ (+i) Eu’o(+I)O

0(-i) O’ (-i) 0(+i) -E0’ (+i)
o o (2.9)

3. SOLUTION OF THE MEAN PARTS (Uo, 8o) AND THE PERTURBED PARTS (Ul, Vl, el).

In this section we give a brief account of the approximate solutions obtained

for the velocity- and the temperature-fields by the use of Galerkin’s method employ-

ing orthogonal polynomials (refer to [8]).

As the equations (2.2) (2.3) are non-linear, we have rphrased them using an

iteration scheme and taking C equal to zero, as

A A
(1 + ? 0 u" + O + U O’ u’ 0 (3 1)

or-i or or -- or-i or-i

B
k

ABk 0" + (O’or_l)2(i +- 0or_l) or - + (i +- 0or_l) (Uor_l)2 + K 0, (3.2)

with Uor(-l) 0 Uor(+l), Oor(-l) K, Oor(+l) mK, r > 0, (3.3)

and u’ 0’ 0
or-i Oor-i or-I

Approximating u and O as
or or

Uor(Y) Z air-Pi(Y), 0or(Y) Po(Y) + Z b
i=l i=l

ir. Pi(y), (3.4)

where Po (y) K(m-2 i)
-Y + K(m +2 i) .Y2,

2 y2Pl (y) i y P2 (y) y(l ),
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1 y2 y2 i
P3 (y) - (i )’ P4 (y) y( - y2) (i y2) and so on, (note

that Pi (y) satisfy the non-homogeneous and homogeneous parts of the boundary condi-

tions respectively when i 0 and when i > 0 and further that Pi(y) (i O) are

orthogonal to each other over the interval -i -< y < i) and substituting them in

equations (3.1) and (3.2) there result two resldues: rl(y, air, blr and r2(y, air,

blr). Orthogonalizing rI
and r

2 with Pi(i -> I) over the interval -I y < i gives

a set of linear equations for a
i
and bi, solving which the values of the unknowns

ai, b
i

are determined. The foregoing method may be termed G(p,q) method whenever a

p-term approximation for u and a q-term approximation for O are employed.
or or

Using G(3,3) method, the constants a
i
and b

i
are determined directly when r-0

and iteratively when r # O, till a convergence criterion is met at r r (say).
c

(It has been observed that the G(3,3) method gives results of considerable accuracy).

The expressions (3.4) when r 0 and r r give the solutions for u and @ in the
c o o

absence of dissipation and in the presence of dissipation respectively. It may

however be noted that the solutions Uo, @o correspond to the CFP-case when A and

B
k

are both zero and to the VFP-case when they are not zero.

In a similar way approximating and by two different orthegonal polynomials

and using them in equations (2.4), (2.5) we have obtained solutions for them by

G(3,3) method. Making use of these and in the relations (2.6), (2.7) we got

the expressions for the perturbed parts Ul, Vl, @i"
4. FLOW AND HEAT TRANSFER CHARACTERISTICS.

As in reference [i], here too the shear stress, heat transfer coefficient and

the pressure drop at the two walls are defined and non-dlmensionallzed. In view of

the linearizatlon technique [i] we write the shear stress (T) and the heat trans-

fer coefficient (Nu) at either wall, in terms of mean and perturbed parts as

T1T(x) T + e (x), Nu(x) Nu + e Nul(x),
and the nondlmensional pressure drop (PDI) given as

pD1 1
(x) KGr [Pl(X’) PI(X’Y) ]yyw’

I I Pl Pl
with PI(x’Y) dPl dx +-y dy) perturbed pressure.
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With the help of the known expressions for Uo, 0o and Ul, vI, @i’ the express-

ions for the shear stress (T), Nusselt number (Nu) and pressure drop (PDI) at both

the walls have been found, but not presented here for the sake of brevity. The

perturbed parts of the shear stress (TI) and the Nusselt number (NuI) may be expressed

in terms of their amplitudes and phases as

T
L

at the left wall and similarly those at the other wall. From the definition of the

pressure drop, it may be observed that it indicates the difference of the pressure

at any point (x,y) in the flow field from that at the center of the channel.

Taking Pr 0.72 (air), and given several sets of values to the parameters K,

m, =, E, Gr and , the expressions for the shear stresses, Nusselt numbers and

pressure drops at the walls along with those of their amplitudes and phases have

been evaluated numerically in the CFP-case when both A5 and B
k

are zero and in the

VFP-case when A 0.0141405 B
k

0.0120485 (fluid properties for air with T
o

Ts 15C and TWL 20C, refer to [9] and also to [6]).

5. DISCUSSION OF THE RESULTS.

At the outset it is worth mentioning that the flow and heat transfer results

for the dissipation case only have been presented in the figures i and 2.

Figure 1 shows the mean velocity and mean temperature profiles in both the

CFP- and VFP-cases when m 1 and the parameters K, take different values. From

the figure it is clear that the results of the VFP-case are smaller in magnitude

than those in the CFP-case, this behavior being more prominent for large values of

K, than for their small values.

Figure 2 describes the behaviors of the amplitudes of perturbed shear stresses

and Nusselt numbers. From the figures 2(a) and 2(b) it is evident that the ampli-

tudes of the former at both the walls increase with the wave number and tend

asymptotically to non-zero constant values. This asymptotic nature of the ampli-

tudes holds good in the CFP- and VFP-cases as well as in the presence of viscous

dissipation and in its absence. On a close look in to the figures 2(a), 2 (b) it
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becomes evident that the results of the VFP-case are smaller in magnitude than

those of the CFP-case, this behavior becoming significant for large values of and

Gr.

The amplitude-profiles of the perturbed Nusselt numbers shown in figures 2(c),

2(d) are similar in quality with those of the shear stresses in figures 2(a), 2(b)

but in magnitude, the latter assume larger values than the former in almost all the

cases. From the figures 2(c), 2(d) it may be further noticed that as in the case

of the wall shear stresses, here too, the results of the VFP-case are, in general,

smaller in magnitude than those of the CFP-case, this behavior becoming prominent

when and Gr take large values.

From the numerical results it may be pointed out that (I) the effect of viscous

dissipation is to increase the values of the amplitudes considerably and to enhance

the effect of variable fluid properties, (2) the phases of the perturbed shear stress

or perturbed Nusselt number at either wall are consirably smaller in magnitude

than their amplitudes, and that they incrse fr m values of % but decrease

asymptotically to zero for its large values a rut holding good in the CFP- and

VFP-cases, (3) the perturbed parts of shear stress, tummelt number and pressure drop

at either wall are sinusoidal in nature (see expressions (4.1) for TL and Nu ),

and they are almost always positive for 0 < %x </2,become negative for

7/2 < %x < 3/2, and take positive values again fo 3]2 < < 2o This negative

nature of shear stresses in the trough reglomm of th walls indicates physically

that the perturbed flow tends to get separated there. Such instances are numerous

because the wavy walls are infinitely long. However, ths special feature of the

perturbed flow which is of order g, cannot persist in the total flow as this flow

doesn’t dominate the mean one. From the defnition of the pressure drop and from

its above-noted behavior it may be inferred that th flui pressure at either wall

lags behind (exceeds)that at the center of the cnel henever he pressure drops

are positive (negative) in nature. Finally i may concluded from the numerical

computations that in the presence of dIpao t uls of the VFP-case for

large Grashof numbers (Gr i00, say) deae tr ccmmrpats of the CFP-
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case by about 40 per cent in the case of Nusselt numbers and about 20 per cent in

the case of wall shear stresses.
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