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ABSTRACT. We survey research done on the theory of Walsh series during the decade

1971-1981. Particular attention is given to convergence of Walsh-Fourier series,

gap Walsh series, growth of Walsh-Fourier coefficients, dyadic differentiation, and

uniqueness of Walsh series.
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I. INTRODUCTION.

This article surveys recent results on Walsh series. To avoid duplication of

material appearing in Balaov and Rubintein [1970], a decision was made to concen-

trate on the decade 1971-1981. References to earlier work will be made when neces-

sary to relate what is herein reported to that which preceeded it. Discussion of

the relationships between this material and the general theory of orthogonal series

has been left to those more qualified for this task (e.g., Ul’janov [1972], Olevskii

[1975] and Bokarev [1978b])o

In addition to this introductory section, there remain five sections:

II. Walsh-Fourier Series, III. Approximation by Walsh Series, IV. Walsh-Fourier

Coefficients, V. Dyadic Differentiation, and VI. Uniqueness. These sections have

been further divided into consecutively numbered subsections, each dealing with a
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particular facet of the subject and each carrying a descriptive title to help the

reader quickly find those parts which interest him most.

Section Vl is followed by a nearly complete listing of all articles on Walsh

series published during the decade 1971-1981. This listing is ordered alphabetical-

ly and then chronologically. In the course of our narrative these articles will be

cited, as above, by author and by year.

Let rO, rl,.., represent the Rademacher functions, i.e.,

rk(x) sgn(sin(2k+lx)), k >_0, x E [0, I].

Let wO, wI,.., represent the Walsh functions, i.e., w0 and if k 2nl +...+ 2ny

is a positive integer with n > n2 >...> n > 0 then

Wk(X) rn (x)...rn (x).
y

The idea of using products of Rademacher functions to define the Walsh system origi-

nated with Paley [1932]. Thus the system {wk} as defined above is called the Walsh-

Paley svstem. It is interesting to note that this process of putting factors togeth-

er to make an orthonormal system only produces "Walsh-like" functions. Indeed,

Waterman 969], [1982] proved that if 0’ @I is a system of real functions on

[0,I] which satisfies lnl < a.e., n >0, if Ck @nl"’n for k 2nl +...+ 2ny

defines an orthogonal system with lkl a.e., and if Ik2= M for k sufficiently

large, then there exists a measure preserving map of [0,I] onto itself such that

Wk k a.e. for k 1,2,.,. Moreover, the system {k is complete if and only if

the map can be chosen to be a metric automorphism of [0,I].

By a Walsh series we shall mean a series of type W akwk, where aO, al,...
k=O

are real numbers. The nth partial sums of W will be denoted by

n-I
Z akwk ,n>_lWn k=O

By a Walsh-Fourier series we shall mean a Walsh series of the form W[f] Z(R) ak(f)wkk:O

where ao(f), al(f represent the Walsh-Fourier coefficients of some integrable

f, .e.,
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ak(f) I f(t)wk(t)dt k 0
0

Let Lp, _< p < , represent the collection of measurable functions whose pth
power is integrable over the interval [0,I]. Let L represent the collection of

measurable functions whose essential supremum is finite on the interval [0,I], and

let represent the collection of functions continuous on the interval [0,I]. It is

well known that the Walsh functions form a complete orthonormal system in L2.
It is clear that the Walsh functions alternate between +I and -I on the interval

[0,I] and it is not difficult to see that the 2nth partial sums of the Dirichlet

kernel D .=owk are always non-negative. These properties penetrate deeply into

the very essence of the Walsh system. Indeed, Levizov [1980] has shown that any

orthonormal system whose functions fn have exactly n sign changes on [0,I], have

range {+I, -I}, and satisfy fn(O) O, for n O, I, is the Walsh system. And,

Price [1961] proved that among the orthonormal systems whose functions fn alternate

signs on finer and finer partitions of [0,I], as n / , the Walsh system is the only

one whose Dirichlet kernel has non-negative 2nth partial sums. Thus these two fea-

tures distinguish the study of Walsh series from that of other orthonormal systems.

Another distinguishing feature is that the Walsh functions can be identified

with the characters of a certain compact group, 2m. This group, called the dyadic

r _, is the cartesian product of countably many copies of the discrete group {0,I}

endowed with the product topology. Thus a typical element of the dyadic group is a

sequence (xI, x2,...) with each xj 0 or I, j >_ I. The map

(xI, x2...) Z xj2
-j

j:l

identifies the dyadic group with the interval [0,I] much like the map eix / x iden-

tifies the circle group T with the interval [0,2x]. It turns out that if IO’ I
represent the characters of the dyadic group, then k Wk for k 0,I, Thus

each WkO is continuous on the group and satisfies WkO()WkO() WkO( + y- for, ( 2m. This allows one to use theorems about Fourier analysis on the dyadic

group to solve problems about Walsh-Fourier analysis on the interval [O,l]. It also

allows one to pull the dyadic group structure back to the interval [O,l], defining a
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dyadic sum of two numbers x, y. [0,I] by

x + y ( + ) Ixk Yk 12-k’
k:l

where (xI, x2,...) and (YI’ Y2 come from the binary expansion of x and

y and the finite expansion is used when x or y is a dyadic rational. The character

property of WkO means that Wk(X + y) Wk(X)Wk(Y) holds for x, yE [0,I], k >0.

In particular, one can almost view ([0,I], ) as a compact group whose characters

are wO, w and do most Walsh analysis there. The word "almost" is necessary

because }, is not quite I-I. Indeed -l(x) has two distinct images for each dyadic

rational x; one corresponds to the finite expansion and one corresponds to the in-

finite expansion, e.g., (I, O, 0 (0, I, I/2. Thus [0,I] is not a

compact group under + unless each dyadic rational is split into two points. (This

point of view was introduced by Sneider [1940].)

Let f be defined on [0,I]. We shall represent the dyadic moduli of continuity

by

(a, f) sup
O<h<
0, I]

If(x " h) f(x)

and

;p(a, f): sup If(x ; h)- f()IPdx}I/p,
O<h<a 0

< p < , a > O. The function f belongs to Lip(s, Lp) for some 0 < s < if there

exists a constant C such that p(a, f) <_ Cas for a > O. Similarly f belongs to Lips

if If(x + h) f(x) < Ch s for h E [0,I].

A most useful distinguishing feature of the Walsh system is that the 2nth partial

sums of any Walsh series form a martingale. In particular, theorems about martin-

gales contain information about 2nth partial sums of Walsh series. Thus, given any

f E L I, its (martingal )- maximal function is

f*(x) suplW2n[f, x]l x E [0, I]
n>O

its square function is

S(f) (W2k[f ] W2k_ l[f])2
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and it is well known (see Garsia [1973]) that II f*II <_ II S(f) ll and
L L

lls(f) II <_ 51{ f*ll l"L L
The function f is said to belong to dyadic H if

l[fil --IIs(f)ll
H L

is finite. Thus f belongs to d.vadic H if and only if f* is integrable.

Analogous to the classical case, the dual dyadic H is the space of functions of

dyadic bounded mean oscillation, dyadic BMO. This is the space of functions f E L

for which the norm

I ,f(x)- f ]dx" is a dyadic intervalII flIBM0 sup m(I)

is finite. Included in this duality is the "HIder" inequality of Fefferman"

I f(x)@(x)dxl <- /--l[ fll
0 H BMO

This inequality only holds if the integral above is interpreted as

Iof( X) @( x> dx n-lim IoW2n[f, x]W2n[@, x]dx.

Details and references can be found in Garsia [1973]. As in the classical case,

dyadic H can be characterized by atomic decompositions (see Chao [1982b]) and dyadic

BMO enjoys the Carleson decomposition (see Chao [1982a]). Both of these decomposi-

tions provide easy proofs of the duality between dyadic H and dyadic. BMO.

The space dyadic H is not only analogous to the classical Hardy space H l, but

nearly equivalent to it. Indeed, by the atomic theory of Coifman and Weiss [1977] it

is clear that H is a (proper) subset of classical H I. On the other hand, a

recent result of Davis [1980] proves that given f in classical H l, its translates

belong to dyadic H for a.e.x.

Vilenkin [1947] showed that Walsh series and the group 2m are a special case of

a broad theory of Fourier analysis on zero-dimensional groups. Indeed, he proved

that if G is any compact, abelian, zero-dimensional group which satisfies the second

axiom of countability, then there exist primes PI’ P2 such that each ( G can

be identified with a sequence (xI, x2 of integers where 0 <_ xj < pj. Thus the

group G can be identified with [0....I] Indeed for each integer k > set mk IIj=ipj.k
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Given : (xI, x2 let x Z:ixj/mj. Then x E [0, I] and except for a counta-

ble set, the map / x is l-l and takes G onto [O,l]. Vilenkin also introduced a nat-

ural ordering for the characters 0’ l of G. In the case when all pj 2, the

group G is precisely the dyadic group and the characters 0’ l are precisely

WkO, for k O, l,

We shall denote the Haar measure of a Vilenkin group G by m. We shall denote

character series k=Oakk by S and Fourier series on G by S[f]. The context and the

square brackets will keep this from being confused with the square function S(f) de-

fined above. We shall denote the Lp spaces on G with respect to m by LP(G). The

moduli of continuity on G will be denoted by

k(f) sup If(x+h)-f(x)
h EGk x EG

and

mP)(f) sup {I If(x+h)-f(x)IPdm(x)}I/P’
hEGk G

where Gk
=_ { E G" xj 0 for j < k}, k l, 2, Using the identificaton of G

with [O,l] we can also define G-moduli of continuity for functions f with domain

[O,l]. These will be denoted as above by re(a, f) and rap(a, f). A Vilenkin group G

is said to be of bounded type if limsup Pn < " Although the proofs usually require
n-

greater sophistication and often necessitate the introduction of new techniques, the

theory for Vilenkin groups of bounded type parallels that for Walsh series. This is

not the case for Vilenkin groups of unbounded type. In fact very little is known

about these groups.

An important example of Vilenkin groups is provided by the ring of integers of

any local field K. is the maximal compact subring in K, and when K is the 2-series

field, the ring is precisely the group 2m. This point of view provides a vehicle

for discussing dyadic analogues of Riesz transforms, Bessel potentials, Mellin and

Hankel transforms, and certain singular integral operators. An elegant, clearly writ-

ten introduction to harmonic analysis on local fields is provided by Taibleson [1975].

For H p spaces in this setting see Chao [1975] [1982b] and Chao, Gilbert and Tomas

[1981]. For an analogue of the F and M Riesz theorem, see Chao and Taibleson [1979].

During the course of our narrative we shall have occasion to cite certain re-
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sults about Fourier analysis on Vilenkin groups or local fields. In some cases the

cited result will generalize a Walsh series result discussed in that section. In

other cases, the cited works will give new information about Walsh series. In such

cases, we leave it to the reader to extract this new information.

Finally, we do not systematically discuss the many applications of Walsh series

to physical problems. We suggest Maqusi [1981] and Harmuth [1972] for general refer-

ences. Concerning sampling theorems see Butzer and Splettstsser [1978], [1980], and

Splettst6sser [1979].

II. WALSH- FOURIER SERIES

I. Pointwise convergence. Billard [1967] showed that the Walsh-Fourier series of

L2 functions converge a.e. His proof was a dyadic group adaptation of the Carleson-

Hunt technique which reduces the problem of a.e. convergence to showing that the max-

imal function operator f-Mf suplW [f]l is of type (2 2) e that there exists a
n>O n

constant A such that IIMfll 2 <All fll 2 holds for all f E L2[O,I]. An excellent expo-

sition of this proof has been provided by Hunt [1970]. A different approach to a.e.

convergence of Walsh-Fourier series has been given by Gosselin [1979]. He avoids

the tedious estimates necessary to show that Mf is of type (2,2) by using Fefferman’s

L2 method of breaking the partial sum operator into simpler pieces.

The best positive result of a.e. convergence of Walsh-Fourier series (and Four-

ier series as well) belongs to Sjlin [1969]. He derived certain weak type inequal-

ities involving Mf to show that W[f] converges a.e. when f E Llog+Llog+log+L, i.e.,

when

g+If(x) o If(x) flog+log+If(x)Jdx < (R).

0

It follows that the Walsh-Fourier series of any function in L(Log+L) l+E, E > O, con-

verges a.e. It is an open question whether W[f] is a.e. convergent for all f E Llog+Lo
In the negative direction, Ladhawala and Pankratz [1976] showed that there exists

an f in dyadic H whose Walsh-Fourier series diverges a.e. Since a non-negative

function belongs to dyadic_H if and only if it belongs to Llog+L, a modification of

their example could provide a negative answer to the question cited in the previous

paragraph. For the larger spaces L(log+log+L)l-E, E > O, Moon [1975] has shown that

Walsh-Fourier series can diverge evervwhere. It is not yet known whether Walsh-Four-
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[1975] showed that if m is a non-negative function on G which satisfies the Ap
condition, p > I, i.e., if

-I
(p-l) dm) p-I(m(E) IEdm) (m-- IE <B<

holds for each coset E of the subgroups G {x E G" x. 0 for j < n}, n > O, thenn j

there exists a constant C < such that
P

I IMflPdm -< CPl fldm
G G

holds for all measurable f on G. It follows that S[f] converges a.e. when the right

hand side of this inequality is finite.

For the case when G is the dyadic group, Gundy and Wheeden [1974] proved that

under the A condition, < p < , the weighted Lp norms of f and of its square func-
P

tion S(f) are equivalent. Thus they extended the pioneering work of Hirschman [1955]

who considered weights of the form re(x) Ixl , for -l < < p-l. Gundy and Wheeden

also considered the limiting case when p I. They showed that if m >_0 satisfies

the A condition and if

m (E) ! mdm
m JE

then given > and B > there exists a number y such that

am (f* > B, S(f) < y) < m (f* > ), > O,

and such that a similar inequality holds with the roles of f* and S(f) reversed.

Concerning rearrangements of multiple Walsh-Fourier series, Kemhadze [1975]

proved that given f E LP(G), p > l, the multiple Walsh-Fourier series of f can be re-

arranged so that its spherical partial sums converge to f a.e.

2. Sets of divergence. Lukaenko [1978] studied proper sets of divergence, i.e.,

sets of the form

E {x" W[f,x] diverges} (3)

for some integrable f. He proved that given any set E there is a function f E L

such that (3) holds. However, there are a sets and sets for which (3) never holds

when f E . Moreover, in [1980] he announced that there exists a continuous f such

a set but is neitherthat the set E defined by (3) is of Haar measure zero, is a
o

a nor an. set.

A set E __c [0,I] is said to be a set of divergence for a class of integrable
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functions if there exists an f E such that W[f] diverges on E. According to

Sj’lin’s result (see l), all sets of divergence for Lp p > are of measure zero

This result is best possible since any set of measure zero is a set of divergence

for Lp, < p < . Indeed, for Vilenkin groups of bounded type, Heladze [1978] has

shown that every set E _c G of Haar measure zero is a set of divergence for LP(G),
< p < . This problem is still open for p and for (G). An n-dimensional

version of Heladze’s theorem was obtained by Sanadze and Heladze [1977].

For the trigonometric case, Kahane and Katznelson proved that any set of measure

zero is a set of divergence for . This question remains open for Walsh series. Us-

ing the Banach-Steinhaus theorem, it is not difficult to prove that any countable

set is a set of divergence for (2m). The first uncountable sets of divergence for

(2m) were identified by Simon [1973]. His work is valid on any Vilenkin group G,

and his sets of divergence have uncountable intersection with each subgroup Gn. On-

neweer [1979a] proved that every set E of logarithmic Hausdorff measure zero is a set

of (bounded) divergence for (2m). Harris and the author [1978] have constructed

certain perfect (uncountable) sets of divergence for (2m) but it is not yet known

whether every perfect set of measure zero is a set of divergence for (2m).

3. Pointwise converqence of rearranged Walsh-Fourier series. First, we point out

that although the Walsh-Fourier series of any L2 function converges a.e., it is not

necessarily a.e. convergent when rearranged. For example, Heladze [1978] proved that

for every Vilenkin group G of bounded type there exists an f E L2(G) such that some

rearrangement of S[f] diverges unboundedly everywhere on G.

It is natural to ask whether a hypothesis stronger than "f E L2" will guarantee

a,e. convergence of rearrangements of W[f]. For example, does there exist a monotone
2increasing sequence {(k)} of positive numbers such that the condition .a k (k) <

implies that a given Walsh series ZakWk is a.eo unconditionally convergent? The

answer is yes if m(.k) increases fast enough, e.g., re(k) ks for > l, because
2(ZIakl)2 <_ (..k-)(Zkak ). Tandori [1966] was first to obtain negative answers to

this question" no if re(k) o(_loglogk). Nakata [1972], [1974], [1979] and Bokarev

[1978a] have obtained increasingly stronger negative answers. In particular, Nakata

[1979] proved that given re(k) which satisfies Z(I/(km(k))) < , there exists a se-
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of real numbers {ak} such that .ak2 re(k) < and such that the Walsh seriesquence

.akwk has an a.e. divergent rearrangement. Thus it is difficult to find conditions

which guarantee that all rearrangements of a given Walsh series converge a.e.

However, certain rearrangements are more important than others. When dealing

with Walsh series, the Kaczmarcz rearrangement is an important rearrangement, for

historic reasons and for applications (see Balasov and Rubintein [1970], and Harmuth

[1972]). It belongs to the general class of dyadic block rearrangements, i.e., re-

arrangements o’ l which satisfy

{k" 2n <- k < 2n+l} {wk. 2n<_ k < 2n+l}
for n O, l,...

n-1The Dirichlet kernel Dn Zk=O Wk in the Walsh-Kaczmarcz system behaves worse

than the Oirichlet kernel in the Walsh (-Paley) system in the sense that

limsup Dn(X) > C > O.n log n
Thus it is harder to prove a Walsh-Kaczmarcz-Fourier series converges, but easier

to find divergent Walsh-Kaczmarcz-Fourier series.

Balasov [1971] has shown that if a(n)+O, as n--, there exists an f E L

such that

limsup IWn[f, x] + a.e.,
n-o oo(n) ogn

where Wn[f] represents the tnh partial sum of the Walsh-Kaczmarcz-Fourier series of

f. In particular W[f] can diverge a.e. when f E L(log+L)l-E for E > O. On the other

hand, Young [1974b] proved that if f E L(log+L) 2 then W[f] converges a.e. No one has

yet improved either of these results. In particular, the problem of a.e. convergence

of Walsh-Kaczmarcz-Fourier series remains open for f E L(log+L) p, < p < 2.

Young [1974a] introduced a large class of dyadic block rearrangements and showed

that W[f] remains a.e. convergent under these rearrangements for f E L2. She also

proved that a smaller class of dyadic block rearrangements preserves a.e. convergence

of W[f] when f E L(log+L)21og+log+L. This program was carried out for Vilenkin

groups of bounded type by Gosselin and Young [1975]. The techniques are Carleson-

Hunt and involve proving certain maximal inequalities of Hardy-Littlewood type for

these rearrangements.
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An easier program for studying a.e. convergence of rearranged Walsh-Fourier

series has been initiated by Schipp [1975]. If n j=O nj 2j and =0 mj 2j are

integers written in binary notation, denote the integer Z=O Inj mjl2j by n m.

He calls a rearrangement {k of the Walsh functions linear if there exists a permu-

tation T of integers such that T(n m) T(n) T(m) and k WTk for k >_0. He

shows directly that the partial sums of Walsh-Fourier series in linear rearrange-

ments are closely related to partial sums in the usual (Paley) ordering. Thus he

can apply Sjlin’s estimates without repeating the lengthy Carleson-Hunt argument.

In particular, he shows that linear rearrangements of W[f] converge a.e. when f E Lp,
p > I. The Kaczmarcz rearrangement is only piecewise linear. Thus he modified his

procedure to show that piecewise linear rearrangements of W[f] converge a.e. when

f E L2. Bahsecjan[1979] has generalized this result from piecewise linear rear-

rangements to piecewise isomorphic rearrangements.

Skvorcov [1981b] proved a theorem about Walsh-Kaczmarcz-Fourier series which

contains the following corollaries. If f is continuous on the group and if (a, f)

o(I/log(I/a)) as aO then W[f] is uniformly convergent. (Thus the Dini-Lipschitz

test works for Walsh-Kaczmarcz series). If f is continuous on the group and of

bounded variation over [O,l], then W[f] is uniformly convergent. He also shows that

localization does not hold for convergence or (C,l) summability of Walsh-Kaczmarcz

series. Indeed, he constructed an f E L which equals 0 on [0, I/2] but whose

Walsh-Kaczmarcz-Fourier series is not (C, l) summable at the point x O.

4. Convergence in norm. Paley [1932] proved that if f E Lp, < p < , then

Wn[f] f in L p norm, as n-=. Watari [1958] obtained this same result for Vilenkin

groups of bounded type. But it is now known to hold for any Vilenkin group. Indeed,

Young [1976a], Simon [1976], and Schipp [1976d] all showed that if G is any Vilenkin

group and f E LP(G) for p > then Sn[f]+f in L p norm, as n-=. Of the three meth-

ods, Schipp’s is most general and applies to certain arrangements of any product

system, but Young’s is simplest.

These results extend neither to p nor to p I. Thus in order to conclude

that Wn[f]/f in L norm one needs an assumption in addition to f E L Onneweer

[1978a] obtained an L analogue of the Dini-Lipschitz test, for the Walsh-Paley
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ordering and Skvorcov [1981c] did the same for the Kaczmarcz ordering. Specifically,

they showed if I(, f) o(I/log(I/)), as 6-0, then Wn[f]+f in L norm, as n-=.

This test fails when "o" is replaced by "0". A Vilenkin group version of this test

was obtained by Simon [1979].

Simon [1978a] has introduced an analogue M of the Hardy-Littlewood maximal

function (see Stein and Weiss [1971]) on Vilenkin groups G, showing that M is of type

(p, p) for < p < and of weak type (I, I). An application of his inequalities is

tha/ ISn[f]ll p _ap p P
< II fll holds for f LP(G) < p < n > 0 where A is an ab-

solute constant depending only on p. He also introduced an analogue T of the conju-

gate function [1976] and has shown [1978b] that there is an absolute constant C such

that

l{x G" Mf(x) <y and ITf(x) l> Y}I < Ce-CY
holds for all f E LI(G) and all , y > O.

Results concerning uniform convergence of Walsh-Fourier series can be found in

the following two sections.

5. Moduli o___f continuity and absolute convergence of Walsh-Fourier series.

A classical result of Fine [1949] is that if f E Lips, > I/2, then W[f] converges

absolutely. In this section we report several extensions and refinements of this

result.

Yoneda [1973] weakened the condition "f E Lip, > I/2" to convergence of the

series

Z 2(I/n, f)/V-6-, (4)
n:l

and obtained the Walsh analogue of a theorem of Zygmund" if f is continuous and of

bounded variation and if

Z V’(I/n, ’f)/ n < (5)
n--I

then W[f] is absolutely convergent. He also introduced a summability method A and

localized Fine’s result in the following manner. If f E Lips on some interval I,

where > I/2, then W[f] is absolutely summable A on I.

In connection with (5), Bokarev [1978b] has shown that if m is any modulus of

continuity which satisfies
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n=l

then there exists an absolutely continuous f with (, f) 0(()), as O, such

that T. lak(f) +.

Onneweer [1972] generalized Fine’s result to Vilenkin groups G of bounded type

by examining the role oscillation plays in determining absolute convergence of S[f].

Before stating his results we need some additional terminology. Let f be defined on

G and let H be a subset of G. The oscillation of f on H is defined by

osc(f, H) sup f(x f(x2) l.
x x2E H

For each integer k > O, let Zq, k (0 q < mk) represent points of G for which Zq, k

+ Gk exhaust the cosets of Gk in G. The function f is said to be of -generalized

bounded fluctuation if the terms of the series

mk-l
Z Z Iosc (f z + GR)IP) I/p (6)

k=l q=O q,k

are uniformly bounded in k. Onneweer proved that if f E LP(G), p 2 and if (6)

converges then S[f] converges absolutely. He also showed that S[f] is absolutely

convergent when f E Lipe > O, and is of p-generalized bounded fluctuation.

Onneweer [1974] proved that if f belongs to Lip (e, p) * Lip (B, q) for p .
2, q > l, 0 < , B and (e + B) p > on some Vilenkin group G of bounded type,

then S[f] converges absolutely. Quek and Yap [1981] showed that the hypothesis "of

bounded type" is redundant. Their method rests on a powerful factorization of Lip(,

r) as Lip (e-B, r) * Lip ((B-l)/q p) where I/p + I/q and q > I/6. It follows

that Lip (, r) Lip ( + I/s I/r, s) holds on any Vilenkin group when 0 < e < ,
< r < s < and + I/s > I/r.

Vilenkin and Rubinstein [1975] established Vilenkin group versions of results

cited in the second paragraph of this section. Specifically, if G is of bounded

type then S[f] is absolutely convergent when either

lmk+ k(2)(f) < , f E L2(G) (7)
k=l

or when f is continuous and of bounded variation on G and

RZ: v kCf) < (8)
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holds. In particular, if f E Lips, > 0 and if f is of bounded variation on G,

then S[f] converges absolutely on G. (The reason that (4), (7) and (5), (8) are not

exact analogues is that on the dyadic group, k(f) corresponds to m(2-k, f) not

re(I/k, f)). McLaughlin [1973] has obtained exact Vilenkin group analogues of (4) and

(5) (see 12.) All these results hold for Vilenkin groups of unbounded type as

well (see Quek and Yap [1980], [1981]).

Combining results of Ladhawala [1976] and Butzer and Wagner [1973] one can show

that W[f] is absolutely convergent when f E Lip(s, LP), > l, p > I. It is an open

question ether this is true for I.

Finally, Rubintein [1978] has shown that given any sequence mn+ O, as n / ,
and any Vilenkin group G there exist functions fl E LI(G), f2 E L2(G), and f(R)F (G)

mn(P)(fp =mn for n >_0 and p l, 2, or .such that

6. Uniform convergence of Walsh-Fourier series. Onneweer [1970] obtained an anal-

ogue of a theorem of Salem. If f is continuous and periodic of period l, and if the

sequence

2_nl
2k+lZ +

k=l
(9)

converges to zero, as n /-, then W[f] converges uniformly on [O,l]. A similar re-

sult for Walsh-Kaczmarcz series is due to Skvorcov [1981b]. A version of this re-

sult also holds for Vilenkin groups G of bounded type (Onneweer and Waterman [1971]).

Thus, if k(_f) o(.I/k), as k / , and if f E (G) then S[f] is uniformly convergent

on G (Vilenkin [1947]).

For Vilenkin groups of bounded type, Onneweer and Waterman [1971] proved that

if f is continuous and of l-generalized bounded fluctuation (defined in 5 above)

then S[f] is uniformly convergent, They strengthened this result in several direc-

tions in [1974]. In order to state their results we need additional terminology.

Let A {n be a sequence of positive numbers which satisfy =I I +. A func-

tion f defined on G is said to be of A-bounded fluctuation if there exists an M <

such that for every collection {I n of disjoint cosets in G it is the case that

.l osc(_f In < M,
n=1
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The function f is said to be of harmonic bounded fluctuation if it is of {n} bound-

ed fluctuation. Onneweer and Waterman showed that there exist functions f of A-bound-

ed fluctuation whose Vilenkin-Fourier series S[f] diverge at at least one point. How-

ever, if f is of harmonic bounded fluctuation then S[f] converges at every point of

continuity and converges uniformly on any closed set of continuity for f. Their

method centered on finding an analogue of Lebesgue’s test on G and showing that this

test is satisfied at points of continuity for functions of harmonic bounded fluctuatio

Their work also contains a very interesting condition sufficient to conclude that

a continuous function is of harmonic bounded fluctuation. Given an open set V c G,

let N(V) represent the number (possibly infinite) of disjoint open "intervals" sep-

arated by the elements of G V. If f E ’(G) with range [0,I] and if

I N{x E G" f(x) > y}dy <log
o

then f is of harmonic bounded fluctuation. Thus such functions have uniformly con-

vergent Vilenkin-Fourier series. This is a group analogue of the Garsia-Sawyer test

(see Onneweer [1971b]).

Concerning the size of IWn[f] fl, Tevzadze [1978] announced certain e3Limates

in terms of the modulus of continuity and variation of f which contain a group 2

version of the Garsia-Sawyer test. Specifically, he states that if u(n represets

the modulus of variation of f then there is an absolute constant C (independent of i)

such that II f Wn[f]llL is dominated by

n .v_(k) (I0)C min {(I/n, f) +
k2<m<n k=l k=m+l

It follows that if f belongs to the class H (’iV[u] for some modulus of continuity

and some modulus of variation u, then W[f] is uniformly convergent on [0.: if and

only if the sequence (I0) converges to zero, as n . Hence for a given continuous

f E V[u], a necessary and sufficient condition that W[f] be uniformly convergent is

that Zk=I (k)/k2 < .
Gulicev [1980] (announced in [1979b]) has shown that the Walsh analogues of

theorems of Oskolkov and Busko fail to hold. Specifically, if {Lk} represent the

Walsh-Lebesgue constants (See Fine [1949]) then
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and

liminf II f Wk[f] II
k-x J(I/k, f)Lk

0 for f E , (ll)

liminf llWk[f]ll
0 for f E L.k-o Lk

(12)

However, if the limit infima in (II) and (12) are taken over certain subsequences of

integers then =0 is replaced by >0. Thus for certain subsequences, analogy with the

trigonometric system is restored.

7. Summability of Walsh-Fourier series. Although there exist integrable functions

whose Walsh-Fourier series diverge everywhere, certain averages of these Walsh-

Fourier series still approximate the given function.

For example, Fine [1955] showed that if f ( L then W[f] is a.e. (C, )

summable to f for all O. A new proof of this result has been given by Schipp

[1976c]. He takes the Carleson-Hunt point of view, and shows that the maximal func-

tion associated with a large class of summability methods is of type (, ) and of

weak type (I, I). This same program was carried out for Vilenkin groups of bounded

type by PI and Simon [1977a]. In particular, if n(f) represents the nth partial

Cesaro sum of S[f] and if *(f) suplon(f) then
n>O

m{x" l*(f, x) > y} < Cllflll/y, y > O.

Thus f E LI(G) implies that *(f) is weakly integrable. It is natural to ask under

what conditions is *(f) actually integrable? Nobuhiko [1979] used atomic HI(G)
to prove that

Hence o*(f) E L

l*(f) dm < Cll f II I"H
I(G) when f HI(

Baiarstanova [1979] has considered (C,I) summability of W [f] where
nk

nk 2k + 2k-2 + 2k-4 +...+ I. She showed that if /o(, f) (respectively, l(a, f))

is O(I//log(I/)), as -), then Wn [f] is uniformly (C,I) summable (respectively,
k

(C,I) summable in L norm). This result contrasts nicely with Schipp’s result

(see (I) and (2) in I).

Other methods of averaging can also be used to show that W[f] approximates f

in some sense. One such example is the method of strong summability. Schipp [1969a]

proved that if f L then
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1.r rn-1 lip! IW [f]- fl p}mk 0 k

converges to zero a.e., as m , for any choice 0 < p < . An n-dimensional

version of this result was announced by Sarasenidze [1976] for functions in

L(log+L) n-l. Apparently, the n-dimensional version of (13) fails to converge a.e.

to zero for certain f E L (log+log+L)n-I for n 2.

Several authors have considered weaker versions of (1.3). For example,

Cybertowicz [1976] showed that if r > 0 and if an_l, k (n-2+r-kr_l / (nl+r)r for

k < n and an_l, k 0 for k > n I, then

n-I

{k=O an’k Iwk [f] f12}I/2 0

a.e. as n for all f - L Sarasenidze [1973] proved that given any positive,

regular method of summability [an, k
] with an, k+l <an, k

f there exist numbers r / such thatn

n-I r I/r. a INk[f]- fl n} n- 0
k=O n ,k

uniformly, as n .

(13)

and given any continuous

Yano [1951b] invest!gated the growth of (C, B) sums of Walsh-Fourier series in

L p norms. He proved that if < p <_,’0 < < and f E Lip(s, L p) then

II o n(f) fIIkp O(n-), as n .
provided B > . Remarkably, Skvorcov [1981a] showed that this estimate holds even

for 0 < B < . Moreover, he obtained an order estimate for the limiting case I"

if f e Lip(l, L p) then

II on(f) fllk p O(logn/n), as n .
In fact, he proved much more. He showed that there is an absolute constant C such

that if n > O, B > 0 and f ( L p then
m

2kp(< C 2-m Z 2-k f),II On(f) fllLp k=O

where m is defined by 2m 2m+l< n < and an(f) represents the partial (C,B) sum of

W[f] in any piecewise linear rearrangement (see 3). Thus the order estimates above

hold for Walsh-Kaczmarcz series as well as Walsh (-Paley) series. In particular if

f E Lp, < p <-, then the (C,B) sum of any piecewise linear rearrangement of W[f]

converges to f in L p norm. Skvorcov [1982] has generalized these results to Vilenkin
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groups of bounded type.

For results concerning (C,B) sums of Walsh-Fourier series when B < O, see

Tevzadze [1981].

Bicadze [1979] has obtained necessary and sufficient conditions for a multiple

Walsh series with monotone coefficients in the sense of Hardy to be (C, I) summable

to f in L p norm, 0 < p < I.

Finally, Tateoka [1978] has studied localization on the unit square. Recall

that if X is a collection of integrable functions then a summability method T has

the localization propertv for X if given any f E X which vanishes on an open set V,

the double Walsh-Fourier series of f is uniformly summable (T) to zero on compact

subsets of V. Tateoka shows that square partial sums do not have the localization

property for , that square Abel means have the localization property for Lp p > 2

but do not have it for Lp, < p < 2, and that rectangular Abel means have the

localization property for but not for Lp p >

8. Adjustment on sets of small measure to enhance converqence. A celebrated result

of Menshov for trigonometric series is that given an a.e. finite-valued, measurable

f and an E > 0 there exists a continuous function f which coincides with f off a

set of measure less than E such that the Fourier series of f.converges uniformly on

[0,2x]. Kotljar [1966] showed that this result is also true for Walsh-Fourierseries.

Price [1969] gave a new Walsh proof of Menshov’s theorem, utilizing the fact

that the Walsh functions are characters of the dyadic group. This proof was adapted

to Vilenkin groups of bounded type by Onneweer [1971c].

Concerning whether adjustment can be made to improve the decay of Walsh-Fourier

coefficients, Olevski" [1978] showed that there is an f E such that given any

f E L which coincides with f on a set of positive measure, it is the case that

Z la (f) p for all p < 2.
n:O n

In particular, a continuous function cannot be adjusted so that its Walsh-Fourier

series is absolutely convergent. (Guliev [1979a] has also given a proof of this

corollary to Olevskii’s theorem.)

Adjustments can be made which result in a.e. and L convergence. Indeed,

Heladze [1977] has given an outline of a proof which establishes that given f E L
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and given E > 0 there is a measurable s with m{x: s(x) # I} < E such that W[sf]

converges a.e. and in Ll norm.

Kemhadze [1977] obtained an adjustment theorem for functions f continuous on the

n-dimensional hypercube. He proved that given ( > 0 there is a g which coincides

with f off a set of measure less than ( such that the rectangular partial sum of the

multiple Walsh-Fourier series of f converges everywhere. He also shows that g can

be chosen so that its Walsh-Fourier series has certain prescribed gaps.

]]I. APPROXIMATION BY WALSH SERIES

9. Walsh series with gaps. The study of gap Walsh series predates the study of

Walsh series since the Rademacher functions were introduced before the Walsh func-

tions.

Coury [1974b] investigated differentiability of Rademacher series. He showed

that a Rademacher series is either a.e. differentiable or almost nowhere differenti-

able. Using an earlier result of Balaov [1965], who made several foundational

contributions to this problem, Coury proved that if a Rademacher series is differ-

entiable at one point then it is of bounded variation for all p > I. A deeper

result he obtained is that any a.e. differentiable Rademacher series is of bounded

variation. (Coury [1974a] has identified several conditions onthe coefficients of a

given Walsh series W sufficient to conclude that W is a.e. differentiable.)

For results about dyadic differentiability of Rademacher series see 15.

Zotikov [1976] has studied the problem of convergence of Rademacher series in

Vilenkin groups G. He shows that the Rademacher system {Rn}n=0 is independent and

that if G is of bounded type then

Z anRn (14)
n=O

2 + When G is ofis not a.e. summable by any T* method (see Bary [1964]) when an

bounded type, he shows that (14) converges absolutely if and only if

n=O V’pn
in which case the limit F of (14) is bounded, is continuous on {pn}-adic irrationals,

and has Vilenkin-Fourier series (14).

A Walsh series . a
k=l nkwnk is called lacunar, if nk+I/nk >q > for k I, 2
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Clearly every Rademacher series is a lacunary Walsh series. Coury [1973] proved

that if E is a set of second category which has the property of Baire and if W is a

lacunary Walsh series which converges to zero (or is constant) on E, then W is actu-

ally a Walsh polynomial. A related result announced by Ebralidze [1976] is the fol-

lowing. Let {Rm k (m 1, 2 k=l, 2 be a sequence of real numbers which

satisfies Rm k as m / for k > and

max min Rm2n<k<2n+ IRm,kl < c
2n_l<k<2n ,k

for m > I, n > O, where c is a fixed, finite number > I. If either the limit suprem-

um or the limit infimum, as m of the sums. Rm, k akrk(x)k=l

is finite for all x in a set E of the second category, then .lakl < . In the case

when E is an interval and Rm, k l, this result had been obtained for any lacunary

Walsh series by Morgenthaler [1957].

Concerning whether the sequence of coefficients of a Rademacher series belong

to any Ip space, < p < 2, Rodin and Semjonov C1975] have examined analogues of

Khinchin’s inequality for certain symmetric Banach spaces including those of Lorentz,

Marcinkiewicz, and Orlicz. A corollary of their work is that a Rademacher series

f akrk has coefficients {ak} EIP for some < p < 2 if and only if

I ly/(l + log2(I/xf(y)))l p-I dy < .
0

Kolmogorov first noticed that convergence of a Rademacher series on a set of

positive measure is sufficient to conclude that its coefficients belong to Z2.
Morgenthaler [1957] showed this result also holds for lacunary Walsh series. Gapokin

[1971] weakened the lacunary condition considerably and Miheev [1979] pushed this

result even further. He proved that if Zakwnk is T* summable on a set of positive

measure, if nk n / as k, Z / with k > Z, and if for some p > 2 there is a

constant C such that

k=l nk p k=IbkWnk
holds for I > and any choice of real bk’S, then

2Zak <.
k=l
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Morganthaler [1957] proved a central limit theorem for lacunary Walsh series.

The idea was that a lacunary Walsh series is close to being a Rademacheg series and

thus might behave like independent identically distributed random variables. This

approach was developed further in a series of papers in which central limit theorems,

laws of iterated logarithm, and functional laws of the iterated logarithm were

obtained (see FIdes [1972], [1975], Berkes [1974], Takahashi [1975], and Ohashi

[1979].) For example, a Walsh series akwnk is called weakly lacunary if there exist

c > 0 and 0_ a < 1/2 such that nk+l/nk > + ck-c for k 1, 2 Suppose for

the remainder of this paragraph that the coefficients of a weakly lacunary Walsh

series satisfy
N 2 I/2AN a k /+, as N /.

k=l
I+E

Takahashi [1975] showed if a n O(AN/[N(Iog AN) T]), as N , for some ( > O,

then

limsup (2A loglogA) -I/2 N

akwnk a.e.;
N- k=l

FIdes [1975] showed if aN O(AN/Nm), as N , then

N <_--------II y -t2/2
lim m{x" AmI, Z akwnk(x) y} e dt, < y < . (15)
N-= k=l Z 2

Ohashi [1979] obtained a local version of (15) and used it to prove that there exist

weakly lacunary Walsh-Fourier series which diverge a.e. He also showed that the

FBldes growth condition is best possible. Specifically, he proved that given any

c > 0 and 0 < I/2 there exist integers n < n2 <... and coefficients a I, a2

such that nk+I/n k
> + ck-m for k > I, such that AN , as N +-, and such that

aN O(AN/NC), as N / ,, but such that (15) fails to hold.

As noted above, under certain conditions (e,g., convergence to zero on an inter-

val) the only lacunary Walsh series re Walsh polynomials. Such a condition was

obtained by Roider [1969] for gap Walsn-Fourier series. If k 2nl +...+ 2nY is a

positive integer with n > n2 > ...> n > 0 the Vielfalt of k is defined to be

V(k) y. Thus a rather mild lacunary condition is given by

ak(f) 0 for V(k) > v (16)

for some fixed integer v. Roider proved that if f E L assumes oly finitely many,

or only integral, values, and if (16) is satisfied for some ., >_0, then f is actually
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a Walsh polynomial. For related results see Gruber [1977/78].

For a local, condition sufficient to conclude that a gap series is a Walsh poly-

nomial see [1982] by the author. For results concerning summability of gap series

see ll.

lO. The Walsh system as a basis. Recall that a system {fl’ f2 is a basis in

some Banach space B if given f E B there is a unique series =lanfn which converges

in B norm to f. The Walsh system is a basis for L p, < p < . Kazarjan [1978]

examined whether a subsystem {wnk}k= of the Walsh system can be multiplicatively

)wnkcompleted, i.e., whether there exists a measurable @ such that {@(x (X)}k= is a

basis for the spaces Lp, < p < -. He proved that such a @ never exists no matter

how few and far between the gaps are.

Two systems {fl’ f2 ’’’’} and {gl’ g2 ’’’’} are e.quivalent bases in a Banach

space B if given coefficients a l, a2 the series Zanfn and Zangn are equiconver-

gent in B. Ciesielski and Kwapi6n [1979] proved that the Walsh system and the bounded

polygonals are equivalent bases in Lp, < p < -. On the other hand, Young [1976b]

showed that the trigonometric and Walsh systems are not equivalent bases in Lp, p # 2.

Hence they will have different multipliers, and multipliers for the Walsh system

should be investigated.

Shirey [1973] examined the Walsh system as a quasi-basis, and proved that given

any set E of positive measure, the quasi-basis for LP(E), < p < -, obtained by

restricting the Walsh system to E, is a conditional quasi-basis.

II. Approximation by Walsh series. Skvorcov [1973b] has shown that unlike the

trigonometric case or the one-dimensional Walsh case, convergence of a double Walsh

series W on a set of positive measure is not sufficient to conclude that the coef-

ficients of W converge to zero. However, he proved that if the retangular partial

sums of a double Walsh series W converge on any dyadic irrational across (i.e., on a

set of the form {a} x (0, l) LI(O, l) x {b}, where a and b are dyadic irrationals)

then the coefficients of W satisfy a + O, as m + n / .n,m
One of Menshov’s celebrated results is that given any measurable, a.e. finite-

valued function q there is a trigonometric series which converges to a.e. His

techniques apply equally well to Walsh series. Thus Walsh series can be used to



648 W.R. WADE

approximate measurable functions which are finite a.e.

Talaljan [1960] has shown that given any Lp basis, p > I, and any measurable

@ (finite or not) there is a series with respect to that basis which converges in

measure to @. Thus to every measurable @ there corresponds at least one Walsh

series which converges to @ in measure. This result does not hold if "in measure"

is replaced by "a.e.". In fact, Talaljan and Arutunjan [1965] proved that there is

no Walsh series W which satisfies W2m + on a set of positive measure, as m / .
Thus Walsh series cannot be used for a.e. approximation of general measurable func-

ti ons.

It is natural to ask whether rearranged Walsh series or (C, I) partial sums of

Walsh series can be used for a.e. approximation of measurable functions. The answer

to the second question is yes, and there is strong evidence that the first question

can also be answered in the affirmative. Saginjan [1979] showed that given any

positive regular method T’ of summability there exist Walsh series W Zk=lakwnk
with {ak} E Z2+E for E > 0 and Zk=l n < such that given any measurable there

exists a subseries of W which is a.e. T’ summable to @. Thus given a measurable @,

there exist Walsh series which are a.e. (C, ) summable, > O, and a.e. Abel sum-

mable to @. And, Ovsepjan [1973] proved that there exists a Walsh series which

has a rearrangement that diverges a.e. to +.

This question of divergence has been addressed for double Walsh series. Kemhadze

[1969] proved that if W is a double Walsh series then W2n, 2m cannot diverge to +

on a set of positive measure, as n, m / . Thus even rectangular sums of double

Walsh series cannot be used to a.e. approximate measurable functions unless the

functions are finite-valued a,e.

Pogosjan [1980] announced results concerning a.e. summability to + of the series

T .k=O YkWk//kl
where Yk O, ’_ and wk is a dyadic block rearrangement on the Walsh function, i.e.

2n n+l 2n 2n+l{wk" <_ k < 2 {w
k <_ k <

for n 0, A consequence of his results is that if n < n2 < satisfies

imsup nk+i/n then one can choose numbers Yk such that Tnk + + a e as k /-
k- k
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On the other hand, if the ratios nk+i/nk are unifomly bounded, then Tnk cannot

diverge to + on a set of positive measure.

Saginjan has obtained several conditions sufficient to conclude that

f(x) I/2 [limsup S (x) + liminf S (x)] (17)
k- nk nk

holds for a.e. x in some given measurable set E. For example, in [1974] he showed

that if S Z akw k is some dyadic block rearrangement of a Walsh series, if S2n(x)
converges to a finite measurable f on E, and if liminfk_Snk(x > for x E E then

(17) holds for a.e. x E E. In [1981] he proved that if S ajwkj is a gap Walsh

series with k < k2 < kj/kj+ O(I/j) as j and

n-2
j l2kj+ kj+2 kjl O(kn), as n ,

j=l

if S is (C, l) summable a.e. on E to a measurable, a.e. finite-valued function f,

and if liminfk_Snk(x) > for x E, then (17) holds a.e. on E. Notice that this

result includes gaps of the form k. n-jm for fixed n, m > l, j l, 2 Concern-
j

ing the (C, l) analogue of (17), aginjan [1974] proved that if S is a dyadic block

rearrangement of a Walsh series, if o2n(x, S) converges, as n , to a finite-valued,

measurable f on E and if liminfk_Oonk(x S) > for x E, then

f(x) I/2[limsup onk(x S) + liminf (x, S)]
k-= k- nk

holds for a.e. x E. Contained in his proof is verification of the following

"Tauberian" theorem. If limsuPn_ol2n(X S) < holds for all x E E, then S2n(X)
converges a.e. on E, and

liminf o2n(x, S) <_ lim S2n(X < limsup O2n(X, S)
n- n- n

holds for a.e. x E.

Concerning structure of sets on which Walsh series diverge, Lukaenko [1978]

showed that given any ,. set E there is a Walsh series W such that

E {x" lim Wn(X) does not exist}.
n-x

He also proved that this result does not necessarily hold if "’-set" is replaced by

"- -set."

For every f ( Lp, _< p < , let Ep)(f) denote the infimum of the expression

II f- .- akWkll p as {ak} take on all real values, for n l, 2,... Golubov [1972]
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has obtained many sharp estimates relating the "non-dyadic" moduli of continuity

m-(a, f) sup ]f(x + h) f.x.,Pdx}I/p,i’’l 0 <_ a <_ I,
O<h<a 0

to the sequences E p)(f). He proved that

-p(I/n, f) <_96 n-I/p kI/p-I EP)(f)
k=l

holds for all f E Lp and all n >_ I. He also obtained the following analogues of

trigonometric inequalities due to Ul’janov. If <_ p < q < there exists a constant

C depending only on p and q such that

and

!! f llq <_. c{ II f lip
q-2

+ [ Z kp [EP)(f) ]q]I/q}
k=l

E q)(f) <_ C{E P)(f)nI/p-I/q + [ Z kq/p-2[E p)(f)]q]I/q}
k:n+l

hold for n >I,. and f E Lp. (See Golubov [1970], p. 719, for ramifications).

Siddiqi [1971] proved that given a quasi-convex sequence {ak}, the Walsh series

ZakWk converges in L norm if and only if aklogk / O, as k / (R).W

IV. WALSH-FOURIER COEFFICIENTS

12. Growth of Walsh-Fourier coefficients. Several authors have investigated

conditions under which the series

kY lakCf) B (18)
k:l

converges for various choices of y and 1. A unified treatment of this problem (not

only in the Walsh case, but for Vilenkin groups of bounded type as well) has been

given by McLaughlin [1973]. His article contains an extensive bibliography and is

nearly a compendium of what is known about this problem. His main result, still the

most general of its kind, is that if <_p < 2, if 0 < B <_q and if I/p + I/q I,

then (18) converges when

Z kY-B/qlo--’n(-l/k, f)I <
k=l

Ladhawala [1976] showed that (18) converges for -I and B when f belongs

to dyadic H His proof contains the following interesting fact. If {ak} is a se-

quence of real numbers which satisfies a k O(I/k), as k /(R), then ak ak() for

some @ of bounded mean oscillation. Chao [1981] has obtained these results for

Vilenkin groups of bounded type. In addition, Quek and Yap [1980] have shown that
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(18) converges for y 0 when f E Lip (, p) on any Vilenkin group of bounded type

provided B > p/(p + p l).

Moricz [1981] has studied integrability of a Walsh series with monotone coef-

ficients a
0
>_a >_...>_ak >_0. He proved that for r > l, B r, and r 2, the

series (18) converges if and only if

I1 n

r (sup Z akWk(X) l) rdx < .
0 n>_O k=O

In the case r=l, it turns out that ak/k < is both necessary and sufficient for

to be finite.,r
Vilenkin and Rubintein [1975] have several estimates of the tails of (18) when

y 0 in the Vilenkin grouIsetting. They proved that if f E L2(G) then

Z laj(f) 2}I/2 <_ k I, 2,l/---m2) (f),
j =mk

They obtained analogues of two theorems of Lorenz for Vilenkin groups of bounded

type" if Pk <- C for k I, 2,..., if f E Lip(G), > I/p I/2 for some 0 < p <2,

then

Z laj(f)I p}I/p <_ Cmkl/P--I/2.
j =mk

And, if .J=mklaj(f) <_ Cm for some > 0 then f E Lip(G).

Horoko [1972] considered the problem of determining exact estimates for the

growth of Walsh-Fourier coefficients of functions belonging to Hv, the class of f

whose variation does not exceed the constant V > O. He proved that the maximum of

sup faR(f) (19)
fEHV

for 2m 2m+ 2m+l 2m+l V/2m+2< k < is V/ and that the minimum of (19) for 2m < k < is

Rubintein [1980] obtained an extension of Parseval’s identity from < p <

to p for Vilenkin groups of bounded type. He announced that if

nmn(1)(f) ran(g)/ O, as n +(R), (20)

then fdm k=Oak(f)ak(g). He indicated that this identity does not necessarily
G

hold if (20) is relaxed to

liminf nmn(-l)(f)mn(g) > 0
n

13. Conditions on Walsh-Fourier coefficients sufficient to conclude that f is
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constant. Fine [1949] was among the first to notice that the Walsh-Fourier coeffi-

cients of a smooth function cannot decay too rapidly. He showed that if f is absolute-

ly continuous and if kak(f) / O, as k / , then f is constant on [0,I].

Bokarev [1970] sought to determine how rapidly Walsh-Fourier coefficients of

continuous functions can decay. He proved that if lak(f) <dk, where dk + 0 and

Zdk < and if f is continuous, then f is constant on [0,I]. Hence the Walsh-

Fourier coefficients of a non-constant continuous f cannot satisfy

lak(f) O(I/[k(logk)]), as k / ,
for some > I. The condition > cannot be relaxed. Indeed, Bokarev constructed

a non-constant, continuous f whose Walsh-Fourier coefficients satisfy

lak(f) O(I/[klogk]), as k (see Bokarev [1978b], p. 19).

One drawback to Bokarev’s result is that it only applies to functions whose

Walsh-Fourier series are absolutely convergent. Coury [1974a] worked to remove this

restriction. He proved that if f is continuous and if

2P Rm O, as p (21)
m:p

where Rm Z{lak(f) ak+l(f) I" 2m< k < 2m+l-l}, then f is constant. It follows

that no non-constant, continuous f whose Walsh-Fourier coefficients are monotone

2na2n(f) / O, as n / . The author [1983] has generalizeddecreasing can satisfy

this result by weakening condition (21).

Coury has proved (but not yet published) that there is no non-constant,

continuous f which satisfies

Z klak(f) <
k=l

Powell and the author [1981] generalized this result" if f is continuous, if

Z=okak(f)wk converges on (0,I) for some > I, with the further assumption that

(j+l)2n-I
lim Z j2na (f)wk(x) x E (0 I)
n j=l k=j2n k

exists when I, then f is constant.

The author [1979b] has identified several conditions sufficient to conclude

that a function is constant on [0,I]. The most interesting one is that there is no

non-constant continuously differentiable function which satisfies
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n 2k+l -Isup

.2kn>O Z aj(f)wj(p) <
k=O j=

for all dyadic rationals p E [O,l].

V. DYADIC DIFFERENTIATION

14. The stronq dyadic derivative. Butzer and Wagner [1973] introduced the dyadic

derivative, which interacts with the Walsh-Paley functions in much the same way as

the classical derivative interacts with the exponential functions {einX}. Chief

among these interactions is the fact that Walsh functions are the eigenfunctions of

the induced differential operator, and

Dwk kwk, k O, l, (22)

Butzer and Wagner [1972] also defined a derivative which yields (22) for the Walsh

functions in the Kaczmarcz ordering. The Walsh-Paley definition is described below.

Let X represent either the space or one of the spaces Lp < p < . A given

f E X is said to be strongly dyadically differentiable in X (more briefly, X differ-

entiable) if the sequence of functions
n-l

dn(f, x) Z 2J-l[f(x) fCx 2-J’l)] (23)
j=O

converges in the norm of X, in which case the limit of (23) is called the strong

dyadic derivative of f and denoted by Df. The dy_adi c antiderivative is defined by

If (x) F f(.x t) [I + Z k-lwk(t) ]dt (24)
k:l0

Butzer and Wagner [1973] proved that D is a closed linear operator, that if f E X

then If is X differentiable with

D(If) f a.e, (25)

And I(Df) f a.e. when f is X differentiable. Thus the fundamental theorem of

dyadic calculus is true. They also obtained the following characterization of strong

dyadic differentiation. For any f E X the following three conditions are equivalent-

f is X differentiable and g Df; (26)

there is a g E X such that (27)

kak(f) ak(g) for k l, 2,...;

and

there is a g E X such that f Ig + ao(f ). (28)
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This same characterization was extended to include X dyadic H by Ladhawala [1976].

Butzer and Wagner [1975] also obtained a closed form for the "dyadic integral" opera-

tor (24). They proved that if f E L then

If ao(f) + Z ak(f)/k a.e.
k=l

Most results about the dyadic derivative have reinforced the idea that it is the

correct derivative to use in Walsh-Fourier analysis. For example, Butzer and Wagner

[1973] confirmed the connection between differentiability and Lipschitz spaces by

showing that any f E Lip (, X) for > has a strong dyadic derivative Df E X, and,

moreover, any function f with a strong dyadic derivative Df E X necessarily belongs

to Lip (B, X) for 0 < B < I. Ladhawala [1976] showed that If converges absolutely

when f belongs to dyadic H l, i.e., if f is strongly dyadically differentiable in

dyadic H then W[f] is absolutely convergent. In particular, if Df exists in dyadic

H (or in any Lp for p > l), then f is continuous on the group.

On the other hand, Penney [1976] has shown that not all strongly dyadically

differentiable functions are continuous on the group. In fact, Ladhawala [1976]

proved that if Df exists in L then the best one can say is that f E BMO; f may not

even be bounded.

Several authors have considered generalizations of the dyadic derivative to

objects other than functions defined on [O,l] with dyadic structure. PI[1975] de-

fined Df on the dyadic field, i.e., for functions f E Ll(o, ) and showed that the

"Walsh transform" J (.see Fine [1950]) interacts with D as it should: namely, if Df

exists then F(_Df)(y) y(y) and D(f)(x) (xf(x)) if xf(x) E L (0, ). In [1977]

he constructed an indefinite integral for D and proved a fundamental theorem of

calculus in this setting.

Onneweer [1977] introduced a Vilenkin group analogue of the dyadic derivative,

showing that the characters of the Vilenkin group are the eigenfunctions of the in-

duced differential operator and argued that the Butzer-Wagner characterization (26),

(27), and (28) carries over without extra work to this setting. Pal and Simon [1977b]

proved a fundamental theorem of calculus for Onneweer’s derivative. We shall call

this derivative "dyadic" below.

From the beginning, it has bothered some that the definition of the dyadic
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derivative depends on the ordering of the characters. Onneweer [1978b] endeavored

to erase this deficiency, while at the same time coming up with a derivative whose

eigenvalues represented the "frequency" of the characters as in the classical case

with d/dx and {einX}. His efforts were concentrated on p-adic and p-series fields K.

(Recall that the group of integers of a 2-series field is precisely the dyadic group

2). His definition yields different eigenvalues on 2 from those of the strong

dyadic derivative discussed above since Dwk 2nwk where 2n < k < 2n+l ,n=O,l

Nevertheless, the characters of K are again eigenfunctions of the associated differ-

ential operator, which turns out to be a closed, linear operator in LI(K). Onneweer

[1979b] introduced another "dyadic" derivative and compared all four derivatives

the Butzer-Wagner derivative, the one introduced by Pl on the dyadic field, his ear-

lier one on K, and this latest one defined on the dyadic group and the dyadic field.

This latest derivative behaves much as the others but has the twin virtues of simplic-

ity and the hope of lending itself more easily to an interpretation with possible

applications in the physical sciences.

15. Thee pointwise dyadic derivative. A function f defined on [0,I] is said to have

a dyadic derivative at a point x if the sequence of real nun)ers {dn(f, x)} (see (23))

converges, as n . In this case, we denote this limit by f(x). This definition

was introduced by Butzer and Wagner [1975], who identified a large class of functions

on which the pointwise dyadic derivative and the strong dyadic derivative agree a.e.

Skvorcov and the author [1979] observed that anytime f(x) exists, the classical Dini

derivatives of f satisfy D+f(x) > 0 > D f(x), Hence it is impossible for a non-

constant, (classically) continuous function to be dyadically differentiable at all

but countably many points in (0, I). Since Wk(X) kWk(X) for all x E [0,I], this

impossibility does not extend to functions continuous on the group.

Schipp [1974] proved a fundamental theorem for the pointwise dyadic derivative.

He showed that if f E L with ao(f) 0 then (If) f a.e. (compare with (25)). PI
and Simon [1977b] obtained this same result for the dyadic derivative on Vilenkin

groups of bounded type. Schipp [1976b] extended his [1974] theorem to handle certain

Stieltjes measures associated with functions of bounded variation. In all these re-

sults the method of proof is to show that the maximal operators
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sup dn(If, x), x E [0, I].
n>O

are of strong type (p, p), < p <_, and of weak type (l, l).

Onneweer [1977] showed that on a Vilenkin group G there exist continuous f

which are nowhere dyadically differentiable. He also proved that a Rademacher series

R Zakrk is dyadically differentiable at x if and only if

Z mkakrk (x)k=O

converges, in which case

R Z mkakrk(x) (29)
k=O

It follows that a Rademacher series on G is either a.e. or almost nowhere dyadically

differentiable. Moreover, if the dyadic derivative of a Rademacher series is constant

on some open subset of G, then that series is actually a polynomial (see also [1982]

by the author). Thus the non-local property of the dyadic derivative is extreme.

16. Term by term dyadi.c differentiation. Butzer and Wagner [1975] were first to

examine conditions under which a Walsh series ZakWk represents a dyadically differ-

entiable function f which satisfies

f(x) Z kakWk(X). (30)
k=l

This problem is completely solved for Rademacher series (see (29)) but is still

open even for lacunary Walsh series.

Several authors have identified conditions sufficient for (30) to hold.

Butzer and Wagner [1975] showed that (30) holds a.e. when the sequences {ak} and

{ka k} are quasi-convex and kak 0 as k . They also showed that (30) holds every-

where when Zklakl < , i.e., when the derived series is absolutely convergent.

Schipp [1976a] proved that (30) holds for all x 2-n (n > O) when kK O, as

k . This result was generalized by Skvorcov and the author [1979], who showed

that if condition (21) holds, and if x # 2-n for n > O, then a necessary and suf-

ficient condition for f(x) to exist is that the sequence

2n_l
Z kakwk(x 31

k=O

converges in which case the limit of (31), as n , equals f(x). It follows that

if ak 0, if 2ka2k / O, as k / , and if the derived series converges then (30) holds
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for x # 2-n (n > 0). Also, if kak 0 and if

2k
k aj aj+ll O,
j=k

as k / , then f(x) exists if and only if (31) converges, as n .
Powell and the author [1981] showed that (30) holds for any x which satisfies

Z kakWk(x) <
k=l

for some > l, and that (30) holds for all x E [O,l] if ak + O, as k , and

Zlakl < . They also found necessary and sufficient conditions for (30) to hold when

-n-lthe derived series converges. In fact, if f(t) exists at t x and t x + 2

(n >_0) and if the right hand side of (30) converges, then a necessary and sufficient

condition for f(x) to exist is that
(j+l)2n-I

R(x) im l l
n- j=l k=j2n

exist, in which case,

j 2nakwk x

f(x) Z kakWk(X) R(x)
k=l

VI. UNIQUENESS

17. Uniqueness of Walsh series with monotone coefficients. Balaov [1971] proved

that if the coefficients of a Walsh-Kaczmarcz series S are convex and decrease

monotonically to zero, then S is the Walsh-Kaczmarcz-Fourier series of some function

in Ll. Yano [1951a] had obtained this same result for Walsh-Paley series with "quasi-

convex" replacing "convex". Coury [1974a] showed that quasi-convexity is essential

to this result. Indeed he constructed a Walsh series with monotonically decreasing

coefficients which converges to a non-integrable function and is not a Walsh-Fourier

series.

In the trigonometric case, a series with convex coefficients which decrease

monotonically to zero converges to a non-negative function. Coury [1974a] showed

that this result does not hold for Walsh series. Indeed, he constructed a convex

monotone sequence {ak} for which W Z akwk assumes negative values. He went on
k=O

to show that if the sequence of coefficients is completely monotone, then analogy

with the trigonometric case is restored and W > O.

Siddiqi [1971] proved that if a k + O, as k , and if Z(ak ak+l )lgk < then
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ZakWk is a Walsh-Fourier series.

18. Sets of uniqueness. A set E __c [0,I] or 2m is said to be a set of uniqueness

(or a U-set) if the zero series is the only Walsh series which converges to zero

off E. Sneider [1949] showed that any countable subset of [0,I] is a L)-set and that

the Cantor set formed by removing middle halves is a LJ-set. He also showed that any

U-set has Lebesgue measure zero, but not all sets of Lebesgue measure zero are

U-sets. Coury [1970], [1975] found a class of sets of Lebesgue measure zero which

are dense in [0,I] but are not L3-sets. Skvorcov [1977b] proved that given any

positive, increasing h on [0,) with h(O) 0 there exists a perfect set E c [0,I]

whose h-measure is zero such that E is not a L-set. Thus the problem of identifying

those perfect subsets of [0,I] which are L-sets is still open.

Gevorkjan [1981] has shown that given any Ek + 0 there is a set E _c [0,I] of

measure one such that W akwk with W2nj + 0 off E and akl < Ek implies W O.

On the dyadic group, more is known. The author [1979a] introduced a group

analogue of H-sets, and showed that every H-set in 2m is a LO-set. Building on this,

Yoneda [1982] proved that every closed subgroup of the dyadic group of Haar measure

zero is a L-set. It follows that a large class of Cantor-like sets in the dyadic

group are U-sets.

Lippman and the author [1980] carried the Pyatetskii-Shapiro structure theorem

over to the group 2m. They showed that any closed -set in the dyadic group is a

countable union of elementary L)-sets. An elementary L-set E is one for which there

exists a sequence of functions fl’ f2 whose Walsh-Fourier series are absolutely

convergent and vanish on E, which converges to in the weak * topology (i.e.,

given any pseudo-function A, A(fn I) / O, as n / ). The author [1971] had

earlier shown that a countable union of closed L-sets is again a L]-set. It is not

known whether the condition "closed" can be relaxed in either of these results.

A set E c 2m is said to be a L-set for a class of Walsh series, if the hypoth-

esis W E , with W2n(x) 0 as n for x E, implies that W is the zero series.

Clearly, every L-set for is a L-set. Crittenden and Shapiro [1965] proved that a

Borel set E is a LI-set for the class of Walsh series which satisfy

lim 2-nw2n(x _+ O) 0 for all x E [0,I] (32)
n-
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if and only if E is countable. The author [1975] introduced classes , 0 < l,

which are smaller than the class of Walsh series which satisfy (32), and showed that

a closed set E is a L]-set for + if and only if E is of s-capacity zero.

19. Uniqueness of approximatinq Walsh series. Arutunjan and Talajan [1964] proved

that if W is a Walsh series whose coefficients a k
+ 0 as k + ,if f is a finite-

valued integrable function, and if there exist integers n < n 2 <... such that

im W2nj (x) f(x),
j

for all but countably many x E [0,I], then W is the Walsh-Fourier series of f.

Skvorcov [1968] showed that this result remains true if "integrable" is replaced by

"Perron integrable" and "Walsh-Fourier series" is replaced by "Perron-Walsh-Fourier

series". In [1980b], however, he showed that it does not extend to functions which

are Denjoy integrable in the wide sense. A multiple Walsh-Fourier series version

of the result of Arutunjan and Talaljan was obtained by Movsisjan [1974].

Skvorcov has also extensively examined the problem of obtaining uniqueness with

conditions weaker than (33). On the positive side, he proved [1974], [1977a] that

if W is a Walsh series whose coefficients tend to zero, if n < n2 <... is a sequence

of integers which satisfies-either

2j <_nj < 2j+l, j O, I,..., (34)

or V(nj) <A < (see definition above display (16)), and if

limsuplWn.(X) <M <
j J

for all but countably many x E [0,I], then W is the Walsh-Fourier series of the

function f(x) limsup Wn(X), as j + . In [1980a] he proved that if W is a Walsh

series which satisfies (32) (a condition weaker than a k
/ 0), if f is a finite valued,

Perron integrable function, and if n < n2 <... satisfies (34), then

l.im Wn(X f(x) (35)

for all but countably many x E [0,I] is sufficient to conclude that W is the Perron-

Walsh-Fourier series of f. On the negative side, he showed [1975] that (35) is not

sufficient for uniqueness to hold if n < n2 <... is arbitrary. Indeed, he construct-

ed a non-zero Walsh series W and a sequence of integers {nj} such that Wnj / 0 every-

where, as j / .
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Concerning uniqueness of non-convergent Walsh series, Crittenden and Shapiro’

[1965] showed that if W is a Walsh series which satisfies (32), if both

limsupIW2n(x) <
n-

and

(36)

liminf W2n(x) > f(x)
n

hold for all but countably many x E [0,I], where f is an integrable function, then W

is the Walsh-Fourier series of some g E LI. A portion of their argument which involve’.

a rather intricate application of the Baire category theorem has been shortened by

Lindahl [1971]. Ovsepjan [1973] showed that (36) is crucial to uniqueness here. In-

fact, he proved that given any continuous f and any permutation wO, wI,... of the

> f, W f a.e. asWalsh functions, there is a Walsh series W akwk such that Wn n

n , but W is not the Walsh-Fourier series of f.

Skvorcov [1973a] proved that if W is a Walsh series whose coefficients tend to

zero, if f is an integrable function, and if

liminf W2n(x) < f(x) < limsup W2n(x) (37)
n- n-

for all x E [O,I]E, where E is a closed L-set, then W is the Walsh-Fourier series

of f. The author [1977] proved that if (37) holds for x E [O,I]E, where E is a

countable set, and if (32) holds for x E E and all dyadic rational x, then W is

the Walsh-Fourier series of f. (See [1980] by the author also).

For many years the problem of uniqueness for (C, I) summable Walsh series was

open. Crittenden [1964] made some progress toward this problem, but never published

his results. Skvorcov [1976b] solved the problem with an elegant proof that if W

is a Walsh series which satisfies (32) and if the Cesaro sums of W satisfy

limsupl2n(x) <
n-=

for all but countably many x E [0,I], and

lim o2n(x) f(x) a.e.,

for some Perron integrable f, then W is the Perron-Walsh-Fourier series of f.

20. Null series. A non-zero Walsh series which converges a.e. to zero is called a

null series. Thus null series provide counter examples for certain conjectures

concerning uniqueness. For example, Schipp [1969b] showed that non-negative partial
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sums is not a sufficient condition for uniqueness; he constructed a null series W

which satisfies Wn > 0 for n > O.

Coury [1973] constructed a non-zero lacunary Walsh series which converges to

zero on a set of positive measure, but proved that there are no lacunary null series.

Skvorcov [1976a] proved that a null series can diverge to + on perfect sets.

Thus to insure uniqueness, conditions like (36) must hold for all but countablymany x.

Skvorcov [1977c] also examined how fast the coefficients of a null series can

converge to zero. By the Riesz-Fischer theorem they cannot converge to zero arbitrar-

ily fast. He proved that given Mn / as n , there exists a null series W whose

coefficients satisfy
n
Z a<Mn, n >I

k=l

He also obtained his result for Vilenkin groups of bounded type [1979].

21. Closing comments. Up to this point we have mentioned some specific questions

which have not yet been answered. In this final subsection we speculate about the

future in a more general way.

The study of pointwise dyadic differentiation is in its infancy. The initial

idea that kept track of zero crossings has not been exploited. Moreover, even

obvious problems, such as finding conditions under which fn / f implies fn / f’
remain unexplored. More information of this type could help decide whether the oper-

ator f / f is really "differentiation" or merely a special multiplier.

Another frontier is provided by the spaces dyadi.c H and d_adic BMO. Questions

which need addressing include" Which Walsh series results known for Lp, p > (re-

spectively, p ) can be extended to dyadic H (respectively, d_zadic BMO)? Which

classical trigonometric results about H and BMO have Walsh analogues? For example,

if f E dyadic H is of bounded variation, does W[f] converge absolutely? In view of

the result of Davis [1980], cited in the introductory section above, d_dvadic H con-

tains information about classical HI. Garnett and Jones [1982] have used this con-

nection to show how classical results can be obtained more easily by looking at the

dyadic case first. Perhaps Walsh series will begin to provide theorems eventuating in

trigonometric analogues which solve long standing problems, or in trigonometric

proofs which are simpler than those now known. Specific suggestions include
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determining which perfect subsets of [0,i] are sets of uniqueness for Walsh series,

resolution of whether every Borel set of uniqueness for Walsh series is a set of first

category, and a new proof of a.e. convergence of Lp Walsh-Fourier series p > i.

Finally, work on multiple Walsh series has just begun. Earlier it was held that

since 2m x 2m is homeomorphic and isomorphic to 2m, nothing new would be gained by

studying such Walsh series. However, pulling back results from 2m x 2m to 2 via

such a homeomorphic isomorphism forces a non-standard enumeration on the characters

of 2. Thus multiple Walsh analysis provides a new way to study rearrangements of

Walsh series. Since most rearrangements which arise in this way are rather wild (not

even dyadic block rearrangements), there is surely good reason to study Walsh series

in higher dimensions.
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