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ABSTRACT. This article discusses translation planes of dimension two and characteris-

tic two. Let G be a subgroup of the linear translation complement of such a plane

The nature of G and its possible action on are investigated. This continues pre-

vlous work of the authors It is shown that no new groups occur.
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i. INTRODUCTION

Part I. A translation plane of dimension two over GF(q) F may be represented

by a vector space of dimension four over F. The lines through the zero vector form a

spread--a class of two-dimensional subspaces which are pairwise independent. The col-

lineations fixing the zero vector (the translation complement) constitute a subgroup

of FL(4,q); the intersection with GL(4,q) is the linear translation complement.

Finite translation planes of dimension two have been studied more than those of

other dimensions. A complete classification may not be possible if this is understood

to include an enumeration of all existing planes. Yet we have reached the stage where

we can give a reasonable list of classes when q is even.

Hering [6] has determined the possible groups generated by the elations in the

translation complement and one can at least make general statements as to the nature
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of the planes which may admit these groups, especially when the group is non-

solvable.

The authors [8] have investigated the case where the translation complement is

not solvable and contains no elations.

In the present paper, G denotes a subgroup of the linear translation complement.

We investigate the nature of G and of the planes of dimension two and characteristic

two in the following situations:

Part II. GI is odd.

Part III. All involutions in G are elations, (G may be solvable).

Part IV. All involutions in G are Baer involutions, (G may be solvable).

Part V. G contains elations and Baer involutions. Again no restriction on

solvability.

In all of the above, especially in Part V) little attention is paid to the case

where G is both solvable and reducible. Some remarks are made about this situation

in Part Vl.

These results give no recipe for constructing all planes of dimension two and

characteristic two. However, there are no new groups and at least some aspects of the

possible actions are determined. We suspect that this is as fine a classification as

is worthwhile trying to give.

Ostrom’s research was supported in part by the National Science Foundation.

2. REDUCIBILITY, GI ODD.

DEFINITION 2.1. A group G of linear transformation acting irreducibly on a

vector space V is said to be imprimitive if V is the direct sum of subspaces, to be

called subspaces of imprimltivity, such that the image of each subspace of imprimi-

tivity under each element of G is always a subspace of imprimitivity. Otherwise G is

said to be primitive.

DEFINITION 2.2. A group G of linear transformations is said to be flxed-polnt-

free (f.p.f.) if no non-identity element fixes any non-zero vector. A normal sub-

group G
1

is said to be minimal non f.p.f, with respect to G if G
1

is not f.p.f, and

every normal subgroup of G included in G
1

is either equal to G
I or is f.p.f.
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REMARK. The above two definitions require no restrictions on dimension or

characteristic. We wish to remind the reader, however, that throughout this paper G

is assumed to be a group of linear translations acting on a vector space of dimension

4 over GF(q), where q is a power of 2. Indeed G is assumed to be a subgroup of the

linear translation complement of a translation plane of dimesion two defined on this

vector space.

LEMMA 2.3. Let G be primitive and solvable and let be a maximal abellan

normal subgroup. Assume that contains Z, where Z is the group of scalars. Then

PROOF. The proof is by contradiction, so suppose Z is the unique maximal

abelian normal subgroup. Since G is irreducible, G Z. If G is solvable G has a

normal subgroup A such that A/A Z is abelian and characteristic in G/Z. (Let A be

the full pre-image of A/A Z.)

Suppose that A is f.p.f. Then A must be odd, since no involution is f.p.f, at

characteristic 2. An f.p.f, group is a Frobenius complement. See [9] Lemma 2.2.

A Frobenius complement which is not cyclic has a characteristic abelian group not in

its center. See [I0] Theorem 3.7. This contradicts the condition Z. Hence A

is not f.p.f.

Then A contains a subgroup G
1
which is minimal non-f.p.f, with respect to G.

Note that A/A Z is abelian implies that A is nilpotent and hence that the Sylow

subgroups of A are characteristic. Hence the minimal property of G
1
implies that G

1

must be a u=group for some prime u. If H is the maximal normal subgroup of G included

in G
1
but not equal to GI, then GI/H is elementary abellan. (See [I0], Theorem 3.3.)

If H is trivial, G
1

is abelian and by our assumption that Z is the unique maxi-

mal abellan normal subgroup, we could have G
1

Z. This cannot happen since Z is

f.p.f.

Thus H is an f.p.f, u-group. Two-groups are not f.p.f, at characteristic two

and the Sylow subgroups of odd order in a Frobenius complement are cyclic. Hence H

is abelian and by our present assumeption, H Z.

This implies u l( q I) and that the minimal Gl-space have dimension I. This last

2
comes from the facts that q + I 2 mod u implies that a u-group fixes at least two
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components of the spread and q + 1 2 mod u implies that a fixed 2-space must

include at least two fixed l-spreads. Cliffords Theorem (see [3] page 70) implies

that if G is primitive, all of the minimal Gl-spaces must be isomorphic as Gl-mOdules
and hence that G

1
must be faithful on its minimal Gl-spaces. Since this does not

happen, we have a contradiction to the assumption that Z.

THEOREM 2.4. Let G be primitive and solvable. Then G is isomorphic to a sub-

group of FL(1,q4).
PROOF. Let / be a maximal abelian normal subgroup of G such that contains

Z. By the previous Lemma, # Z.

If is not f.p.f., it leaves invariant the subspace pointwise fixed by one of

its elements and hence is not faithful on its minimal subspaces. Thus Cliffords

Theorem implies that is f.p.f.

Then (see Herlng [3] Hilfsatz 5) G is isomorphic to a subgroup of FL(I,q4) or

FL(2,q2) since G is primitive.

,q4) 2
If G FL(I we are done, so suppose G is a subgroup of FL(2,q ). We may

2
also assume G GL(2,q centralizes

G > G SL(2,q2). The solvable subgroups of SL(2,q2) PSL(2,q2) (for q even)

are cyclic or dihedral except in cases where there is a characteristic 2-group. G

has no normal 2-group if it is primitive so G SL(2,q2) is cyclic or dihedral and

hence contains a characteristic abelian group I" Since is maximal and is

centralized by I’ /I is abelian so
1

But is actually included in the

center of GL(2,q2), so SL(2,q2) is trivial. Hence G SL(2,q2) is trivial. At

characteristic 2. GL(2,q2) is the direct product of SL(2,q2) and the center of

2 q2) 2GL(2,q ). Hence, in our case, G N GL(2, In that case G G N FL(2,q can-

not act irreducibly on the vector space of dimension 4 over GF(q). Thus the only

possibility left is G is isomorphic to a subgroup of FL(I,q4).
THEOREM 2.5. If G is irreducible but imprimitive then G has a reducible sug-

group of index 2.

PROOF. The theorem is trivial if the vector space is the direct sum of two

subspaces of imprimitivity.
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Hence assume that the basic vector space V is the direct sum V V
1
V

2
V

3
V

4

of subspaces of imprimitivity of dimension I. Let G
O
be the normal subgroup of G

which fixes each of VI, V2, V3, V4.

By Clifford’s Theorem, V is a direct sum W W
k

of Invariant G
O spaces;

the minimal G0-spaces in W.I for fixed i are all isomorphic on G0-modules and each

minimal G0-space belongs to one of the W.1’s; the W
i

all have the same dimension.

Note that k I, 2, or 4. If k 2 we are done.

If k 4 then there are no minimal G0-spaces besides VI, V2, V3, V4. G01 can-

not be even, since an involution in G
O would have to fix VI, V2, V3, V

4
polntwlse.

If G
O

is odd, then G
O
must fix some other 1-space on the component of the

spread which contains VI. We conclude that if k 4, there must be two components,

each containing two of the V In this case G has a subgroup of index two fixing

these two components.

We have left the case where k I, so that all of the minimal spaces are iso-

morphic as G0-modules. We may assume that G and G
O

contain all of the scalars. (If

they do not, adjoin the scalars.) If the minimal G0-spaces are isomorphic as G0-
modules, then G

O must be faithful on its minimal subspaces. With the minimal sub-

spaces being 1-dimenslonal, it follows that if G
O

contains the scalars 2, then G
O

Z.

But G/G
0

is a subgroup of the symmetric group S
4

and its order is divisible by

4. IS41 24 and any subgroup whose order is divisible by 4 is one of the following:

(a) a two-group, (b) A4, (c) S4. In each case there is a normal 2-group (not

necessarily a Sylow 2-group).

Let G G/Z G/G
0

Let S be a 2-group i G, where S is normal in G. If is

an involution in S and % G then %-I I for some I in S and some Z. Hence

2 22 2 and I. Then the subgroup of S generated by its involu-1 (oI) c
1

tions is normal in G. Hence the subspace which is pointwise fixed by this 2-group is

invariant under G and G is reducible, contrary to hypothesis. Hence the case k I

does not happen and the Theorem is proved.

4)THEOREM 2.6. Suppose that (G) is irreducible. Then G c FL(I,q

PROOF. If (G) is irreducible, it may be primitive by the previous Theorem.

Then (G) c L(I, by (2.4). Since G must preserve 1-spaces over GF(1),
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4) 4
(G) GL(I,q is a subgroup of (G) (G) FL(I,q whose index divides 4.

4
But (G) is odd, so @(G)

_
GL(I,q and (G) is cyclic. The theorem then

follows from Proposition 19.8 in Passman [13].

THEOREM 2.7. Suppose that G @ (G) contains the scalars and that G is redu-

cible. Then G is cyclic or G is not faithful on one of its minimal subspaces.

PROOF. If G is reducible, it has some invariant 2-space V1. If G is not faith-

ful on V we are done. Otherwise G is a subgroup of GL(2,q). The subgroups of

2
r

PSL(2,q) q of odd order are cyclic. See Dickson [I]. But PSL(2,q) SL(2,q).

Thus G SL(2,q) is cyclic, with order dividing q- 1 or q + I. As a subgroup of

GL(2,q) acting on a vector space of dimension two, G must either be cyclic or have

a pair of invariant 1-spaces and not be faithful on at least one of them.

3. G GENERATED BY ELATIONS

In this section we are concerned with the case where the translation complement

contains elations. Actually, we will limit ourselves to the case where G is the sub-

group of the translation complement generated by the elations.

Hering 6 has investigated this situation. In one of his cases, G has a normal

subgroup of index two and odd order. In unpublished work he has shown that, under

much broader circumstances than we have here, G must be dihedral. Since this work

is not published, we will have a proof that G is dihedral for a plane of dimension

two over GF(q), where q is a power of 2.

LEMMA 3.1. Suppose that (a) G has a normal subgroup of index and odd order;

(b) G is primitive; (c) The involutions in G are elations; (d) G contains more

than one elation. Then G is dihedral.

PROOF. Let O be an involution and T an element of odd order such that <T> has

i
index 2 in <,>. Then the involutions have the form r for those i such that

i -i
Hence the group generated by the involutions is dihedral.

4).By (2.4) G is isomorphic to a subgroup of FL(I,q Then G GL(I,q4) is a

cyclic normal subgroup of odd order. The fact that G is a group of linear trans-

4
formations over GF(q) implies that the index of G GL(1,q in G must divide 4.

Because of (a) this index is 2. Hence (d) and the above argument implies that G is

dihedral since it is generated by its elations.
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LEMMA 3.2. G is dihedral if G is reducible and the conditions other than (b)

of (3.1) are satisfied.

PROOF. If there are two elations with the same axis, 4 divides IGI. If there are

two elations with different axes, no component of the spread is invarlant. If G has

an invarlant 1-space, the component containing this 1-space is invarlant. Hence if

G is reducible, it has an invariant subspace which is a Baer subplane 0"
If G is faithful on 0’ the hypotheses are sufficient to guarantee that G is

dihedral.

Otherwise, let G
1
be a maximal dihedral subgroup of G acting faithfully on 0"

Specifically, let GI <o,T> where 0 is an involution and <T> is the cyclic stem. If

G is not dihedral, there is some involution o such that <,GI> is not dihedral and

some element fixes 0 polntwse.

Suppose that 0 fixes n
0

polntwise. Then the restrictions to 0 of the two

involutions o and 0T are identical. In particulat, they fix the same points of 0
so that the axes of the elations o and 0 must be the same. But this requires that

either 0T or that G has a subgroup of order 4.

Neither of these conditions is satisfied. Suppose that TI fixes 0 polntwlse.

-i -2iThen the restrictions of o and to n
0

are identical, so must fix 0 pointwise.

But G
I <0,T> is faithful on 0 so i 0. In this case, fixes n

0
polntwlse, con-

trary to the assumptions that is an elation.

LEMMA 3.3. Suppose that G is irreducible but imprimitive and the conditions

of (3.1) excluding (b) are satisfied. Then G is dihedral.

PROOF. By (2.5) G has a reducible subgroup H of index 2. We may assume that

V V
1 V2, where V

1
and V

2
have dimension 2, are interchanged by each involution G

and some invariant under H.

Lemmas (2.3), (2.4), (2.5), (2.6) for a translation plane of dimension 2 over

its kernel and a vector space of dimension 4 over GF(q) apply as well as to a vector

space of dimension two, i.e., to a Desarguesian affine plane over GF(q).

Hence if H is irreducible and faithful on V
1
and has odd order, then H is cyclic

as in (2.6).
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If H is faithful on VI and is reducible on VI then it has at least two invarlant

1-spaces and is a subgroup of the direct product of two cyclic groups. Hence H is

abelian. If H is f.p.f, and abelian, then H is cyclic.

Since H has two fixes 1-spaces in V2, V must be the direct sum of 4 H-invariant

l-spaces. If H has an additional l-space in V
1

(or V2) then H fixes each l-space in

V
1

(V2). If H is not cyclic, it is not f.p.f, on V1. Thus if H fixes each l-space

in VI, then H is not faithful on VI.
If H has precisely 2 invariant 1-spaces in V and precisely 2 invariant l-spaces

in V
2

then therefore 1-spaces must occur in two orbits of length 2 under G. In this

case, the 2-space containing an invariant pair is invariant so G is reeucible and

we can return to the previous case.

We have left the case where H is not faithful on VI or V2.

Let G
I <O,m> be a maximal (dihedral) subgroup where <T> ! H acts faithfully on

V
1
and O is an involution. If G # G

I and G is generated by its involutions, there

is an involution such that <o,GI> contains an element which fixes V pointwise.

Note that V
1

is not invariant under any element of the form oT
i

or 0Ti. If

i
o0T fixes VI pointwise, we get a contradiction just as in the proof of the previous

Lemma. We conclude that G must be dihedral.

THEOREM 3.4. Let G be a subgroup of the linear translation complement of a

translation plane of dimension 2, characteristic 2. Suppose that G is generated by

its elations. Then one of the following holds:

(a) G is a Suzuki group.

(b) G SL(2,2s) for some s.

(c) G is elementary abelian and is a group of elations all with the same axis.

(d) G is dihedral.

PROOF. This is just a restatement of a Theorem of Hering [6, 3] except for

case (d). In Hering’s remaining case, G has a subgroup of odd order and index 2.

If IHl is odd and [G:H] 2 then G is dihedral so we get case (d) by applying (3.1),

(3.2), and (3.3).

REMARK. By Hering [7], Theorem (5.1) in case (b) of (3.4), G has an invariant

subplane which is a Lneburg plane.
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4. ALL INVOLUTIONS ARE BAER INVOLUTIONS

Here we are concerned with a subgroup of the linear translation complement

which has even order but contains no elations. As pointed out in [8], the Sylow

2-groups are elementary abellan. The case where G is non-solvable is covered in

[8], so we shall be mostly concerned with the solvable case.

LEMMA 4.1. Let G be a subgroup of the linear translation complement of a

finite translation plane of even square order. Suppose that each Sylow 2-group

fixes a Baer subplane pointwise and that there is more than one Sylow 2-group. Then

no Sylow 2-group contains a non-trivlal element which normalizes another Sylow

2-group.

PROOF. Suppose that S
1
and S

2
are Sylow 2-groups and that S

1
contains an

involution O which normalizes S2. Then 0 centralizes some involution in S2.

Hence <0,> is a group of order 4 contained in some Sylow 2-group S3.

Then the Baer subplanes polntwlse fixed by , 0, S I, S2, S
3
must all be identi-

cal. By Foulser [2], Theorem 3, a Sylow 2-group of the polntwise stabllzer of a

Baer subplane is normal and hence unique (in the polntwlse stabilizer). Hence S
1
and

S
2

are not distinct.

LEMMA 4.2. If G is solvable and each Sylow 2-group fixes a Baer subplane point-

wise, then either the Sylow 2-group is normal or IGI is not divisible by 4.

PROOF. See Hering [5]. Theorem I. If S is an elementary abellan 2-group and

is a Frobenlus complement then IS[ 2.

REMARK. Lemma (4.1) does not require that the plane have dimension 2 over its

kernel. Foulser’s Theorem 3 [2] implies that the Sylow 2-group must be elementary

abellan in this case. Hering’s Theorem 1 then implies that if G is non-solvable

and generated by its Sylow 2-group it must be isomorphic to SL(2,2s) for some s.

LEMMA 4.3. If G contains no elations, the Sylow 2-groups are elementary abelian.

If, in addition, G is solvable and generated by its involutions, then G/(G) is a

Sylow 2-group.

PROOF. A Sylow 2-group must have at least one fixed component. If it contains

no elations, it acts faithfully on a 2-space and is a subgroup of a Sylow 2-group of

GL(2,q). Hence the Sylow 2-groups are elementary abelian.
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The last part follows from Waiter’s characterization of groups with abelian

Sylow 2-groups [16].

LEMMA 4.4. If G is irreducible and solvable, the Sylow 2-groups have order

2 or 4. In the latter case G interchanges a pair of two dimensional subspaces and

the collineation group induced on them by their stablizer is dihedral.

PROOF. If G is primitive, then G c FL(I, by (2.4). But G is acting as a

group of linear transformations over GF(q). When G is represented as a subgroup of

FL(I,q4), the semi-linear transformations over GF(q4) must be those involving auto-

4)morphisms of GF(q which fix the elements of GF(q) The multiplicatlve group of

GF(q4) is odd--i.e., GL(I,q4) has odd order. Thus the Sylow 2-groups are cyclic.

By (4.3), they are elementary abelian. Hence the Lemma is proved for the case

where G is primitive, since the Sylow 2-groups must have order 2.

By (2.5) if G is irreducible but imprimitive then G has a reducible subgroup

GO
of index w and G

O has a pair of invariant 2-spaces V and V2. The subgroup fix-

ing V
1

(or V2) pointwise must have odd order since an involution fixing V polntwise

would have to act f.p.f, on V
2

and an involution cannot act f.p.f, on an invariant

space at characteristic two.

Suppose that G
O has a subgroup of order 4 fixing pointwise a 1-space in VI.

(It will also fix pointwise a subspace of V2.) If this subspace is invarlant under

G
O then G

O will have a characteristic 2-group; the subspace fixed pointwise by this

subgroup will be invariant under G so G is reducible, contrary to hypotheses.

Otherwise G
O
must induce a dihedral group on VI, since G

O
is solvable. Hence

the Sylow 2-groups in G
O

have order 2; those in G have order 4.

LEMMA 4.5. Suppose that G is reducible and solvable and that the Sylow 2-groups

have order >2. Then G has an invariant subspace pointwise fixed by a 2-group. If G

is not a 2-group, either it contains a group of affine homologies or its minimal

invariant subspaces have dimension 2 and the induced group is dihedral.

PROOF. If G is reducible, it has an invariant 2-space since if its minimal

space is 1-dimensional, G must fix the component which contains this 1-space.

Let V be an invariant 2-dimensional subspace. If the subgroup fixing V point-

wise has even order, we are done.
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If H is the subgroup fixing V pointwise and IHI is odd, consider the induced

group G/VI. If the 2-group in G/V
I
has order greater than 2, then G/V has an

invariant subspace in VI, since G is assumed to be solvable. This subspace, as a

vector space in the whole plane, will be invariant under G and pointwise fixed by a

Sylow 2-group.

If a minimal G-space is l-dimensional and G is not a 2-group then G cannot act

faithfully on the component which contains this l-space. Hence G contains a group

of homologies. (In this section G contains no elations.)

If the minimal G-spaces have dimension 2 and G is not a 2-group but is solvable,

the induced group must be dihedral.

THEOREM 4.6. Let G be a nontrivial subgroup of the linear translation comple-

ment for a plane of dimension 2 over GF(q), where q is even. Suppose that G is

generated by its involutions and they are all Baer involutions. Then at least one

of the following holds:

(a) G SL(2,2s) for some power of s, has an Ott subplane of order 2
s
on

which G acts in the normal manner. G acts irreducibly on .
(b) G SL(2,2s). G is reducible. Each Sylow 2-group fixes a Baer subplane

pointwise. All of these Baer subplanes are included in a derivable net.

In the derived plane all of the involutions are elations.

(c) (G) has index 2 in G and G is dihedral.

(d) The Sylow 2-groups in G have order 4. G interchanges a pair of 2-dlmen-

sional subspaces and the group induced on them be their stabilizer is

dihedral.

(e) G is reducible and one of its invariant subspaces is pointwise fixed by a

2-group. If G is not a 2-group either it contains affine homologies or

the minimal G spaces have dimension 2 and G induces a dihedral group on

its minimal space.

PROOF. If G is non-solvable, we have (a) or (b) by [8]. If G is solvable and

each Sylow 2-group fixes a Baer subplane pointwise apply (4.2). In the remaining

cases, apply (4.4) and (4.5).
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5. GROUPS GENERATED BY INVOLUTIONS

In the last two sections, we have assumed that the involutions in the linear

translation complement are all of the same kind---i.e., either they are all elations

or all Baer involutions. As before G always denotes a subgroup of the linear trans-

lation complement.

LEMMA 5.1. If G contains both elations and Baer involutions then the group gen-

erated by the Baer involutions contains elations.

PROOF. If G contains involutions of both kinds, let G be the normal subgroup

generated by all of the elations in G and let G
2

be the normal subgroup generated by

all of the Baer involutions in G.

Let S be a Sylow 2-group and let S S 0 GI, S
2

S 0 G2. By Herlng’s results

[6], G
1
eontalons no Baer involutions. If G

2
contains no elations, then SIS2=S 1

x S2.

Furthermore S
1
and S

2
are both elementary abelian. See (4.3) and again refer to

Hering [6]. It follows that SlX S
2

is elementary abelian and contains involutions

which do not belong to either S
1
or S

2
(unless one of them is trivial). But every

involution belongs to G
1
or G

2
so every involution in S belongs to S

1
or S2. Hence

G
2
must contain elations.

DEFINITION 5.2. In the rest of this section G
1

is the group generated by the

elations; C (GI) is the centralizer of G
1
in G and H is the subgroup of C(GI) gen-

erated by the involutions.

LEMMA 5.3. The center of G
1

is trivial unless G
1

is a 2-group. Thus

GIC(GI) G
1

C(GI)
PROOF. By (3.4) G

1
is a Suzuki group, SL(2,2s), dihedral, or a 2-group. The

two non-solvable cases are simple. A dihedral group with cyclic stem of odd order

has a trivial center.

LEMMA 5.4. Suppose that G
1

is not trivial, that C(GI) contains involutions

and neither G
1
nor C(GI) has a non-trivlal normal 2-group. Then the axes of the

elations in G can be embedded in a derivable net which contalons the Baer subplanes

pointwise fixed by involutions in C (GI). If C (GI) is non-solvable, this derivable

net is embedded in the given translation plane.
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PROOF. If C (GI) is non-solvable this follows from (2.7) in 8 ], since C(GI)
must be reducible. Each axis of an elation in GI is invariant under C (GI). If G

1

has no normal 2-group, there are at least three such axes.. Hence the non f.p.f.

elements in C (GI) including the involutions, must fix Baer subplanes polntwise.

The Lemma is now a direct consequence of the classical theory concerning a regular

determined by three skew projective lines, etc.

In the rest of this section, the subgroup G
1

is assumed to be non-trivial.

LEMMA 5.5. If G
1

is not a 2-group, (GI) is isomorphic to a subgroup of

GL(2,q).

PROOF. By (5.2), G
1 C (GI) is trivial, so C (GI) contains no homologies.

If C (GI) contains an affine homology whose axis is the axis of an elation in G
1

then must be invariant under G
1
and all of the elations in G

I fix . Hence G
I

is

a 2-group, contrary to hypotheses.

Thus, C (GI) must be faithful on each elation axis. This implies that

(GI)
_

GL(2,q).

LEMMA 5.6. If G
1
is not a two-group, G/G

1
C(GI) is abelian. If H is not a

2-group (or trivial) G/H (H) is abelian.

-1
PROOF. If E G, the mapping G

1
% GII is an inner automorphism of G

1
if and

only if belongs to GI C(GI). Hence G/GI C (GI) is isomorphic to a subgroup of the

group of outer automorphisms of GI. By (3.4), GI is dihedral, a Suzuki group, or

SL(2,2s) for some s.

If GI is dihedral, the cyclic stem has odd order. Let G
I <0,T> where O is an

involution and <> is the cyclic stem. All of the involutions in G are equivalent

under the inner automorphisms so the outer automorphisms fix 0 and induce automor-

phisms of <T>. The automorphism group of a cyclic group is abelian, so the automor-

phism group of GI
is abelian in this case.

The outer automorphisms of SL(2,2s) are essentially the field automorphlsms;

this group is cyclic.

According to Suzuki [15], Theorem II, page 139, the same remark holds for the
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H is normal in G; if H is not a 2-group then H is dihedral or SL(2,2s) for some

s since H is a subgroup of GL(2,q) generated by involutions. (Note that H G
1
must

be trivial unless H and G
1
are both 2-groups.) Thus the arguments just used also

apply to H.

THEOREM 5.7. Except in the cases where H is trivial and G
1

is dihedral or where

G has a normal 2-group, G
1
C (GI) contains the group generated by the involutions in

G and if G
1

is not a Suzuki group G G
1
C(GI).

PROOF. As in the proof of Lemma (5.6), G/G
1
C(GI) is isomorphic to a group of

outer automorphisms of GI.
Thus the first part of the Theorem is true unless G contains some involution

not in G
1 C (GI) which induces an outer automorphism of GI.

If G
1

Sz(2s) then s must be odd. The Theorem of Suzuki referred to before

implies that the outer automorphism group has odd order.

If G
1 SL(2,2s) then the net whose components are elation axes is Desarguesian.

This net is invariant under G.

By Ostrom [Ii ], the induced permutation group on the affine elation centers is

isomorphic to a subgroup of PFL(2,2s) for some s.

If IGII and IC(GI) are both even we can apply (5.4) to infer that the elation

axes are embedded in a regular (derivable) net invariant under G. (We do not need

the condition that all components of this derivable net are components of the spread

which defines the plane.) Again the induced group on the affine elation centers is

a subgroup of PFL(2,2s) An element of G fixes all of the elation centers if and

orly if it is in C (GI). Thus if G
1

is not a Suzuki group G/C(GI) is a subgroup of

PFL(2,2s). Let G/C(GI).
Furthermore if G

1
SL(2 2s), GF(2s) must be a subfield of GF(q2). If 2

s

the plane must be Desarguesian. See Prohaska [14]. If the plane is not Desarguesian,

GF(2s) will be a proper subfield of GF(q). This will also he the case where H is non-

trivial and G
1

is dihedral by (5.4). Since we are looking at linear transformations

over GF(q), it follows that an element of G which fixes three elation centers must

fix all of them and thus be in C (GI). Hence is in PGL(2,2s) PSL(2,2s), not

merely in PFL (2,2s)
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If should have a normal 2-group, so would G. Recall that G
1 C (GI) is

trivial, so has a normal subgroup isomorphic to GI. From Dickson’s [I] list of

subgroups of PSL(2,2s), is dihedral or PSL(2,2t) for some t. Hence if G
1

is

2
sSL(2,2s), G is SL(2, ); if G

1
is dihedral, is dihedral and the cyclic stem must

have odd order since can have no normal 2-group. Hence the involutions in are

all conjugate. Hence they must all be in GI. Hence GI.
COROLLARY 5-.8. If the group generated by the elations is A Suzuki group, G con-

tains no Baer involutions.

PROOF. By (5.7) G GIC (GI) G
1

C(GI) where G
1

is, in this case a Suzuki

group. If G contains Baer involutions, then C (GI) will contain Baer involutions.

This implies that G
1 induces a Suzuki group on a Desarguesian plane of order q; that

is, on a Baer subplane pointwise fixed by some element of C (GI).
LEMMA 5.9. Suppose that has a derivable net 71. Let 7 2

be the net whose

components are the Baer subplanes in 7 I" (I and 7
2

correspond to a regulus and

its opposite regulus.) Then G cannot contain 2-group Q1 and Q2 with the following

properties

(a) Q1 and Q2 centralize each other.

(b) I and 2 are invariant under QIQ2"

Q1 consists of elations with a given axis in I; Q2 fixes pointwise some Baer

subplane V(Q2) of l(line of 2).

(c) Q1 Q2 q0 > 2. Q1 has an invariant subplane of order q0 embedded in

V(Q2). In its action on 72, Q2 has an invariant subplane of order q0 embedded in 4,

where now is a Baer subplane of 72

We can choose a representation so that the components of 71 are x 0 and y xW,

where W runs over the various scalar matrices over GF(q). Furthermore, we can choose

a basis so that Q1 is represented by the various matrices of the form

1 o g
0 1
0 0

g GF(q0) and V(Q2) is the set of points (Xl, x2, YI’ Y2 such that x2 Y2 0.

This representation for Q1 is unchanged under conjugation with respect to any matrix
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[ ] where A is 2 by 2 over GF(q).

Hence Q2 can be represented by matrices of the form

where varies over GF(q0).
Let {Mly xM is a component of }. Note that if M t + I and

and suppose thatM both belong to . Let M
m3 m4

m
3 GF(qo). Then

m
3 +m3x m

4

m
3 ] 3

e + m
4

But the difference of distinct matrices in must be non-slngular. Thus if matrices

in have identical first columns (second rows) they must be identical. Hence

mI + 2m
3
+ m

2 + m
4

for all in GF(q0). Thus [(mI + m4) + m3] 0. This

2
can only happen if m

3
0, mI 4. But if the q distinct matrices in have distinct

second rows every ordered pair of elements of GF(q) must appear as the second row for

some matrix in . In particular, there must be matrices in which m
3 belongs to

GF(q0) but is not equal to zero. We have a contradiction which establishes the Lemma.

REMARK. A similar proof works for odd characteristic.

THEOREM 5. I0. If G
1
and H (see (5.2)) are both non-solvable, then G SL(2,q),

G
2 SL(2,q2) where GF(ql) and GF(q2) are subfields of GF(q) such that GF(ql)N GF(q2)ffi

GF(2).

PROOF. By (3.4), (4.6) and (5.8) we have only to prove that GF(ql)N GF(q2) can-

not contain a subfield of order greater than 2. If GF(ql) GF(q2) GF(q0), where

q0 > 2 we can apply Lemma (5.9) to get a contradiction.

6. CONCLUSION

We have tended to ignore subgroups of the translation complement which are both

solvable and reducible or even solvable and irreducible but imprimitlve. We have
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generally assumed that there is no normal 2-group. Here the subspace polntwlse

fixed by the normal 2-group is invariant.

In all cases the induced group (the factor group modulo the subgroup fixing a

minimal invarlant subspace polntwlse) is cyclic or dihedral in the solvable case.

Thus the group theoretic structure is relatively uncomplicated. Yet "most" of the

known planes of even order and dimension two are in this class. This includes most

semi-field planes, generalized Hall planes and generalized Andr planes. We would

conjecture that there are many more planes with an invariant component or Baer sub-

plane, and we will not attempt to enumerate all of the possibilities.

Our investigations have led to two interesting possibilities for which we do not

know whether or not examples exist. The first is described in (4.4); the second in

(5.10).
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ADDED IN PROOF. Several people have called our attention to a paper by B. Mwene "On

the subgroups of the group PSL(4,2m) J. Alg. 41 (1976), 79. The arguments in [8]

could have been simplified if we had used Mwene’s results. They probably also could

be used in the present paper.


