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ABSTRACT. Let G be a graph. With every path of G let us associate a weitht

w With every spanning subgraph C of G consisting of paths i e2 k
let us associate the weight

k
w(C) H w

i=l i
The path polynomial of G is

Ew(C)

where the summation is taken over all the spanning subgraphs of G whose components are

paths. Some basic properties of these polynomials are given. The polynomials are then

used to obtain results about the ninimum number of node disjoint path coverings in graphs.
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1. INTRODUCTION.

The graphs considered here will be finite, undirected, and without loops or multiple

edges, unless otherwise stated. Let G be such a graph. A paJl in G is a subgraph

of G which is a tree with nodes of valencies 1 and 2 only. A pguth cove of G is a

spanning subgraph of G whose components are all paths. (We regard an isolated node

to be a path with no edges). With every path in G let us associate a wieght w

With every path cover (or simply ceres) C of G let us associate the weight

r
w(C) w

i=l 1
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where . (i=l, 2 r) are the components of C. Then the paZh polynoma of G is

Zw (C),

where the summation is taken over all the path covers in G. This polynomial belongs to

the family of F-polynomials defined in Farrell [i].

In this paper, we will assign the weight w
k

to paths with k nodes. Therefore the

path polynomial of G will be a polynomial in the indeterminates Wl, w2, w3,.., etc. We

will denote this polynomial by P(G;w_), where _w (Wl, w2, w
3

is a gene wg

vector. If we put w
i

w for all i, then the resulting polynomial in w will be called

the Smple ph poaom of G. This polynomial will be denoted by P(G;w).

First of all, we will give a fundamental theorem on path polynomials and then use

it to derive an algorithm for finding the polynomials. Basic properties of the polynomials

will then be discussed. We will then derive formulae from which the path polynomials of

trees could be obtained, and also expressions for path polynomials of multigraphs.

Finally, we will use the polynomials to extend some known results about minimum node

disjoint path coverings of graphs. We refer the reader to Harary [2] for the basic de-

finitions in graph theory.

2. THE FUNDAMENTAL THEOREM AND ALGORITHM,

Let e be an edge in the graph G. By path incorporating (or simply incorporsing)

e, we mean that e is distinguished in some way (for example, coloured) and required to

belong to every path covering of G that we consider. Consider the set of all path covers

of G. We can partition this set into two classes, (i) those containing a specified edge

e, and (ii) those which do not. The covers which do not contain e will be covers of the

graph G" obtained from G by deleting e. The covers which contain e, will be covers of

the graph G* obtained from G by incorporating e. Thus we have the following theorem.

THEOREM I. (The Fundamental Theorem for Path Polynomials) Let G be a graph and e

an (unincorporated) edge of G. Let G" he the graph obtained from G by deleting e, and G*

the graph obtained from G by incorporating e. Then

P(G;w) (P(G’;w_) + P(G*;w).

By an incorporated graph, we will mean a graph whose edges are all incorporated. Since

a circuit cannot be a subgraph.of any path cover, we have the following result.
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LEMMA 1. If G* contains an incorporated circuit, then

P(G*;w_) 0.

Since no path can have a node of valency greater than 2, we have

LEMMA 2. If G* contains more than two incorporated edges incident to a node, then

P)G*;w_) O.

The Fundameal Algorithm for Path Polynomials (or simply the reduction process)

consists of repeated applications of Theorem i to the graph G, until we obtain graphs Go

for which P(Gi;w__) could be immediately written down. Lemmas i and 2 imply some useful

simplifications to the algorithm. If a node has two incorporated edges incident to it,

we can immediately delete all the unincorporated edges which are adjacent to that node.

Also, we can also immediately remove from the graph any edge that completes a circuit with

a set of incorporated edges.

We have programmed the algorithm on a computer and have used it to generate path

polynomials of several kinds of graphs. Hand computation of these polynomials could be

very tedious if the graph is non-trivial. We note that a procedure for obtaining path

covers of a tree is given in Slater [3].

3. SOME BASIC PROPERTIES OF PATH POLYNOMIALS.

k
I

k
2

k
r

It is clear that the terms of P(G;w) are of the form A w
I

w
2

...w
r

where A

is the number of path covers of G containing kI
isolated nodes, k

2 edges, k
3
paths length

r
3 etc. In the case of the simple path polynomial P(G;w), the terms are of the form A w

r

where A is the number of covers of G with r components. The following results are im-
r

mediate consequences of the definitions.

THEOREM 2. Let G be a graph with p nodes. Then the coefficient of w in P(G;w) or
p

the coefficient of w in P(G;w), is the number of Hamiltonian paths in G.

THEOREM 3. If the coefficient of w in P(G;w) is nonzero, then G is connected.

THEOREM 4. Let G be a graph with p nodes. Let r be the smallest exponent of w in

P(G;w). Then all terms with larger powers then r, up to wp, must occur in P(G;w) with

nonzero coefficients (i.e., P(G;w) has no gaps).

rPROOF. The existence of a term in w implies the existence of a cover with r com-

ponents. By deleting an appropriate number of edges, we can ob tain a cover with k
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components, for all r < k < p. The results therefore follows.

The simple cutnode theorem which holds for chromatic polynomials (See Read [4]) does

not hold for path polynomials. However, we can obtain an analogous result when the graph

G conslss of two independent subgraphs BI and B2
"chained together" by a path of length

2 as shown below in Figure i.

Y Figure I.

By attaching a graph A to a graph B, we mean the identification of a node of A with a

node of B so as to obtain a new graph in which A and B are subgraphs.

Let the edges of the path be and and the nodes x, y, and z as shown in Figure

i. Let us denote by GI and G
2

respectively, the graphs formed by attaching the edge

to B
1

and the edge to B2. It is clear that any path cover of GI can be "combined"

with any path cover of G
2

(using node y) to yield a path cover of G. This leads to the

following lemma.

LEMMA 3. Let G be a graph consisting of graphs B
I

and B
2

chained by a path of length

2. Let and be the edges of the path, which are adjacent to BI
and B

2
respectively.

Let HI be the graph BI
with attached to it and H2 the graph B

2
with attached to it.

Then

-i
P(G;w) w P(H1;w)P(H2;w).

This lemma can easily be extended to any finite chain of independent graphs chained

by paths of length 2.

THEOREM 5. Let G be a graph consisting of k graphs BI, B2,...,.’. chained together

by paths of length 2. Then

k
l-k

P(G;w) w H P(Hi;w),
i=l

where HI
is B

I
with an edge attached to it, and for i 2, 3,..., k-l, H.I is B.l with two

edges attached to it. is Bk with one edge attached to it.

4. PATH POLYNOMIALS OF GRAPHS WITH PATHS ATTACHED

In this section we will use the symbol G to denote the simple path polynomial of the
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graph G. The following lemma gives the simple path polynomial of a graph containing a

g (an edge incident to a node of valency l).

LEMMA 4. Let G
l
be the graph formed by attaching a twig to a graph G. Then

GI
wG + G*,

where G* is G
l
with a incorporated.

PROOF. Apply the reduction process to the graph G
I by deleting

This result can be easily extended to the graph Qn consisting of a graph G with n

twigs no node in common. We will use the notation Qn*(r) for the graph with r

of the n twigs incorporated, where r < n.

THEOREM 6.

n

Qn Z w
r

Q*n-r {i) with Q*0 (I)= G.
r=0

n-i n-k
n

w
k

w Q + Z l Q*n-r-k (i).
k=0 r=0

PROOF. Apply the reduction process to the graph Qn by deleting a twig. This yields

Qn w Qn-l + Q*n (i)

Now, apply the process to Qn-l" This gives

w[w -2 + Q*n-l(1)] + (i).

By applying the reduction process to the graphs -k (l<k<n-l) in a similar manner, the

result is obtained.

LEMMA 5.

n-i

Qn w l -i (r) + (n) (Q* (0) Qnn-+/- -i"r=O

PROOF. Apply the reduction process to the graph by deleting a twig. This yields

Qn w -i + Qn* (I).

w Qn-i + [w Qn-l* (i) + Q*n (2)],

by applying the reduction process to the graph Qn*(1), by deleting a twig. The result

follows by continuing the process on Qn*(2), then Qn*(3), etc.
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THEOREM 7. Let G be the graph consisting of a graph G with n twigs attached to a
n

single node, say node x. Then

Gn w Gn_I + w
n-I

G* + (n-l)w
n-I

G",

where the graph G is the graph G-{x} and G* is G with an incorporated twig attached to x.

PROOF. We can use Lemma 5. Since G’n_I (r) 0 for r > 2, we get

Gn w Gn_1 + w G*n_l(1) + G*(2).n (4.1)

Apply the reduction process to the graph G* (i) be deleting a twig at node x. This yields
n-i

G* (i) w G* (i) + G* (2)
n-i n-2 n-i

w[w G* (i) + G* (2)] G* (2)
n-3 n-2 n-i

By substituting in (4.1), we get

3Gn, (i) + w
2

G* G* G*G w G + w (2) + w (2) + (2).
n n-I -3 n-2 n-i n

We can continue the reduction process on the graphs G*.(1), until i reduces to 2. Now

G(1) w G(1) + g(2)

Hence we get

n-2
G w + w

n-2
(w G*(1)) + Z w

r
G* (2).

n Gn-i +/-
r=0

n-r
(4.2)

Since two edges are incorporated at node x in each of the graphs G* (2), none of
n-r

the other edges adjacent to node x can be used in any path cover of G* (2). Hence,
n-r

n-r-i
G* (2) w G"
n-r

since every cover of G* (2) must contain the (n-r-2) nodes adjacent to node x as isolated
n-r

n-r-2)nodes (with weight w and a path with 3 nodes (including node x) as a component

(with weight w).

=> G w G + w
n-I

n n-i

n-2
G* + E wr.-r-l- G (G*(1) G*

r=0

w G +wn-I
n-i G* + (n-l) w

n-I

as required.
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Notice that Theorem 7 could also be proved combinatorially by specifying one of the

n twigs and considering when it does not appear in a path cover (w Gn_I) when it is the

only twig that appears (wn-iG*), and when it appears with one of the other n-i twigs

((n-l)wn-iG’’). The analytical proof has been given to empahsize the use of Theorem 3.

Theorems 6 and 7 are useful for finding path polynomials of trees. For example,

let T be the tree shown below in Figure 2 (a)

(a) (b)

Figure 2

(c) (d)

By using Theorem 7, with G as the graph shown in Figure 2 (b), we get

T G
2

w G
I
+ w G* w G

w (w5+4w4+6w3=3w2) + w(w4+3w3+3w2) + w(w3+2w2+w)
6

5w
5 2

w +_ + 10w
4 + 83 + w

Let G(n) be the graph obtained by attaching a path with n (>0) nodes to a graph G.

We can apply the reduction process to the graph G(n) by deleting the terminal edge of

the path. This yields

G(n) w G(n-l) + G*(n), (4.3)

where the graph G*(n) is the graph G(n) with the terminal edge of the path incorporated.

There is no difference between the simple path polynomials of the graphs G*(n) and

G(n-l) since the incorporated edge and the node of valency 2 to which it is attached can

be regarded as the terminml "node" of G(n-l). Hence

G(n) (i + w) G(n- I).

(1 + w) n-I G(1).

By using Lemma 4, for the graph G(1) (S GI) we get the following results.

THEOREM 8

n-i
G(n) (l+w) (wG + G*)

where the graph G* is the graph G(n) with the entire path incorporated.

By taking the graph G as an isolated node, we obtain the following corollary.
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COROLLARY 8.1. Let P be the path with n nodes. Thenn

P(Pn;W) w(l + w)n-i

5. PATH POLYNOMIALS OF MULTIGRAPHS.

Let G
n

be a multigraph containing two nodes x and y joined by n edges. In any cover

of Gn, either nodes x and y are adjacent, or they are not. If they are, then there are

n ways of choosing an edge xy. If they are not, then the covers will be covers of the

graph G" obtained from G
n

by deleting the n edges joining nodes x and y. The covers in

which x and y are adjacent are covers of the graph G*, obtained from G
n
by incorporating

an edge xy and deleting the n-i remaining edges xy. This discussion leads to the

following theorem.

THEOREM 9.

p(Gn;w_) P(G’;w_) + nP(G*;w_)

Let GI be the graph obtained from Gn’by deleting n-i of the edges which join x to y.

We can apply the reduction process to G1 by removing the edge xy. This yields

p(GI;w_) P(G’;_w) + P(G*;w_).

Hence, P)G*;w__) p(GI;w_) P(G’;w_).

By substituting for P(G*;w_) in Theorem 9, we obtain the following results:

THEOREM i0.

p(Gn;w_) nP(Gl;w_) (w-l) P(G’;w).

The expression for p(Gn;w__), given in the above theorem, is useful when G
1

is a graph

whose path polynomial is known or could be easily found.

6. APPLICATION TO MINIFUM PATH COVERS IN GRAPHS.

The path polynomial of a graph contains much information about the paths in the graph.

It might therefore be useful in an investigation involving the paths in a given graph.

In this section, we illustrate the use of the polynomials by deriving and extending some

known results.

Let us denote, by (G), the minimun number of elements in any path cover of G. (G)

has been called the pI---po e0vng m6 of G in Boesch, Chen and McHugh.
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In the case of edge disjoint paths, the analogous parameter is call the path number

(see Haray [6]). The path cover of G has been called an 7gnd decomposon of G by

Goodman and Hedetniemi 7 ].

In [5], an investigation was made into the relation of to other well-known graphical

invariants and an algorithm was developed to determine for trees. In Barnette [8] and

Klee [9], arose in the study of Hamiltonian graphs. In [7], an efficient algorithm

was derived for finding the minimum number of edges needed to be added to a graph in

order to make it Hamiltonian, i.e. the Haoia completion number of the graph, denoted

by hc(G). Clearly, when G is non-hamiltonian,

(G) hc(G),

since a path cover with cardinalty k can be changed into a Hamiltonian path by adding k

new edges.

It is clear that (G) is the smallest power of w in P(G;w). Let G be the graph
n

described in Theorem 7. Then

P(Gn;W wP(Gn_l;W) + wn-ip (G* ;w) + (n-l)wn-ip(G";w).

Now G’’ is a subgraph of the graph Gn_I with n less nodes. Any minimum cover C of G’’

can be extended to a minimum cover of G by adding at leas n-2.components, since eithern-I

x can extend a path in C, causing at least n-2 components to be added to C, or x cannot

again adding at least n-2 components to the cover. Hence

(Gn_I) n-2 + (G’’).

It is clear that

Aso,

=> (WGn_I) -> n-I + (G’’).

(wn-iG*) n + (G’’).

((n-l)wn-iG’’) + n-i + (G’’).

Therefore, we obtain the following result.

COROLLARY 7. i.

(G n-i + (G’).
n

This result was obtained in [5] (Theorem 3(i)).

Notice that, if we put n=2, we get

(G2) i + (G’’).

=> (G’’) (G2) i.
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The result for the special case in which the graph G is a tree is iven in [7]

(Lemma 3).

From Theorem 8, we have

G(n) (l+w) n-I (wG+G*).

=> (G(n)) min (I+(G), (G*)).

Any minimum cover of G can be extended to a minimum cover of G* by adding at most one

component, the attached path. Therefore,

i + (G) 2 (G,).

Hence we have the following result.

COROLLARY 8.2

(G(n)) (G*).

This corollary generalizes Theorem 3(ii) of [5].

If we put n=3 in Equation (4.3), we get

G(3) wG(2) + G*(3).

Since G*(3) has the terminal edge incorporated,

G*(3) G(2).

=> G(3) + (l+w) G(2).

=> (G(3)) (G(2)). (6.1)

This result was also obtained in [5] (Theorem 3(ii)). In the special case where G is

a tree and v is the terminal node of the attached path, we get

(r) (T-{v}), (6.2)

where T is the tree consisting of G with the attached path and T-{v} is the tree obtained

from T by removing node v.

By replacing with hc in (6.2), we get

hc(T) hc(T-{v}).

This result was obtained in [7] by a different technique.

Let us now consider the graph G of Theorem 5. It follows immediately from this

theorem, that

k
(G) l-k + Z (Hi).

i=l
(6.3)

Let G
1

be the graph of Lemma 4. Then G
I and HI are identical. Therefore,
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(H
I (GI) (G*)

from Corollary 8.2.

Let x be the node of HI to which the twig is incident, and let B be the graph

obtained from B by removing the nodes to which the twigs are incident. Any minimum
1

cover of B" can be extended to a minimum cover of G* by adding at most one component

(the twig, in the case where all the nodes adjacent to x have degree 2) to the minimum

cover. Hence

C(G*) C(HI) -< 1 + (B’).

Similarly, for r=2, 3,..., k-l,

(Mr) < 2 + (B_’_’),
r

C() <- i + C(B’).
Hence, we have the following result, obtained by substituting for C(Hi) in (6.3).

THEOREM Ii. Let G be a graph consisting of k graphs BI, B2,..., B
k

chained together

by paths of length 2. Let B’’ be the graph obtained from B. by removing the nodes to

which the paths are chained. Then

k
(G) -< (B’) + k-l.

i=l

Notice that, if the nodes which are common to the paths and the graph B. all have

valency 2, then we obtain the following corollary.

COROLLARY ii.i.

k
C(G) Y. C(Bi k+l.

i=l

PROOF. In this case,

C(H
i C(Bi) (i i, 2 k),

since the attachment of a twig to a node of valency i cannot increase the minimum number

of elements in a cover, as shown above in (6.1). The result therefore follows from (6.3).
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