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ABSTRACT. We present in this paper some new integral inequalities which are related

to Hardy’s inequality, thus bringing into sharp focus some of the earlier results of

the author.

KEY WORDS AND PHRASES. fneua li ties

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. YD15

1. INTRODUCTION.

The present note is a sequel to the author’s paper [i] in which the following

theorem that generalizes Shum’s result [2] was proved.

THEORF,M I.I. Let be continuous and non-decreasing on [o,=] with g(O) O,

(x) 0 for x 0 and g(=) =. Let p i, r # 1 and f(x) be non-negative and

Lebesgue-Stieltjes integrable with respect to g(x) on [0,b] or [a, o] according as

r 1 or r < i, where a 0 and b 0. Suppose

F(x) f f(t)dg(t) (r i)

f f(t)dg(t) (r 1).
(I.i)

Then

-r
0

g(x) F(x)Pdg(x) + [p/(r-l)]Pg(b)1-r F(b) p

p (r-l) ]P fb -r
0

g(x) [g(x) f(x)]Pdg(x) (r i)

(1.2)

and

-r F(x)Pdg(x) + [p/(1-r) ]Pg(a)l-r F(a) p

(1.3)

[p/("l-r")]Pf g(x)-r[g(x)f(x)]Pdg(x) (r i),

with both inequalities reversed in 0 p _< I.

Equality holds in either inequality, when either p 1 or f O. The constant

[p/(r-l) JP or [p/(i-r)]p is the best possible when the left side of (1.2) or (1.3)

is unchanged, respectively.
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The objective of this paper is to obtain a new integral inequality which is an

extension of Theorem i.i. Indeed, we shall show that Theorem I.i in its modified

form leads us to some extensions, variants and a new generalization of a class of

inequalities which are related to Hardy’s integral inequality. Moreover, we shall examine

the case when r 1 in Theorem I.I, a case which was not discussed in [I]. In fact,

certain extensions of Hardy’s inequality due to Ling-Yau Chan [3], which seemed new, are

shown to be immediate consequences of the modified form of Theorem i.I.

In Section 2 we state our main result. An immediate corollary of this result shows

that the inequalities (1.2) and (1.3) continue to persist except for an added constant

when
b b
0

in (1.2) and
a

are replaced by a’ where 0 <- a b <- .
In Section 3, we prove an elementary lemma which is then used to give the proof of

our main result. In Section 4, our result is applied to give some useful variants and

extensions of Hardy’s inequality.

Throughout what follows, unless otherwise stated, we shall assume g is continuous,

non-negative and non-decreasing on [c,dJ with g(c) 0 and g(d) . Furthermore, f

is assumed to be a non-negative Lebesgue-Stieltjes integrable function with respect to

g on [c,d]. Our notations and terminologies are similar to the ones in [2]. Thus, for

real numbers p # 0 and 6 # 0, the functions 8, F and Q(.,,F) on [c,d] are defined

as follows:
(p-l) 6+1

g(t) f(t)Pdg(t) (6 0)
(1.4)8(x)

f.. (p-l) (6+1)
g(t) f(t)Pdg(t) (6 0),

f(t) (6 0)dg(t)
F(x) (1.5)

’__ f(t) dg(t) (6 0)
jx

and

Q(x,6,F) g(x) 8(x) 161 p-1 6p pg(x) V(x) (1.6)

2. STATEMENT OF IAIN RESULT. Our main result is the following.

THEOREM 2.1. Let f(t) L((c,x),dg) or f(t) L((x,d),dg) for every x (a,b)

according as 6 0 or 6 0, where c a b <-d. Suppose for p e 1 or

d 6p-i p d 6p-iF p
c

g(x) [g(x)f(x)] dg(x) and g(x) (x) dg(x) if 0 p -< i.P 0
C

then we have

6p-i p -i P (a) 6PF(a) P
a

g(x) F(x) dg(x) _< 6 [g(b)Pv(b) g

+ 161-p fb 6-I
a

g(x) p [g(x)f(x)]Pdg(x)
(2.1)

whenever p -> 1 or p 0. The inequality is reversed if 0 p i. The inequality is

strict unless either p 1 or f 0. The constant factor II -p
is the best possible

when the term -l[g(b)PF(b)P g(a)
p

F(a) p] remains unchanged.

REMARK 2.2. For 6 (l-r)/p, r 1 and p - 1 or p 0, we obtain the following

results.

a
g(x) F(x)Pdg(x) _< [p/(l-r)]g(b)l-rF(b)P g(a)l-rF(a)P]

pfb -r Pd+ [p/(r-l) g(x) g(x) (x) g(x)
a

(r i)

(2.2)
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and

b g(x)-rF(x)Pdg(x) <- [p/(1-r)][g(b)l-rF(b)P g(a)l-rF(a)P]

pfb+ [p/(l-r)] g(x)-r[g(x)f(x)]Pdg(x)
a

(r i);

(2.3)

when 0 p -_ 1 the inequalities are reversed.

These inequalities generalize our earlier results in [I], namely Theorem I.i.

REMARK 2.3. Suppose the hypotheses g(c) 0 and g(d) are relaxed. On

replacing g by oog and f by [o’ (g) ]-if, where o is differentiable, non-negative

and non-decreasing on [g(c) g(d)] with (oog)(c) 0 and (oog)(d) oo, we obtain

from inequality (2.1) the following form

b o’(g(x))o(g(x))SP-i G(x) p dg(x)

4-110,(g(b)) ?’p F(b) p o(g(a))SP F(a) p (2.4)

+ 18I-P fb o’ (g(x)) l-po(g(x) 6P-l[o(g(x))f (x) ]Pdg(x)
a

where F is, however, still defined by (1.5) and p > 1 or p O. Inequality (2.4)

is reversed if 0 p -< i.

3. PROOF OF THEOREM: The proof of our main result will depend essentially on the

following lemma.

LEMMA: For p _> 1 or p O, the function Q(.,6,F), 8 # O, is positive and

non-decreasing or non-increasing on c,d] according as 8 0 or O. If how-

ever 0 p ! I, the function Q(.,6,F), # O, is negative and non-increasing or

non-decreasing on [c,d] according as 0 or O.

PROOF: We shall show that the integrals defining 0(x) exist uncer the hypotheses

of the theorem. For p -> 1 or p 0 and O,

(p-l) 8+1)
0 <_ O(x)

c
g(t) f(t)Pdg(t)

8p-I ]p-< g(x) g(t) [g(t) f(t) dg(t)

-Sf,c 8p-1 ]p-< g(x) g(t) [g(t)f(t) dg(t)

which is obtained from the non-decreasing property of g and the hypothesis of the

theorem,

For p -> or p 0 and 8 O, we have by the same token

0 e(x) =fxd g(t)(P-l)(6+l)f(t)P dg(t)

g(x)-Sfxd p-l[ ]pg(t) g(t)f(t) dg(t)

-6fd 8p-1 ]p-< g(x)
c

g(t) [g(t)f(t) dg(t) =.
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For p i or p O, t (t.,t)z tl’t2 [c,d], let

and let dX(t) g(tl)-l-pg(t2)-(6$1)dg(t! dg(tg). Suppose

and d* (d,d) where x [c,d]. Then, (161p) -I g(x) -(p+I)

h(t) g(t2)P(6+l)f(t2)P
x* (x,x), c* (c,c)

Q(x,6,F)

fX*c, h(t)d(t) Ix* Ix* i/Pd% ]PdX_t. jl-P[ h(t) (t) (6 O)
c* c*

fd* f x: fx*
h(t)dX(t) dX(t) jl-P[ d* h(t)l/Pdx(t)]P (6 O)

Hence, the non-negative property of Q(x,,F), x [c,d], O, is a direct

consequence of Jensen’s inequality for convex functions.

Also from the Jensen-Steffensen inequality for sums, we have for p " 1 or

p 0,

n n

qi
l-p n i/p

0Pn(Z’q’P) i__E1 qizi (i I (i.IE qizi )P

where (Zi)l - i -< n
is non-decreasing and (qi)l i g n

satisfies the conditions

n n
0 -< Y. qi -< __E qi (I u n) with E qi O.

i=u i I i=1

In particular, for n 2, we have

0 g qlZl + q2z2 (ql +q2
I/p pi/p + q2 z1-p(qlZl 2

Now suppose c y x d. Making use of the substitutions

ql c* dX(t), q2 y, dX(t),

z
I CrY* i/Pd fY* JP

c*
h(t) X(t) /

c*
dX(t) and

z2 ifx* i/Pd fy,, ]py, h(t)_ X(t)_ y, dX(t)_

in inequality (3.1), we get

-pfy* i/Pd ]P0 -< [Y, d%(t)nl [ h(t) X(t)
.7 c c*

l-p f:y* i/p jp+ , dX(t)] , h(t) dX(t)

-[ f:: dX(t)]l-p[/x* 1/p ]p
c*

h(t) dX(t)

On the application of Jensen’s inequality to the second summand, we obtain

(]{p)-i -(p+l)g(x) [Q(x,6,F) Q(y,,F)] O.

Hence (Iglp) -I -6 (p+l)g(.) Q(.,,F) is positive and non-decreasing on [c,d]. But

(161p)-ig(x) -(p+I) is zero for x c and non-decreasing for x >- c and Q(c,,F) O;

whence for O, Q(x,6,F) is non-negative and non-decreasing on [c,d]. Consequently,

the assertion of the lemma is valid for p 1 or p 0. Similar argument also shows

that for p >- 1 or p 0 and 6 OQ(d.,F) is non-negative and non-decreasing on
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[c,d]. Also, it can be proved in the same manner that Q(.,6,F) for 0 p <- i and

6 + 0 is negative and non-increasing or non-decreasing on [c,d] according as

6 0 o8 6 0. This completes the proof of the lemma.

REMARK 3.1. We note in passing that Holder’s inequality yields Q(x,e,F) -> 0

for c <_ x <- d when p i or p 0, 6 < 0,6 0 and 0 p <- i, 6 0,6 0. For

example, for p >_ i and 6 0 we have

F(x) =fcx f(t)g(t)
s -s I/p x -6-1 l-(i/p)

g(t) dg(t) <- 0(x) g(t) dg(t)]

where s (p + i)(6 + l)/p. The result follows after raising both sides to the power

p and simplifying.

The method by which Theorem i.i is obtained in [I] will be used to prove our main

result. Suppose p i or p 0, 6 # 0, and c a b -<. d. Using first the non-

negative property of Q(.,6,F), next an application of integration by parts, and finally

the monotonicity of Q(.,6,F) (cf. Lemma), we obtain

I, Pdg (x, -</ab g(x)8-1 0(x) dg (x,

6-1[g(b) 60(b) g(a)
6

B(a) + 16 I-/_/’ g(x) 6p-1

<_ -1 161p-l[g(b)6PF(b)p g(a)6PF(a)P]

-lfb 6p-I+ j6J
a

g(x)

Hence

[g (x) f (x) ]P dg(x).

[g(x) f(x) ]Pdg(x)

b
g(x) 6P-iF(x)Pdg(x) 6-1[g(b)6PF(b)P g(a)6PF(a)P]

+ l,l- /a g(x)6P-l[g(x)f(x)]p dg(x).

This proves the assertion of the theorem when p >- i or p 0. The proof of the theorem

when 0 p <- I is similar; hence it is omitted. We also omit the proof of the ex-

actness of constant and the condit*ons for equality since the proof is similar to the

one given in [2]. Thus the proof of the theorem is complete.. APPLICATIONS. We examine here some of the consequences of Theorem 2.1. The
conditions for equality and the exactness of constant as stated in Theorem 2.1 will be

tacitly assumed in all our results. The next two results yield the case r I of

Theorem I.I.

COROLLARY 4.1. Let p ->- i or p 0 and r i. For c <- a b : d, let

f(t) L((c,x)),dg) or f(t) L((x,d),dg) for every x (a,b) according as r I

or r i, where g(c) i and g(d) . Suppose

fx f(t) dg(t) (r I)
cF(x)
= (4.1)
] f(t) dg(t) (r 1).
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Then we have

b -i -r/p ]p
a

g(x) (log g(x)) F(x) dg(x)

[p/ (l-r) ][ (log g(b))-l-rF(b) p (log g(a))l-rF(a)PJ (4.2)

+ [p/ii_rl p /b -I
a

g(x) [g(x)(log g(x))l (r/p)f(x)]p dg(x);

with the inequality reversed if 0 p i.

PROOF. The assertion of the Corollary follows on taking

(u) log u, i -< u -< =, and (l-r)/p, r i in inequality (2.4).

REMARK. For g(x) x, r 0 and r p we obtain as special cases of the Corollary,

Chan’s results [3, Theorem i] and [3, Theorem 3] respectively.

COROLLARY 4.3. Let p -> or p 0 and r # i. For c -< a b _< d, let

f(t) L((c,x),dg) or f(t) L((x,d),dg) according as r i or r 1 where x e (a,b),

g(c) 0 and g(d) i. Suppose F is as in (4.1). Then

fb g (x) -l[ log g(x) I(r-2)/PF(x)]p dg(x)

_< [p/ (l-r) ][ log g(b) r-I F(b) p flog g(a) r-I F(a) p] (4.3)

+ [p/ii_rl]p /b -i
a

g(x) [g(x) Ilog g(x) ll+((r-2/P)f(x)]Pdg(x);

when 0 p i, the inequality is reversed.

PROOF. Take o(u) flog ul
-I

0 u i and 6 (l-r)/p r i in inequality

(2.4) and the conclusion of the Corollary follows at once.

REMARK 4.4. Corollary 4.3 is a generalization of Chan’s results, [3, Theorems 2 and 4].

Indeed, if we take g(x) x, r 2 and r 2-p, p i in the Corollary, we obtain

Theorems 2 and 4 in [I], respectively.

Finally, we note that many interesting inequalities may be obtained by specializing

any or all of the functions f(x), g(x) and the real number 6 0. For example, f(x)
-I

may be replaced by f(x)(g’(x)) in inequalities (2.2), (2.3), (4.2) and (4.3). Of
particular interest are inequalities (2.2) and (2.3) which for p > i or p < 0 become

p
a Go(X) F(x) dx _< [p/(l-r)][o2(b)F(b)P o2(a F(a)P]

+ [p/il-rl3fb o (x) f (x) Pdx
a 1

here o(X) g(x)-rg’(x), l(X) g(x) p-r (g’(x)) I-p and

02(x) Go(x) l-I/pol(x)I/p g(x)l-r

Inequality (4.4) is reversed when 0 < p i. For r p, a c and
g(x) e

8(x)
e where 8 is non-negative and non-decreasing with 8(x) as

x d, we obtain an extension of certain inequalities considered by Kufner and Triebel
[43.
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