RINGS DECOMPOSED INTO DIRECT SUMS OF J-RINGS AND NIL RINGS

HISAO TOMINAGA

Department of Mathematics Okayama University Okayama 700, Japan

(Received April 25, 1984)

ABSTRACT. Let R be a ring (not necessarily with identity) and let E denote the set of idempotents of R. We prove that R is a direct sum of a J-ring (every element is a power of itself) and a nil ring if and only if R is strongly π -regular and E is contained in some J-ideal of R. As a direct consequence of this result, the main theorem of [1] follows.

KEY WORDS AND PHRASES. Periodic, potent, J-ring, nil ring, strongly π-regular ring, direct sum. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. Primary 16A15; Secondary 16A70.

1. INTRODUCTION.

Throughout the present note, R will represent a ring (not necessarily with identity), N the set of nilpotent elements of R, and E the set of idempotents of R. We say that R is periodic if for each r ϵ R, there exist distinct positive integers h, k for which $r^{h} = r^{k}$. According to Chacron's theorem (see, e.g., [2, Theorem 1]), R is periodic if and only if for each r ϵ R, there exists a polynomial f(λ) with integer coefficients such that $r - r^2 f(r) \in N$. An element r of R is called potent if there is an integer n > 1 such that $r^n = r$. We denote by I the set of potent elements of R. If R coincides with I, R is called a J-ring. As is well known, every J-ring is commutative (Jacobson's theorem). An ideal of R is called a J-ideal if it is a J-ring. Also, we denote by I₀ the set {r ϵ R | r generates a subring with identity}. It is clear that $E \subseteq I \subseteq I_0$. Furthermore, if I_0 is a subring of R then I_0 coincides with I. In fact, if r is an arbitrary element of $I_{(1)}$ then there exists a polynomial $f(\lambda)$ with integer coefficients such that $r = r^2 f(r)$. This proves that I_0 is a reduced periodic ring, and therefore a J-ring. Especially, R is a J-ring if and only if $R = I_0$. If R is the direct sum of a J-ideal I' and a nil ideal N', then it is easy to see that I' = $I = I_0$ and N' = N.

2. MAIN THEOREM.

Now, the main theorem of this note is stated as follows:

THEOREM 1. The following conditions are equivalent:

1) R is right (or left) π -regular and E is contained in some J-ideal A of R.

- 2) R is periodic and E is contained in some reduced ideal A of R.
- 3) R is a direct sum of a J-ring and a nil ring.

More precisely, if 1) or 2) is satisfied, then N is an ideal of R, R = A \oplus N, and A = I = I₀. In particular, if R is right (or left) s-unital, that is, r ϵ rR (or r ϵ Rr) for all r ϵ R, then each of 1), 2) is equivalent to

4) R is a J-ring.

PROOF. Obviously, $3) \Rightarrow 2) \Rightarrow 1$.

1) \Rightarrow 3). By a result of Dischinger (see, e.g., [3, Proposition 2]), R is strongly m-regular. Let r be an arbitrary element of R. Then there exists a positive integer n and elements s', s" of R such that $r^{2n}s' = s"r^{2n} = r^n$. We put $s = r^n {s'}^2$. As is easily seen,

and

$$r^{n}s'r^{n} = s''r^{2n} = r^{n} = r^{2n}s' = r^{n}s''r^{n}$$

Hence,

$$r^{n}s = r^{n}s'r^{n}s' = r^{n}s' = s'r^{2n}s' = s'r^{n} = s'r^{n}s'r^{n} = sr^{n}s'r^{n}$$

and

$$r^{2n}s = r^n sr^n = r^n s'r^n = r^n.$$

Since $e = r^n s$ is an idempotent with $re = er(\epsilon A)$ and $r^n e = r^n$, we see that

$$(r - re)^{n} = r^{n}(1 - e)^{n} = 0.$$

This together with r = re + (r - re) proves that r is represented as a sum of an element in A and a nilpotent element. Now, let a, b ϵ A, and x, y ϵ N. Noting that xa·yb = xyba and ax·by = baxy, we can easily see that xa ϵ N \cap A = 0 and ax = 0; NA = AN = 0. Set xy = c + u and x + y = d + v (c, d ϵ A and u, v ϵ N), where we may assume that $u^{\ell} = v^{\ell} = 0$. In view of NA = 0, we obtain

$$(xy)^2 = xy(c+u) = xyu$$

and

$$(x+y)^{2} = (x+y)(d+v) = (x+y)v,$$

and therefore

 $(xy)^{\ell+1} = xyu^{\ell} = 0$

and

$$(x + y)^{\ell+1} = (x + y)v^{\ell} = 0.$$

We have thus seen that N forms an ideal of R and R = A \oplus N.

206

Given an integer n > 1, we denote by I_n the set $\{r \in R \mid r^n = r\}$. In [1], Abu-Khuzam and Yaqub proved that if R is a periodic ring with N commutative and for which I_n forms an ideal, then R is a subdirect sum of finite fields of at most n elements and a nil commutative ring. The next corollary includes this result.

COROLLARY 1. If R is periodic and I forms an ideal of R for some integer n > 1then $R = I \leftrightarrow N$ and I is a subdirect sum of finite fields of at most n elements.

REFERENCES

- ABU-KHUZAM, H. and YAQUB, A. Periodic rings with commuting nilpotents, <u>Internat.</u> J. Math. Math. Sci. <u>7</u> (1984) 403-406.
- BELL, H.E. On commutativity of periodic rings and near rings, <u>Acta Math. Acad.</u> <u>Sci. Hungar.</u> <u>36</u> (1980), 293-302.
- HIRANO, Y. Some studies on strongly π-regular rings, <u>Math. J. Okayama Univ.</u> 20 (1978), 141-149.