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ABSTRACT. We present the solutions for the boundary value problems of elasticity

when a homogeneous and istropic solid of an arbitrary shape is embedded in an infinite

homogeneous isotropic medium of different properties. The solutions are obtained

inside both the guest and host media by an integral equation technique. The

boundaries considered are an oblong, a triaxial ellipsoid and an elliptic cyclinder

of a finite height and their limiting configurations in two and three dimensions.

The exact interior and exterior solutions for an ellipsoidal inclusion and its

limiting configurations are presented when the infinite host medium is subjected to

a uniform strain. In the case of an oblong or an elliptic cylinder of finite height

the solutions are approximate. Next, we present the formula for the energy stored

in the infinite host medium due to the presence of an arbitrary symmetrical void in

it. This formula is evaluated for the special case of a spherical void. Finally,

we analyse the change of shape of a viscous incompressible ellipsoidal region

embedded in a slowly deforming fluid of a different viscosity. Two interesting

limiting cases are discussed in detail.

KEY WORDS AND PHRASES. Isotropic solid, composite media, strain energy, viscous

inhomogeneity, triaxial ellipsoid.
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i. INTRODUCTION.

Composite media problems arise in various fields of mechanics and geophysics.

In this paper we first present the solutions for boundary value problems of

elastostatics when a homogeneous and isotropic solid of an arbitrary shape is

embedded in an infinite homogeneous isotropic medium of different properties. The

solutions are obtained inside both the guest and the host media. The boundaries

considered are an oblong, an ellipsoid with three unequal axes, and elliptic
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cylinder of finite height and their limiting configurations in two and three

dimensions. The exact interior and exterior solutions for an ellipsoidal inclusion

and its limiting configurations are presented when the infinite host media is

subjected to a uniform strain. For other configurations the solution presented are

approximate ones. Next we present the formula for the energy stored in the infinite

host medium due to the presence of an arbitrary symmetrical void in it. This

formula is evaluated for the special case of a spherical void. Finally, we

analyse the change of shape of a viscous incompressible ellipsoidal region embedded

in a slowly deforming fluid of a different viscosity. Two interesting limiting

cases are discussed in detail.

The analysis is based on a computational scheme in which we first convert the

boundary value problems to integral equations. Thereafter, we convert these

integral equations to infinite set of algebraic equations. A judicial truncation

scheme then helps us in achieving our results. Interesting feature of this

computational technique is that the very first truncation of the algebraic system

yields the exact solution for a triaxial ellipsoid and very good approximations

for other configurations.

The main analysis of this article is devoted to three-dimensional problems of

elasticity and viscous fluids. The limiting results for various two-dimensional

problems can be deduced by taking appropriate limits.

2. MATHEMATICAL PRELIMINARIES

Let (x,y,z) be Cartesian coordinate system. A homogeneous three-dimensional

solid of arbitrary shape of elastic constants k2 and 2 occupying region R
2

is embedded in an infinite homogeneous isotropic medium of R
1

of elastic constants

X1 and i" The elastic solid is assumed to be symmetrical with respect to the

three coordinate axes and the origin 0 of the coordinate system is situated at

the centroid of R2. Let S be the boundary of the region R
2

so that the entire

region is R R
1
+ S + R2. The stiffness tensors Cijkg(), (x,y,z) R,

1,2 are constants and are defined as

Cijk XSij6k + a(6ikj + i6jk), (2.1)

where 6’s are Kronecker deltas. The latin indices have the range 1,2,3.

The integral equation which embodies this boundary value problem is derived in

precisely the same fashion as the one in reference [i]. Indeed, the displacement

field () satisfies the integral equation

0
u.j(x)~ u.j(x)~ + ACigkm /R

2
Gjm,k(X’X~~’)ug,i,(x’)dR,~ x~ R, (2.2)

where subscript comma stands for differentiation, u0(x) is the displacement field
in the infinite host medium occupying the whole region R due to the prescribed

2 1stressed at infinity, ACigkm Cigkm Cikm, while Green’s function Gkm satisfies

the differential equation
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c.1 6(x-x’) x,5" RljkgGkm,gj (x,x) 6ira (2.3)

and 6 (x-x’) is the Dirac delta function. Explicitly,

Gij (x,x’) Gji(x,x’)
Ix- x" I. (2.4)

8 ij kl*ZI

For the sake of completeness and for future reference we write down briefly

the basic steps of the truncation scheme for solving the integral equation (2.2).

To obtain the interior solution of the integral equation (2.2) when x R2, we

differentiate equation (2.2) n times to get

0 (-l)n+l ACikm
R2

j m k,p{___pn(X,X )u i"(x) u I G (x’)dR2uj, Pl---Pn j,Pl---Pn

R2 (2.5)

where p’s have the values 1,2,3. Now we expand the quantities ug,i,(x’) in

Taylor series about the origin 0 where x" R2. Thus,

...x"u i

z
s=0 ,i ql---qs(5) }x l---Xqs’

where q’s have the values 1,2,3. Substituting these values in (2.5) and setting

5 , in both sides we obtain

0 n+l
(0) u (0) (-i) ACigkmuj ’Pl---Pn ’Pl---Pn

u
6, iql---qs (Q),

s=O Tjm’kPl---Pn’ql---qs

(2.6)

(2.7)

where

/ Gjm kp (x,O)x ---x dR2,Tjm’kPl---Pn’ ql---qs R
2

l---Pn ql qs
As in reference [i], taking n 0,i, s 0, in equation (2.5) we get

(0) u), anduj

(2.8)

0
Uj,p) Uj,p

respectively, where

) ACigkmTjm,kpUg,i (0), (2.9)

f G (x,0)dR2Tjm,kp
R2

jm,kp

16 (Mi_ I
t
j mkp}{I jmtkp +

while M
1

k
I + 21

and tjmkp are the shape factors

1 0
4

tjmkp 8
y r

8XmOXkOX
dR2, r

R2 Oxj P

(2.10)

(2.11)
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2 i
Now we substitute the value ACjmkp C-’mkp3 Cjmkp from (2.1) in (2.9) and get

u. (0) ui
3,P J ,P

(0) AkTjk,kpU,(O)

+ A(Tjm,kpUm,k(O)~ + Tjm,kpUk,m(0)). (2.12)

and

When we decompose u.3,p(O) into the symmetric and antisymmetric parts Ujp )

ajp(O) respectively, as we did in reference [I] and define

iTI --(Tj Tpmjm,kp 2 m,kp- kj

we find that relation (2.9) yields the following two relations

ujpCO) u (0) AC
i

+
P gkmTjm,kpUgi (0),

0 (0) AC
i i(O)"ajp(O) ajp gkmTjm,kpU

(2.13)

(2.14)

Equation (2.13) gives rise to the relation

Ak 2A[ 0
Ukk(O) [I + -i -I tllkkUll (O)+t22kkU22 (O)+t33kkU33 (0) Ukk (0). (2.15)

0
The values of Ull (0), u22(0), u33(0) in terms of the known constants UlOl(0), u22(0),
0

(0) are given by the matrix equationu33
--0

Bu u (2.16)

where the column vectors and u are

Ull (o) Ull

u22 (0) u
--0

u22
o

(o).ILU33(0) u33

(2.17)

while the elements bij, i,j 1,2,3 of the matrix B are given as

bij (i-2 i tiikk)6iJ i tiikk- 2A(I- i tiijj’ (2.18)

and the suffices i and j are not summed. Furthermore, the values of ulj (0),
0 (0), i # J by thei # j, i,j 1,2,3 are given in terms of the known constants ui4J

relation

-I 0uij(0) [l-A{ll(tjjkk+tiikk + 4(M;I ll)tiijj}] uij(0). (2.19)

Similarly, equation (2.14) yields the values of non-zero components of aij(O),
i # j in the form

0 Aaij(0) aij(0) +l (tjjkk-tiikk)Uij(0)’ i # j, i,j 1,2,3, (2.20)

where uij (0) is defined by (2.19).

Finally, substituting the above values of uij (0) and aij (0) in the

expans ions
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ui() u() + (Uik() + aik())xk, E R2, (2.21)

yield the required approximate inner solution where Xl--X, x2=Y, x3=z. Relation

(2.21) gives the exact solution for an ellipsoidal inclusion and its limiting

configurations when the infinite host medium is subjected to a uniform prescribed

stress.

In the case of elastic inclusions which are symmetrical with respect to the

three coordinate axes and have only one characteristic length as in the case of a

sphere a cube etc., there are only two distinct non-zero shape factors, namely,

tllll ti122. Indeed since relation (2.9) yields

I 2 2
r =tkkmm 8-- / V (V )dR2 / [-86()]dR2 -i, (2.22)

R
2 R

2

it follows that in this case

i
tllll t2222 t3333; ti122 t2233 t3311; tllkk t22kk t33kk . (2.23)

When we substitute these relations in (2.15) and (2.16), we get the simplified

results,

AK -i 0
(0); K k + 2 2

Ukk(O) [i + i Ukk p, gK Ak + A,

g 5
d

where

(2.24)

(2.25)

c 2A-I+c-I d -A
-I + C

-I

A I+2AG3I (MI-l)(tllll-tl122)},
AK

C= I+--
MI

Similarly, in this case, results (2.19) and (2.20) yield

uij(O) [I+2A{13
I

2(MI-I
)tiijj }]-l uijO (0), i # j, i,j 1,2,3, (2.26)

and

0 (0). (2.27)aij() aij

The above values of uij(0) and aij(O) when substituted in the expansions

(2.21) give rise to the required inner solution in this case. In order to complete

the analysis of this section we need the values of the shape factors of various

inclusion. They are presented in the next section.

3. VALUES OF THE SHAPE FACTORS FOR VARIOUS SOLIDS

(i) Oblong. Let the faces of the oblong be given by x +/-a, y +/-b, z +/-c

so that the region R2 is Ixl a, IYl b, Iz < c. In this case,
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2 -i bc i abc a2+d 2
tllll tan + A a2A2+b2 2

C

i abc i abc 2
t
1

t
1ti122 - (a2+b2)A 133 )’a2+c2"A Ikk

-i bc
tan (3.1)

where A (a2+b2+c2) 1/2
obtained by permutations.

For a cube of edge 2a, the above values reduce to

and k is summed. All the other shape factors can be

i i
tllll t2222 t3333 +--

I (3.2)ti122 t2233 t3311 2V
i

tllkk t22kk t33kk
When we take the limit c in relations (3.1), we obtain the following

values of the non-zero shape factors for an infinite rectangular cylinder occupying

the region R2: Ixl < a, IYl < b, < z < .
2 -i b ab ab

tllll tan --a + (-a2+b2) t1122 t2211 (a2+b2

2 i a ab
2222 tan +

(a2+b2)
(3.3)

Setting b a in the above formulas we obtain the values of the corresponding

shape factors for an infinite square cylinder occupying the region

R
2 xl < a, Yl < a, < z < =. These values are

i 1 I i I
tllll + ti122 t2211 2--- t2222 + 2--- (3.4)

The limiting results (3.3) and (3.4) agree with the ones obtained in reference [i].

(ii) Triaxial Ellipsoid. Let the equation of the surface of the ellipsoidal

elastic solid be

2 2 2
x
2 + + i, a b c > O,

a c

where a, b and c are the lengths of the semi-principal axes of the ellipsoid.

x2/a2 y2/b2 2 2
In this case R2 is the region + + z /c < 1, and the values of the

non-vanlshlng shape factors are

3abc / udu
tiiii 4

0 (u+a)2Ru
i 1 2 3

uduab__c f 2 2 ,i J, i,j 1,2,3,tiijj 4
0 (u+a.)R(u+ai) j u

where R [(u+a2)(u+b2)(u+c2)] I/2 aI a, a
2

b, a
3

c and the suffices i
u

and j are not sued. For a prolate spheroid with the semi-principal axes

(3.5a)

(3.5b)
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a,b,b, a >_ b, the foregoing shape factors reduce to

udu i3ab2 f 5/2 2
(l-k2) (3LI-I)’ (3 6a)

tllll 4
0 (u+a2) (u+b2)

3ab2 udu. 3 6 6t2222 t3333 f 1/’2 + (l-k2) + (3+k2)Ll (3.6b)
0 (u+b2) 3 (u+a2)

2
ab udu i iti122 ti133 -- f0 (u+b2)2(u+a2)3/2

(l-k2) (3-k2)Ll
ab2

udu i
t2233- 4 f 1/2 3 3 t20 (u+a2) (u+b2) 222’

where

LI
(l-k2) l+k. i

k
2

k
2 b__

2

k k log (Z) i I
2 (3.7)

a
In the limit when b a, i.e. k O, in relations (3.6) and (3.7) we find that

L
I 1/5 and the shape factors for a sphere of radius a are

I i I
tiiii ’ tiijj 15’ i # j, tiikk 3 (3.8)

(3.6c)

(3.6d)

i,j,k 1,2,3 and the suffices i and j are not summed.

Similarly, the shape factors for the oblate spheroid with seml-principal

axes a,a,b, a >_ b derived from relations (3.5) are

3a2b udu 3
tllll t2222 4 f

2) 1/2 + 6 (I+<2) + 6 (3-<2)L2 (3.9a)
0 (u+a 3(u+b2)

3a2b udu i (-1+<2)t3333 f 2 5/2 2 (3L2-i) (3.9b)
0 (u+b) (u+a)

2b=a udu 1 1
ti133 t2233 4

0 (u+a2)(u+b2)3/2 i- (1+<2) (3+<2)L2 (3.9c)

__a2b udu i
3 I/2 tllll’ti122 4

0 (u+a2) (u+b 2)
(3.9d)

where

L2 "i+<I<4 ( i i i <2 <2 (a
2

i). (3.10)),< tan- <- + ),
b
2

When b a, we again recover the corresponding results for a spherical inclusion.

In the limit < in relations (3.9) and (3.10), L
2

1/3, <2(3L2-I) O,

we find that the values of the non-vanishing shape factors for an extremely

thin oblate spheroid are

tllll t2222 1/8, ti133 t2233 1/6, ti122 1/24.

Similarly, when a in results (3.5), we deduce the shape factors for the

y2/b2 2 2infinite elliptic cylinder occupying the region R
2 + z /c < i, < x .

Then the non-zero values of the shape factors are

udu -c(b+2c) I 03bc f 5/2 2 1/2 2 2
e sinh O(2-e Ocosh gO ),t2222 -- 0 (u+b2) (u+c) 2(b+c)
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udu -b (c+2b) I 0
s

3abc / inh0)t3333 4
0 (u+b2)I/2(u+c2) 5/2 2(b+c)

2 2
e 0cosh 0(2-e

bc udu -bc i -20
t2233 t3322 - / 3/2 3/2 2

e sinh 20, (3.11)
0 (u+b

2
(u+c

2
2 (b+c)

and b/c coth 0’ which agree with the known results [i]. When c b, we recover

the shape factors for a circular cylindrical inclusion while in the limit 0 0 we

htain the corresponding values for an infinite strip.

(iii) Elliptic Cylinder of Finite Height. Let the elliptic cylinder of height

2h occupy the region

2 2

R2 +}a i, Izl h,

where a and b are the lengths of its semi principal axes. In this case the

values of shape factors are

/2 2 4
i h

2
3hab

/ [_cos2q+ a cos q {i }] dq
tllll

0 (L)2 3 (L2+h2) (L)2 L2+h2
(3.12a)

3hab
/2

h
2

t2222 J" [-sin29+ 4 il- }] dq

0 (L) 3 (L2+h2) (e)
2 L2+h2

(3.12b)

2
h2s in2 2 2

3hab
I [-sin2 + q {I

b sin q I]t3333
0 (h2+a2cos2) 3 (L2+h2)

hab
/2 3b2sin2qcos2 h

2

ti122 / [-cos2l + {i- }]
0 (L)

2
3 (L2+h2

2 .2 2
hab

/2
2 oa sin qcos

ti133 -- / [-sin + I-
0 (h2+a2cos2q)

dq

(h2+a2 2 L2+h2
cos

(L)

dq

2 /L2+h2

b2sin2 dq

3(L2+h2 (h2+a2cos2) L2+h2

/2 2
s

2 a2cos2hab ! [_cos2q + 3b in2qcs
{i-

2233 0 (h2+b2sin2) 3 (L2+h2)
d

(h2+b2s in2q)L2+h2

(3.12c)

(3.12d)

(3.12e)

(3.12f)

where
L2 (a2cos2+b2sin2).

In order to get the corresponding shape factors of a circular cylinder of

radius a and height 2h, we let b a in the above formulas and obtain

t t
iiii 2222

ti133 t2233

16
(+ t3333

1 34 - )’ h/ a2+h2. (3.13)

These results, in turn, yield the shape factors of a circular disc of radius a and
small thickness 2h. They are

h
3__3 ( + 2__ t -i + I (3h 5 h

3
tllll t2222 16 a 3333 - 2 3

a

t1122 tllll’tl133 t2233 4 a
2a

3
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4. EXACT INTERIOR AND EXTERIOR SOLUTIONS FOR AN ELLIPSOIDAL ENCLOSURE OCCUPYING
2 2 2

REGION R2 + b-2 + < i.
a c

When the infinite host (homogeneous and isotropic) elastic medium occupying the

whole region R is subjected to a prescribed uniform stress
0 oof z-axls, the components of the vectors u (x) and (x)

T along the direction

are given as

0
uI (x)

Tl 0 Tl 0 0 (x) T
E1

x, u2(x) E-- y’ UB(X) i z, 22 x R, (4.1)

where o’s have to be defined. Accordingly, in this case

ToI0 (0)= 0
(0)

0 T
Ul[ u22 El u33(0)
0 (0) 0 i # j, 1 2 3.aij

(4.2)

When this infinite host medium has an isotropic elastic ellipsoidal inclusion of

Lame’s constants k2’ 2 occupying the region R2:
2 2 2

x+ + <i,
a c

then the exact inner solution is given by

uI() (Ull(0))x, u2(x) (u22(O))y, u3(x) (u33(0))z, x ( R2, (4.3)

where the constants

(2.17). Thus

Ull(O), u22(0) and u33(0) are given by the matrix equation

Bu =u
or E1

where the components b.. of the matrix B are defined in (2.18).

The solution of equation (4.4), after me simplifications, is given as

Ull(O) (glh2=g2hl ), u22() (hlf2-h2fl ), u33() (flg2-f2gl),

(4.4)

(4.5)

where

fl I 2A_____I tllkk- Mq(tllkk-2kk) 2A(l -i)(itllll t1122 ’)

A___
t2

Ak
(tllkk_t22kk) 2& (I l)(tlgl i + 2

I 2kk
i i 122-t2222

A
hi i (tllkk-t22kk) 2Ak(l _i)i (tl133-t2233)’

A A
(tllkk+it33kk) 2A(I _i) (t I 3)f2 i 2 i tllkk M i lll+itl13

(4.6a)

(4.6b)

(4.6c)

(4.6d)



218 D. L. JAIN AND R. P. KANWAL

Ak
g2 M (tllkk+it33kk) 2A(

I
i)
i (tl122+t2233)

Ah
2

oI(I-2 i t33kk) i (tllkk+t33kk)-2AG(l- l)(tl
(I-2Ol)T

i133+I t3333)

(4.6e)

(4.6f)

(4.6g)

Ak 2AG t + (hlf2-h2f)(i +
Ak 2AI,

(glh2-g2hl)(l+ MI MI llkk i MI MI t22kk
AA A+ (flg2-f2gl)(l +i- 2 i t33kk)’

(4.6h)

where t’s are the shape factors of the ellipsoid as given by (3.5), when we set

al=a a2=b, a3=c. When we substitute the values of uii(), i 1,2,3, from (4.5)

in (4.3), we get the exact inner solution.

Limiting Cases

To check these results we take the limits b a, c a, so that the ellipsoidal

2+y2+z2 2
region reduces to the spherical region x a Now for the sphere there are

only two distinct non-zero shape factors, namely,

i
tllll r2222 t3333 ; ti122 t

I
t311j I-2233

and consequently

i
tllkk t22kk t33kk .

Thus, for this limiting case we have

fl -gl 1 + 2A’(I +5 (I I)}’ (4.7a)

(4.7b)

(4.7c)

(4.7d)

2Ak. Ak 2Az (1 ])(1+3oih2 i(i+ 3TI) + TI(I+<I) +- MI i

MI i
,K)(i+ 11 [gl(2h2-f2-g2) ]’

(4.7e)

(4.7f)

(4.7g)

where K Ak + (2A)/3. Also,

Tl 2 T i i
),

2Tl 1 1 T 2 i
u33 (0) i ( ) + TI (X + )’

(4.8a)

(4.8b)

where
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3I MI

i (7-5I)+2 (8-101)
15I (1-I

(4.9)

(1-2c1) [2I (1-2c2)+ (a
2
(1+

2A<
C (i+ .-7-) (4.10)

3I (i-oI) (i-22)

Substituting the values of uii() from (4.8) to (4.10) in (4.3), we obtain

the exact inner solution for the spherical inclusion. Expressing the components

ui() in spherical polar coordinates (r,8,@) we have for r < a,

r
Ur(X)~ {[uII () + u33 ()] + [u33() Ull()]cos 2},

r
(Q) ()]sin 28u0(x [u33 Ull

The corresponding non-vanishing stress components are

(4.11a)

(4.11b)

rr(X) k2 [2ull(0) + u33(0) + 2{[uII(0) + u33(0)~ + [u33(0) Ull(0)]cos 20,

(4.12a)

T06(x) k212Ull(0) + u33(0)] + G2{[Ull(0) + u33(Q)] u33(0)-ull(0)]cs 2t, (4.12b)

r0(x) -2[u33(0) Ull(0)]sin 28, (4.12c)

(x) k [2uI (0) + u
3

(0)] + 22Uli(0) (4.12d)
2 i 3

As far as the authors are aware [3,4] even these exact interior solutions for a

sphere are new.

Interior solutions for a prolate-spheroidal enclosure of semi-principal axes

a,b,b, a b are obtained by appealing to the corresponding shape factors. The

values of the shape factors t and t-. i # j, i j 1,2,3 (i and
llll llJJ

are not summed), are given by relations (3.6) while,

1 i 1 k2Lltllkk 2 (l-k2)(3Ll-l) + (3-k2)Ll (l-k2)
I k

2
i
k
2

t22kk t33kk 3(I+-) + eI.

The values of the shape factors and relations (4.3), (4.5) and (4.6) lead to the

required exact solutions.

Similarly, using the shape factors of oblate spheroid as given by relations

(3.9) we obtain from equations (4.3), (4.5) and (4.6) the exact solution for this

limiting case. Formulas for various other configurations such as an elliptic disk

can now also be derived.

In precisely the same manner we use the shape factors of the oblong as given by

(3.1) and that of elliptic cylinder of finite height as given by (3.12) and derive

the first approximation to the interior solutions of these cases from equations

(4.3), (4.5) and (4.6). These results yield, in the limit, the corresponding

formulas for the configurations such as a cube and a circular cylinder of finite

height.

Let us now discuss the exact outer solution for an ellipsoidal enclosure

x
2 2/b2 z

2 2
occupying the region R2: /a2 + y + /c i. We have found that the exact

inner solution in this case is given by relation (4.3) where the values of the
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constants Ull(0), i 1,2,3 are given explicitly by equations (4.5) and (4.6) in

terms of the known shape factors of the ellipsoid. Substituting this inner

solution in the governing integral equation (2.2) and setting Xl=X, yl--y, Zl=Z,

(x=x,y,z), we have

uj(x) u) + AXUll(0) + u22(0) + u33(0)} / Gjk,k(X,x’)dR2
R
2

+ 2 AUll(0) / G (x,x’)dR_ + u (0) / Gj2,2(x,x’)dR2
R2

jl ,i 22
R2

+ u33(0) / Gj3,3 (x,x’)dR, x RI,
R
2

(4.13)

where the components of Green’s function Gij(x,x’) are given by (2.4). Various

integrals in this relation can be evaluated in the following way.

aR{ o s lx-x’l/ Gjl,l(X,X )dR$ i 8ij 8Xl R2R
2

8
2 dR 8

2 xdR

i oxI (x R2/ ( ) R2/ x-x’+ J - Ml i

--(x. (x) j (x)),i {2 8
8 (i I)

2
(4.14)

where (x) is the Newtonian potential due to the solid ellipsoid of unit density

occupying region R2 x2/a2 + y2/b2+z2/c2
<1, at the point x.. R

1
and j(x) is

the Newtonian potential due to a solid ellipsoid of variable density x. occupying

the region R2
at the point x RI, that is

2
dR V du

3 x
k

@(x)~ -- R2 k=l (u+ak2)
RI (4 15)

2

xdR V 2
3 x

k du

-x" -- a.x S {i- Z x RI, j 1,2,3, (4.16)

V= ala2a3 abe, Ru (u+a21) (u+a22)(u+a)}112,
and is the positive root of

2 2 2
x +-- + i, x 6 RI(>0).a2+ b2+ c2+{

Similarly, other integrals occuring in the right hand side of equation (4.13) can be

evaluated. Substituting these values of the integrals in (4.13) we obtain
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A
Q0) + (0) + )} 0

2 (0)
0

+A{-I ujj xj ((x))

__i) 02 0
2

0
2

+ (i- i (Ull(O) O--l + u22(0) 02 + u33() o3)(xj(x)-j(x))}, (4.17)

where j 1,2,3 and x E RI and j is not summed.

side are known. Indeed, the first term is given by (4.1), the functions (x)

j(x) are known from (4.15) and (4.16) while the quantities uii(O), i 1,2,3

are expressed in relations (4.5) and (4.6). Let us check this formula by

considering the limiting case of a spherical inclusion.

Let b a, c a in relations (4.14) to (4.17) so that

3 2 3
du r a

(x) / 3/2 (I- =r r Ix > a
2 2 (u+a

2 u+a2
r -a

55 2 ax.a / (i
r du

r Ix > aj (x) - xj
2 2 (u+a)2) (u+a2)5/2 15r3

r -a

2 2
where we have used the fact that a + r Substituting these values and the

values of uii(O) from (4.8) (for the sphere) in (4.17) we get the required

exterior solution for the spherical enclosure, namely

3 3Ak 8 a 2
(0)

8 (r)+ +

02 02 02 3 5
(a___ a+ (I ---i) (0))(x12 + ---) + u33(0) _-] )]}

i (Ull
Ox

2 Ox3
[xj 3r

15r
3

All the terms on the right

and

(4.18)

(4.19)

Ixl r > a, j 1,2,3.

Setting uj (x) u(x) + u. (x), Ixl r > a, and writing u. (x)
coordinates we obtain

u$(x) [r + -]r + [(i-’2i) r --]COSr 2e,

(4.20)

in spherical polar

(4.21a)

s __C
2

6B
ue() [2 +--]sin 2,

r r
where

(I-2) (5-401A 5T
3 24 (7-5)l+(8-10Ol)Ga 1 1 2

(4.21b)

T
6I

B T

a
5 8 I

(1+o
2

l (1-2o2)- 2 (l+cl)
(1-2o1)

2g
I (i-2o2)+ 2

(1+o2)
(i-2)

(7-5oi)i+(8-10I) 2

(4.22a)

(4.22b)
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5 (l-2Ol) (l-2C T-- 8--- (7-5oi)Gi+(8-i0oi) 2a I

The corresponding stress components are

2 12- 5-4oi 36Srr(X)~ XlA + 2I {[-r +---r + [-2(i-219 +---r ]cos 28},

4 (l+l)C 48rsS (x)~ i [-
3 + --- }sin 26,

(i-2oi)r r

s --3 3 1+41 -309 (x)=klA + 2l{-[r + -]r + [(122’i r --21B’rIcos 28},

(4.22c)

(4.23a)

(4.23b)

(4.23c)

2C 9B C 5Bs (x)=XIA + 2I{- +- +-] + 3[ 3 cos 28
r r r (l-2J

1
)r r

(4.23d)

where

A -(--)[1+3 cos 28].
r

Spherical Void. When k
2

and G2 0 in the above relations we obtain the

corresponding interior and exterior solutions for a spherical void of radius a. For

example, the components of the stress tensor at the outer surface of the void are

s T s T
rr(a’8"4) (l+cos 2e) r(a’e’) =- sin 28,

s
(a,8,)

T {5(1-2oI (8+5oi)cos 2}8 2(7-5Ol)
s 3T

(a,6,)
2(7_5Ol) [l+5OlCOS 28}.

Relations (4.23) agree with the known results and serve as a check on our formulas.

Finally, we present the outer solutions for the limiting case of the prolate

spheroid where semi-axes are a,b,b, a >_ b, i.e.,

2 2
x Y2+Z < i, b2

2- + 2 a (l-e2).
a b

In this case relation (4.15) reduces to

x
2 /a2_b2ab

2
du {1- Y2+Z2} ab2(x) =--- u+a2 (u+b2) u+a2 u+b

2 --- [e tanh-i (V+a2

2
2x
3 3

a e
ann -VK+a V;+2

ae .-I /a-by2+z2 2
tann A/.------’ ]’a3e3 +b

2 +a

where x RI, i.e., > O.
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Similarly, relation (4.16) becomes

el(X) 4 x[--3 {tanh -/ _"
a e V +a" +a2

a5e5
tann

+a2- $+2 3 -+a2J
2(y2+z2) i ae+a2 + a2b2 3 .-i a2-b2

tann -/ 2a5e5 {-
(+b2) 5+a

2 2 +a

ab
4 +ai -I a2-b2

(x) -- xj [a--e3 {ae tanhCj
(+b2 +a2

2x
2 I ae+a2 -5 5 {

+b
2 + V

3

a e
2

tanh-i -:a2}

55 { 22 8 2
tanh "/’ ’2’ x RI(>0) j=2,3

a e (+b) (+b) V +a-

Substituting these values of (x) and +j(x) j 1,2,3 in equations (4.17)

and using the limiting values of uii(O) from the inner solution for this limiting

configuration, we readily derive the exact exterior solution for the prolate

spheroid.

All the other limiting configurations can be handled in the same way.

5. ARBITRARY SYMMETRICAL CAVITY AND STRAIN ENERGY

By a symmetrical cavity we mean a cavity which is symmetrical with respect to

three coordinate axes. Observe that this is also true for a symmetrical inclusion

for which the method of finding the interior solution is given in Section 2.

Interior solutions in the case of an arbitrary symmetrical cavity embedded in

an infinite elastic medium are obtained in terms of the shape factors of the

inclusion by setting 2 O, 2 O, in the analysis of Section 2. This interior

solution yields the values of the displacement field at the outer surface of the

inclusion. Indeed, due to the continuity of the displacement field across S we

have

0 u
s u )Iu (xs) +~ (Xs) + ~(xs + -"

Thus

ui(s) l+ s -’
where the superscript s implies the perturbed field. Since the inclusion is a

cavity, the stress field vanishes inside S and due to the continuity of the

tractions across S, we have

0 SO, or, + -,(xs)l 0ni(SS)l+ ni(S ni +

so that
:s (Xs) _:o
ni + ni (Xs)" (5.2)
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Thus from the interior solution derived by us, we can find the components of the

displacement field u(S) l+ by using formula (5.1). Formula (5.2) gives the

values of the perturbation in the tractions across the outer surface S of the

cavity in terms of the known values of i(S due to the prescribed stresses to

which the host medium is subjected.

The elastic energy E stored in the host medium due to the presence of the

symmetrical cavity is given by the formula

i f s s (Xs) I+dS (5.3)E ui(S)’+ ni
S

Note that in the above formula we have dropped the second integral taken over the

sphere of infinite radius because it vanishes when we appeal to the far-field

behavior.

u.(x) 0 ) O( as r
l ijr r

of the displacement and the traction fields.

Let us illustrate fromula (5.3) for the spherical cavity embedded in the

infinite host medium so that the region R
2 is r < a. For this purpose we assume

that the prescribed stress field is such that we have the uniform tension T in the

directions of x,y,z axes before the creation of the cavity. In this case the

components of the displacement field are

or

0 T 1-21

0 T
1-2o

u (x) 1 0 0
r (-I+oi)r, Us) u() O, x R.

The corresponding non-vanishing components of the stress tensor 0 (x) are
ij

0
(x)= 0 (x)

0
(x)= T x E RXll 22 x33

or

0 T
0 0 3TOl,

rr tee i+oI
x R

Accordingly, in this case

0
(0): u20 (0)=

0
(Q)= T 1-21

Ull 2 u33 i i+i)’
0 0

uij(0) aij 0, i # j.

Substituting these values in relations (2.16), we get

"l-l" (0) (0) 0 i #
3T

Ull(O) u22(0) u33(0) i i)’ uij aij

(5.4a)

(5.4b)

(5.5a)

(5.5b)

(5.6)

(5.7)
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which yield the required exact interior solution

3T i-iui(E) l (ll)xi’ r < a, (5.8a)

ij(x) 0, r a, (5.8b)

where we have used the fact that the region R
2

is void so that k2 2 O.

Hence, from relations (5.1), (5.2), (5.4a) and (5.5a) it follows that

s T
E (S)I+ i S’ ISI a, (5.9a)

s _TO 0
ni(S) l+ niS -ijS)nj -Tnis )’ ISI a, (5.9b)

where n.l are the components of the unit normal B(Xs) directed outwards at the
point S of S.

Finally, we substitute the above values in formula (5.3) and get the required

value of the stored energy E as

T Tans) T2a3T j. (Xs)dS f s)dSS(xs).+ 2
E

r=a r=a i i

6. ANALYSIS OF VISCOUS INHOMOGENEITY

The analysis of the displacement fields in elastic composite media can be

applied to solve the problem of the slow deformation of an incompressible homogen-

eous viscous fluid ellipsoidal inhomogeneity embedded in an infinite homogeneous

viscous fluid of different viscosity which is subjected to a devitorial constant

pure strain rate whose principal axes are parallel to those of the ellipsoidal

inclusion. This problem is of interest in the theory of the deformation of rocks

and in the theory of mixing and homogenization of viscous fluids [5].

Let an infinite region R be filled with an incompressible homogeneous fluid

of viscosity i and be subjected to devitorial uniform pure strain rate 0(),
R with non-zero components:

0 0 (x) , 0 (x)=- , x R, (6 la)el() U, e22 e33
where U is positive constant so that the corresponding velocity components are

0 0 u 0 u (0)
uI() Ux, u2() y, u3() z, div () O, R. (6.1b)

Then at time t 0, let an ellipsoidal homogeneous viscous incompressible fluid of

x
2 2 y2 2 2

viscosity 2 which occupies the region R0: /a
0
+ /b + z /c0

< i,

a
0
> b

0
> c

O
be embedded in the infinite host medium which is subjected to the

devitorial uniform pure strain rate 0() as described in (6.1) so that the

principal axis of 0() are parallel to those of the ellipsoidal inclusion. Due

to this uniform pure strain rate the ellipsoidal inclusion gets deformed to an

ellipsoid at each subsequent instant. Let, at time t, the inclusion occupy the

x2/a2 y2 2/c2region R2: + /b2 + z < l, a > b > c, where a,b,c are functions of

time. Thus, (4,/3)a0b0c0 (4,/3)abc, i.e., abc a0b0c0.
The inner solution E(E), R2 at instant t is linear in x,y,z and is
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readily obtained from the analysis of the corresponding elastostatic problem of

composite media by taking appropriate limits. The quantity (), which is

displacement vector in the previous analysis, now represents velocity field in

region RI and R2. In both these regions we have to satisfy the equation of

continuity

div u(x) 0, x E R2 or RI.

Secondly, while the tensor eij() (i/2)(ui,j()+uj,i()) is the strain tensor, it

denotes the pure strain rate in the present case. With these changes in the notation

understood, we derive our results in the present case when the guest medium is
2 2 2 2deformed to the ellipsoid occupying R2: x2/a2 + y /b + z /c < i at time t by

taking the appropriate limits in the analysis of Section 2:

and R2 (6.2a)

such that the hydrostatic pressure p(x):

-\i div uCx), x RI,
p(x)

-k
2
div u(x), x R2,

is finite. In view of relations (6.1) we have

(6.2b)

0
(0)= u, 0 u 0 (0) u

Ull u22(0) , u33 -so that div u0(x) 0. Also

(6.3a)

0 0
(0) 0 for all i,j.uij(0) 0, i # j, aij (6.3b)

Let us note from our elastostatic analysis that, since the inner solution u(),
3

xE R
2

is linear in x,y,z, we have div u(x) E Ukk(0), R2.
k=l

Now, we take the limits as explained in (6.2) above in the relations (2.13) and

(2.14) of elastostatics and get

{i-2A(tl )}Ull(0 + 2A (0) +
i x122+tllB3 --i tl122u22 --i tllB3U33(0) U, (6.4a)

2A 2A( 2A U
t2211Ull(0) + {i- --I t2233+t2211)u22(0) +--i t2233u33() ’ (6.4b)

2A t (0) + 2A 2A U

Pl 3311Uli -i t3322u22(O) + {i -I (tBBll+t3322) }u33(0) - (6.4c)

Also

uij(0) aij(0) 0, i # j, i,j 1,2,3, (6.4d)

where we have used relation (6.3b) and the quantities tiijj, i # j, are the shape
factors of the ellipsoid occupying the region R

2 and their values are given by
(3.5b), namely
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abc f udu
tiijj --- 0 (u+a)(u+a)R

i # J, i,j 1,2,3,

where a
1

a, a
2 b, a

3 c and R {(u+a2)(u+b2)(u+c2)}1/2
n

(6.4b) and (6.4c) we find that Ull(O) + u22(0 + u33(0 0, i.e.

(6.5)

Adding (6.4a),

div u(x) 0, x E R2,

so that the equation of continuity is satisfied

Solving equations (6.4) simultaneously, we obtain

U A
3+4t2Ull(0) {I-

i (tl122+tl13 233)

U 2A___ (2tu22(0) - {1-
1 l133-tl122+2t2233)

Au33(0) - {1- -1 (3tl122-tl133+4t2233) }’

(6.6a)

(6.6b)

(6.6c)

where

D {1- 2AG (t 3+2t2 }{1- 2Al )}-- 223 211 -- 2t3311+t3322

4(A)
2 (t2233-t2211) (t3322-t3311), (6.6d)

The innner solution at time t is

ul(x) Ull(O)x, u2(x) u22(O)y, u3(x) u33(O)z, E R2,

where Ull(0) and u22(0) and u33(0) are given by (6.6).

Two Important Limiting Cases. Case I. Let Co bo ao i.e., at time t 0,

so that the guest medium consists of a spherical viscous incompressible fluid of

viscosity 2 occupying the spherical region Zx2 < a which is embedded in the

infinite host medium of viscous incompressible fluid of viscosity i" This host

host medium is subjected to devitorial constant pure strain rate eli(X) whose

non-zero components are

0 (x) 0 0
ell -2e22(x) -2e33(x) U > 0.

In this particular case, the spherical inclusion gets deformed to prolate spheroid

and at time t occupies the region R2:
2 2 2

x__ L
b
zz-w aj (6.7)2 + + < i, a > b, ab

2 3

a b2

Accordingly, we can derive the values of the distinct non-zero shape factors from

(6.5) by selling c b, and they are given by (3.6), substituting these values in

(6.6) we have, in this case,
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Ull(0) -2u22(0) -2u33(0)
6A____i-
i ti122

i{i- 6[2 (l-k2) (3-k2)Ll
(6.8)

where (A)/I (2-i)/I
Finally, to obtain the values of a and b, which are functions of time t;

we appeal to the partial differential equation

DE
0, (6.9)Dt

satisfied by the moving surface

2 b2+z2F(x,y,z,t) -= + 2
a b

at time t, where ab
2 a. Thus

I O,

i da 0 () (6 i0)T{ Ull
0
() is given by equation (6 8) which when substituted inwhere the constant Ull

2 3 3(6.10) yields the following differential equation for w, defined as w a /a0,

2 dw U
(6.11)3w dt

{l-aa[ i i i/w2 i (w+) 4w2+i.)
12w

2
(2+i/w2)

2 n
(i-i/w2 3w

2

we have used the values of LI and k
2

as given by (3.7). This differentialwhere

equation is readily solved by the method of separation of variables and we have
-i

= i w cosh w 2

w2_l (w2_i)3/2 + log w U++A, (6.12)

where A is the constant of integration. To find this constant, we use the

initial condition that as t 0, w I. Thus

i
A=--a (6.13)

and (6.12) becomes

i i w cosh-lw
[ +

w2-1 (w2_i)3/2 SH S, (6.14)

0
where S log(a/ao), is the natural strain of the inhomogeneity and SH elI
t Ut, is the natural strain applied at infinity. Relation (6.14) agrees with the

known result [5] and gives w (a/ao)3/r in term of time t and expresses the

required value of a in terms of t. Substituting this value of a in the
2 3

relation ab aO, we obtain the value of b in terms of t.
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Case II. Let us now consider a two-dimenslonal limit. Letting a
0

(R),

co bO, i.e. at time t O, the guest medium consists of an infinite circular

cylinder of an viscous incompressible fluid of viscosity 2 occupying the

y2+z 2
region

2 < bo Ixl < embedded in the infinite host medium of viscous

incompressible fluid of viscosity i which is subjected to devltorlal uniform
0 (x). Its non-zero componentspure strain rate eij~

0 (x)
0 (x)= ue22 -e33

where U is a positive constant. In this case, the right circular cylindrical

inclusion gets deformed to an infinite elliptic cylinder and at time t occupies

the region R2,

2 2
Ixl<-,

b
2

c

2
The non-zero distinct shape factors in this casewhere nbc nb or bc bO.

are derived from (6.5) by letting a and the values are

c (b+2c) b (c+2b) bc
t2222 2 t3333 2 t2233 2

(6.15)
2 (b+c) 2 (b+c) 2 (b+c)

In this case, the exact inner solution at time t is

Ul(X) 0, u2(x) u22(O)y, u3() u33(0)z, R2, (6.16)

where u22(0) and u33(0 satisfy equations (6.4b) and (6.4c) which, in view of

(6.15), become

bc
(0) U, (6.17a){i + Abc

2" u22(0 i (b+c)
2 u33

’i (b+c)

1 (b+c) 2
u22(0) + {i + Abc 2} (0) =-U. (6 17b)

I (b+c) u33

These equations yield

u22(0) -u33(0)
U

(6.18)
{I + 2Abc 2}

l(b+)

Substituting these values in (6.16), we obtain the required inner solution at time

t.

To find the values of b and c in terms of t, we appeal to the partial

differential equation DF/Dt O, where

2 2
F(x,y,z) b-2 +- 1 0,

cand get

i db U
u22(0) (6.19)

2cbc{1+
(b+c)

2
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2
the above relation becomeswhere (A)/I (2-i)/I. Since 6c --b0,

i db U
b dt 2b2b201+

(b2+b02) 2

Its solution is

Sn b Ut + B, (6.20)

b2+bo2
where B is the constant of integration. Since, when t 0, b b0, we find

(6.20) that

B-- log b
0 -so that

(b/bo) 2-i
log b + Ut,

(b/b0 2+1

or

S + tanh S SH, (6.21)

where S log b/b0 is the natural strain of elliptical inhomogeneity and
0

SH e22 t Ut is the natural strain applied at infinity. Relation (6.21) agrees

with the known result [5]. It gives b in terms of t and using the relation
2

bc b
0

we can determine c in terms of t.
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