
Internat. J. Math. & Math. Sci.

Vol. 8 No. 2 (1985) 231-240
231

SEMINORMAL GRADED RINGS AND WEAKLY NORMAL
PROJECTIVE VARIETIES

JOHN V. LEAHY

Institute of Theoretical Sciences
and

Department of Mathematics, University of Oregon
Eugene, Oregon 97403

and

MARIE A. VITULLI

Department of Mathematics, University of Oregon
Eugene, Oregon 97403

(Received March 4, 1983)

ABSTRACT. is paper is concerned with the seminormality of reduced graded rings

and the weak normality of projective varieties. One motivation for this investi-

gation is the study of the procedure of blowing up a non-weakly normal variety

along its conductor ideal.
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In this paper we investigate the seminormality of reduced graded rings for the

purpose of studying the weak normality of projective varieties and the procedure of

blowing up a non-weakly normal variety along its conductor ideal. A commutative

ring with identity is seminormal if and only if it contains every element of its

total ring of quotients whose square and cube are in the ring. A variety (over an

algebraically closed field of characteristic zero) is weakly normal if and only if

every globally defined continuous function which is regular outside the singular

locus is in fact globally regular. In [i] it is proven that a variety is weakly

normal if and only if all of its local rings are seminormal.

In section 2 of this paper the relevant commutative algebra is developed to

handle questions of weak normality for projective varieties and in particular to

show that the weak normalization of a projective variety is again projective. We

have tried to work in as general an algebraic setting as possible, but since we

wanted the normalization of a graded ring to again be graded we considered only

reduced graded rings (indexed by the integers) having only a finite number of min-

imal prime ideals. Given an integral extension of graded rings we give an explicit

description of the relative seminormalization by adapting a construction of Swan

[2]. We then show that the seminormalization of a graded ring is a graded subring

of its normalization and that the operations of seminormalization and homogeneous

localization commute.
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In section 3 we consider reduced (but not necessarily irreducible) projective

varieties defined over an algebraically closed field of characteristic zero. In

particular we show that such a variety is weakly normal if and only if its veronese

subrings of order d are seminormal for sufficiently large d.

2. SEMINORMAL GRADED RINGS.

All rings are assumed to be commutative with identity. A graded ring is a ring

R that admits a decomposition (as abelian groups) R @ne_ R such that R R R
n m n-- m+n

for all m,n. We let R
h

denote the set of homogeneous elements of R. Notice that

the identity element of R is homogeneous of degree O. In particular R is a sub-
O

ring of R.

If A is a ring we let A denote its normalization, i.e. A is the integral

closure of A in its total ring of quotients Q(A).

(2.0) Suppose that R is a reduced graded ring having only a finite number of

minimal primes 0 I,’’’,0. Let R
i

R/0 i, Ti Rh 0i and S
i TIRi

for

i i,-..,. Set S SIx’-- xS Since the minimal primes of R are homogeneous

the quotient rings R
i

are again graded. Therefore each S
i

is graded where

T
i 1

S
i {/t Ri) h

t e and deg() deg(t) n}. Hence S neon S
n n

is a graded ring.

Notice that R is a graded subring of Rlx XR Suppose r e R 0.(RI’’’R ).
n n

Then there exist homogeneous elements r. of degree n and s. p. such that

r r
i
+ s

i
for i i,’--,. For each i let si(n) denote the homogeneous com-

ponent of s
i

of degree n. Replacing r
i

by ri + si(n) and s.1 by s
i si(n)

we may assume that s. (n) 0 for all i. Comparing homogeneous components of
1

Jegree n we see that r
i

r I for all i and consequently s
i

s I for all i.

Thus s
I

e i 0 and r r I is homogeneous of degree n.

Now R
1

is a graded subring of S
i

(i i,---,) so that RI..- XR is a

graded subring of S SIx---S Consequently R is a graded subring of S

LEMLA 2.1. Let R be a reduced graded ring having only a finite number of

minimal primes. With notation as above, the normalization R of R is a graded

subring of S If R 0 for all negative integers n then R 0 for all
n n

negative integers m.

PROOF. We know that R RI--- .__R with notation as in (2.0). By the domain

case ([e], vol. 2, Thm. Ii, p.157) R
i

is a graded subring of S
i

for each i.

Thus is a graded subring of S SIx’..S . Now assume that R 0 for all
n

n < O. Again by the domain case (Ri) 0 for all n 0 (i l,--’,g) so that
n

R 0 for all n O.
n
LA 2.2. Let R be a reduced graded ring having only a finite number of

minimal primes. Assume that there exists a homogeneous R-regular element of

positive degree. Let T denote the set of homogeneous R-regular elements of R.

Then is a graded subring of T-IR.
R
i

PROOF. Let Pi’ Ti be as in (2.0). Let ql’’’’’q denote the minimal

primes of R indexed so that qiR O i
(i i,-..).

Now suppose R. By 2.1 there exist a
i Ti such that aiB R + qi

(i i,--’,). For each i choose a homogeneous element b
i

_
q#i0j 0 i. Re-
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placing a
i

by aib i
we may assume that a

i
E j#i0 j Pi and a.B1 R. Let a

be a homogeneous R-regular element of positive degree and choose m so that

deg(ai) + m 0 for i 1,’’- Replacing a
i

by aiam we may assume that

deg(ai) > 0 where ai E [j#iPj Pi and a.B g R for i 1n
i 1

Let N nl...n and let m
i

N/n. for i i,... Replacing a
i

by
m
i

l

a. we may assume that deg(ai) N > 0 for i I,.-.,4. Then c al+.--+a1

is homogeneous and cB R. To finish the proof it suffices to see that c is

R-regular.

Suppose that c is a zero divisor in R so that c 0. for some i. Now

c a. + Z a and Z a 0 implies a
i Oi, a contradiction Thus c is

I j#i
1
ji j i

R-regular and B g T- R. Hence __T-1R.
One can easily check that T-1R is a graded subring of S TIRI’..TIRE.

Since R is a graded subring of S by 2.1 we know that R is a graded subring of

T-1R.
For a graded ring R On.ZRn and a positive integer d we let R(d) denote

the subring of R defined by R(d) OnRnd" Then R(d) is a graded ring where

R(d) R
nd"

If R is the homogeneous coordinate ring of a projective variety then R(d)

is called a Veronese subring of R.

COROLLARY 2.3. Let R be a reduced graded ring having only a finite number

of minimal primes. Let R denote the normalization of R. For each positive

integer d, R(d) is the normalization of R(d).

PROOF. Let ql’’’’’q% denote the minimal primes of R and let 0i q i
N R

for i i,.--,. By 2.1 R is a graded ring and hence each qi is a homogeneous

ideal. Since R is reduced we know that [.=lqi O. In particular there exist

R such that qi (O:8i) for i l,---,ghomogeneous elements

Suppose a R(d) is R(d)-regular. If is a zero divisor in R then
d

Bi
0 for some i But 0 # Bde R(d) and Bii

O, a contradiction Hence

every R(d)-regular element is R-regular and Q(R(d)) Q(R). Similarly Q(R(d))__
Q(R).

Let qi(d) qi R(d) for i I,--.,E. Then ql(d) -- Nq(d) O. We

claim that there are no containments amongst these primes. For suppose qi(d)
qj (d). Let a be a homogeneous element of qi" Then adc qi(d) qj (d) im-

plies a e
qj. Since qi is generated by homogeneous elements qi -- qj and we

must have i j. Hence ql(d),...,qE(d) are the minimal primes of R(d). Similarly,

oi(d),’’’,o(d) are the minimal primes of R(d).

We wish to see that Q(R(d)) Q(R(d)) and that R(d) is the integral closure

of R(D) in its total quotient ring Now Q(R(d)) --Q(R(d)/01(d))x.-.(R(d)/0E(d))
Q(R/Ol(d))x.--xQ(R/%(d)) and Q(R(d)) Q(R(d)/ql(d))x---Q(R(d)/qE(d))

Q(R/q l(d)) (R/q E(d)). So it suffices to establish the result when R is an

integral domain and R # R.
O

Let K Q(R) and let r R
h {0}. Let J {n I(T-I) # 0}. Then J

is an additive subgroup of and hence J n for some positive integer m. Let

e icm(d,m) and set f e/m. Then R(d) R(e) R(fm) R(m)(f) and R(d)
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R(e) R(fm) R(m) (f). Thus replacing R and R by R(m) and R(m), respec-

tively, we may assume there exists a nonzero degree i homogeneous element t in

T-IR.
Let L (T-IR) Then we may identify R with a graded subring of L[t t-1]

O

where a R is identified with (at-n)tn. Since t has degree i, t is tran-
n -I

scendental over L and L[t] is a polynomial ring over L. Since L[t,t is

the localization of L[t] with respect to powers of t it is integrally closed in

K and hence is contained in L[t,t-I] as a graded subring.

Thus R(d) (d) L[td,t-d]. We claim that L

__
Q(R(d)). For if a,b e R

n
and b 0 then ab

d-I
b
d R(d)

n
and a/b abd-I/bd Hence Lit

d
t-d] C Q(R(d))

and Q(R(d)) Q((d)) L(td).
Clearly R(d) is integral over R(d). Let 8 e R(d)n so that B is integral

over R. Say 8
m + aiBm-l+ ’’-+am_lS+am 0 where ai R (i l,’-’,m). For each

i let c. denote the homogeneous component of a
i

of degree ind. Then

Bm + ClBm-l+’’’+cm-IB+cm 0 and cl,.--,cme R(d) so that B is integral over

R(d). Thus to finish the proof it suffices to see that R(d) is integrally closed

in L[t
d

t-d]
If y L[td,t-d] is integral over (d) then y is integral over R(d) and

hence over R. Thus y [] L[td,t-d] (d) since is a graded subring of
-i

e[t,t ].

We will now look at the question of seminormality for a reduced graded ring R

as above. We first recall the relevant definitions.

For a ring A let J(A) denote the Jacobson radical of A and let A
+

the normalization of A. The seminormalization A of A is defined by

denote

Recall that Hamann’s criterion for seminormality asserts that A is seminor-

mal in B if and only if A contains each element b of B such that b
2

b
3

e A

([i], Prop.l.4). In ([4], Thm. 2) Anderson adapts an argument of Brewer, Costa and

McCrimmon ([5], Thm.l) to show that a graded integral domain R Ro RI... is

seminormal if and only if R contains each homogeneous element s e such that
2 3

s s e R. We note that the same argument applies to any integral extension of rings

R S such that S is a graded ring and R is a graded subring of S (we say

that R__ S is an integral extension of graded rings).

PROPOSITION 2.4. Let R S be an integral extension of graded rings. Then

R is seminormal in S if and only if R contains each homogeneous element s of
2 3S such that s s e R.

PROOF. One half of the assertion follows immediately from Hamann’s criterion.

Thus it suffices to show that if R contains each homogeneous element of S whose

square and cube is in R then R is seminormal in S.

+A {b g b A + J(x V x Spec(A)}
X X

The ring A is said to be seminormal if A +A. There is also a relative notion.

For an integral extension of rings A B, the seminormalization
+
BA is defined by

+BA {b B bx a Ax + J(Bx) V xe Spec(A)}

We say that A is seminormal in B if A
+
BA. We refer the reader to [5] for

some of the fundamental results on seminormality.
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Assume that this condition is valid but R is not seminormal in S. Thus there
2 3

exists an element s of S\R such that s s R. For an element s of S let

(s) denote the number of nonzero homogeneous components of s. For each nonzero

element s si(1)+’’’+Si(m) of S such that 0 # si(j) Si(j) and i(1)<--’<i(m)

let p(s) max{k si(1),’’’,Si(k_l) R}. In particular if p(s) 1 then the

initial nonzero homogeneous component of s is not in R.

Amongst those elements of S\R whose square and cube are in R choose an

element s with (s) minimal and such that if t has the same properties then

p(t) _< p(s).
2 2

Write s Sil+’’’+Si,mk as above so that m (s). Since s Sitl+2
(higher degree homogeneous terms) is in R we must have si(1) e R. Similarly

R Thus k p(s) 2si(1)3 R and hence2 si(1)
3

Now (2si(1)s) and (2si(1)s) are in R and E(2si(1)s)
_

(s). Since the

2 + (terms in R) we must have(i(1) + i (k) )-component of s is 2Si(lSi(k
2Si(lSik,,,, R. If 2si(1)si(j) 0 for some then E(2si(1)s) %(s) and

hence 2si(13s.. R. If 2si(1)si(j. # 0 for all then %(2si(1)s) (s) and

9(2si(1)s) > p(s) so that 2s(1)s2 3
R. Thus in either case2 2si(1)s R.

2 2
Now (3si(1)s) and (3s. (1)s) are in R and (3si(1)s) <_ L(s). Since the

(2i(I) + i (k) )-component of s 3 is 3s.
2

s + (terms in R) we must have
(i) i(k)

3s2(1)Si(k) R. If 3s2i(l’Sij) 0 for some j then (3s.2l)S) (s) and

hence 3s.2 R. If 3SlSi(. # 0 for all j then E(3s,2(1)s) %(s) and
2

ll)S )"
R Again in2eith 2 R andConsider s si(1) S\R. Then (s Sil) s 2SilS + si(1)

si(1))3 3 2 2_ si(1)3s 3Si(lS + 3Si(lS R but (s si(1)) (s), a(s

contradiction.

Hence R is seminormal in S.

COROLLARY 2.5. Let R be a reduced graded ring with a finite number of minimal

primes. Then the seminormalization +R of R is a graded ring and contains R as

a graded subring.

PROOF. By 2.1 the normalization R of R is graded and contains R as a

graded subring. Let R’ Ine-r+Ri By 2.4 R’ is seminormal. But +R is then
smallest seminormal subring of that contains R and hence R’ +R is a graded

subring of R. Since R is a graded subring of R we know that R is graded sub-

ring of +R.
In order to prove the analogue of 2.3 for the seminormalization of R we adapt

a construction of Swan ([2], Thm. 4.1) to describe +R.
Let R

__
S be an integral extension of graded rings (so that R is a graded

subring of S) and let T be a graded subring of S containing R. Let {sale e

be a well ordering of the set of all homogeneous elements of S T whose square and

whose cube are in T. We inductively define graded subrings T of S such that

Ta --c T8 whenever a _< 8. Let T_I T, Ta+I Ta[se] and for a limit ordinal

let T8 a<sTa. Set T’ eATa so that T’ is again a graded subring of S

containing R. Now let R (0)
R, R (n+l) R (n)’

and set R* ">0R(n) Note that

R* is also a graded subring of S containing R.
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PROPOSITION 2.6. Let R S be an integral extension of graded rings. With

notation as above +SR L_v>nR(n) In particular R is a graded subring of S.

R* U
nOR

(n)PROOF. As observed earlier is a graded subring of S and the,
seminormality of R in S follows from 2 4 Thus it suffices to see that R*c +

SR.

Now R R(O) c_ +/-R. Suppose T R
(n)

_
+SR. Let {sa a e A} be a well

ordering of the set of all homogeneous elements of S T whose square and whose

cube are in T. Define T as above. We show by transfinite induction that

T c+_
S
R for all Now T_l T c *

S
R by assumption Suppose B > -1 and that

T c R for all a < 8. If a + 1 then T8 Ta[s] where
2 3

s T. Since
--.,

S
R

S
we must have sa " P" and hence TB

_
If is a limit ordinal then

TB Ja<BTa
_

+SR bY(n+lassumption.) Hence Ta cR for all a so that T’ --JaCATa
+ But T’ R so by induction R

() s+R for all n and consequentlysRo
R* +SR. Since +SR is the smallest subring of S that contains R and is semi-, +
normal in S we must have R

S
R.

PROPOSITION 27 Let R be a reduced graded ring having only a finite number

of minimal primes. For each positive integer d (+R) (d) is the seminormalization

of R(d).

PROOF. Let R denote the normalization of R and let d be a positive integer.

Then R(d) is the normalization of R(d) by 2.3. Since we have inclusions of graded

rings R +R S we also have R(d)

_
(+R)(d)

_
(d) and (+R) (d) is seminormal

by 2.4. Thus it suffices to see that (+R)(d) +(R(d)).
Using the notation of 2.6 we have +R oR(n). Thus it suffices to see that

R(n)(d)
_

+(R(d)) for all n.

Now R(O)(d) R(d) +(R(d)). Let n > 0 and assume that R(n)(d) +(R(d)).
Let T R

(n)
and let s a A} be a well ordering of the set of all homogeneous

elements of R T whose square and whose cube are in T. Define Ta as above. We
+

need to show that Ta(d) (R(d)) for all a.

Since T_I T we have T_l(d

_
+(R(d)). Let B -i and suppose that

+
Ta(d)

__
(B(d)) for all a < 8. If B a + 1 then TB Ta[s]. Let s sa and

suppose t TB (d) is homogeneous of degree . Then
2

t Irks where r e Ta
h

and deg(rk) d k.deg(s) for all k. Now (rksk) (rksk)3 T(d)

_
(R(d))

and rksk (d) R(d) (by 2.3) implies that rksk +(R(d)) for each k and hence

t +(R(d)). Since t was an arbitrary homogeneous element of T8 (d) we have TB(d)_
+(R(d)). If is a limit ordinal then TB <Ta so that TB(d) -- +(R(d)) by

assumption. Hence Ta(d) +(R(d)) for all a and since R
(n+l) aAT we also

have R(n+l) (d) -- +(R(d)).
Thus R (n) (d) +(r(d)) for all n and (+R)(d) jnOR(n) (d)

_
+(R(d)) as

desired. Consequently + (R)(d)
+

r(d)).

LEMMA 2.8. Let R be a reduced graded ring having only a finite number of min-

is the normalizationimal primes and suppose that te RI
is invertible Then (R)

and (+R) is the seminormalization of R
O O

PROOF To simplify notation let A R B (+R) and C + ()o Define a
O O

C-algebra map :C[X,X-I] by q0(X) t. Then ’p is a degree preserving iso-

morphism of graded ring such that cp(B[X,X-I]) +R and @(A[X,X-I]) R.
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-i
Thus C[X,X is normal and hence C is normal. Let T denote the set of

homogeneous R-regular elements of R. By 2.2 we know that R is a graded subring

of T-IR. So an element of C is of the form __r where r and s are homogeneous
s

elements of R of the same degree, s is R-regular and __r is integral over R.

Let n deg(r). Then rt-n, t
-n rt-n

s R0 A and __r Q(A). A direct computa-
S -n

st
tion shows that r_ is integral over A and hence A C

__ . Since C is normal
S

we must have C A.
2 3

Since B[X,X-I] +R is seminormal if a e Q(B) and a a E B then

a a +R Q(B) B. Thus B is seminormal by Hamann’s criterion. Thus we need only show

that B +A. We already have B - C

__
Q(A) and B[X,X-I] is the seminormaliza-

-i
tion of A[X,X ]. If PI and P2 are prime ideals in B lying over the same

-i -i
prime ideal of A then PIB[X,X P2B[X,X so that P1 P2" Let P be a

prime ideal of B and let 0 P Q A. Then the canonical map (0) (P) must be

an isomorphism since K(p) (X) K(P) (X) is an isomorphism. Hence B

__
+A by

Traverso’s characterization of +A ([ ], Prop. 1.3).

We can show that normalization (respectively, seminormalization) and homogeneous

localization commute.

COROLLARY 2.9. Let R be a reduced graded ring having only a finite number of

minimal primes and let f # 0 be homogeneous of positive degree d. Then Rf is

the normalization and (+R)(f) is the seminormalization of R(f).
PROOF. R(f) is the degree 0 subring of Rf(d) and f Rf(d) is invertible

and is homogeneous of degree i. (R) f(d) is the normalization of Rf(d) by 2.3

and (+R) f(d) is the seminormalization of Rf(d) by 2.7. So the assertion follows

immediately from applying 2.8 to the reduced graded ring Rf(d). (Note that Rf(d)
has only a finite number of minimal primes by the proof of 2.3.)

RE,LARKS. D. F. Anderson [6] shows that if A is a seminormal integral domain

and I an invertible fractional ideal then the Rees algebra R(1) I
n

is again

seminormal, nO

Let A be a reduced ring with a finite number of minimal primes and assume that

A is seminormal. Let I be an ideal of A. It is natural to ask what conditions

on I guarantee us that the Rees algebra R(1) (or the scheme Proj(R(1)) is again

seminormal. We do not have any satisfactory answer to these questions at this time

but we would like to make some observations.

(2.10) Since A is a reduced ring with finitely minimal primes the seminormal-

ity of A implies the seminormality of the polynomial ring A[t] ([5], Thin. 2 or

use 2.2 and 2.4). Now R(1) A[It] is a graded subring of A[t] and has the same

total quotient ring as A[t]. Thus R(1) is seminormal if and only if A[It] is

seminormal in A[t].

(2.11) By 2.4 we see that A[It] is seminormal in A[t] if and only if for
2 12n a

3 3neach positive integer n and each element a e A if a and e I then

a In. (cf. [6] in case A is an integral domain.)

(2.12) Say an ideal J of a ring A is pseudo-reduced if whenever a e A and
2 3

a a e J then a J. If A and I are as above when are all powers of I

ps eudo-reduced
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If A is a seminormal domain and I is an invertible ideal then so is each

power of I. Hence A: (A:In) A and In is pseudo-reduced for all n >__ i (this

is Anderson’s argument in [6]).

If gri(A in/in+l is reduced then all powers of I are pseudo-reduced.
hi0

So, for example, if I is a reduced ideal of A that is generated by an A-regular

sequence then the Rees algebra R(1) is again seminormal. We would like to point

out that an analagous result for normality was proven by Barshay [7]. Namely, if A

is a normal domain and gri(A) is reduced then R(I) is again a normal domain.

3. IMPLICATIONS FOR PROJECTIVE VARIETIES.

Let k be a fixed algebraically closed field of characteristic 0. When we

use the term variety we assume that the underlying topological space is the set of

closed points of a reduced, separated scheme of finite type over k.

Let U be an open subset of a variety (X,Ox). A k-valued function on U is

said to be c-regular if it is continuous and regular on the nonsingular points of U.
c

denote the sheaf of c-regular functions on X. We say that X is weaklyLet Ox
oc and that X is weakly normal if c Annormal at x e X if OX, x X,x X X.

afflne variety is weakly normal if and only if its affine coordinate ring is seminor-

mal ([i], Thm. 2.2 and (2.7)). For the fundamental results concerning weakly normal

varieties the reader can consult [I].

Let X cpn be a projective variety and let R k[Xo, ,xn] denote the homo-

geneous coordinate ring of X with respect to the given embedding. Then no minimal

prime of R contains the irrelevant maximal ideal (Xo,’’-,Xn). Thus letting T

denote the set of homogeneous R-regular elements in R we know that R is a graded
+

subring of T-IR by 2.2. Hence R is a graded subring of T-IR by 2.6.

Now if X has irreducible components then R Hi=ik. This is not the case

with +R.
o

LEMA 3.1. Let R be the homogeneous coordinate ring of a projective variety

X c n and suppose that R is not seminormal. Then there exist positive degree
3 e R[s ,’’" but s

iin R such that si2,si i ’si-ihomogeneous elements sI, ,s
m

R[sI Si_l] for i l,’’’,m and +R R[Sl,’’" sm] In particular (+R) k
0

PROOF. Since R is not seminormal by 2.4 there exists a homogeneous element

e R R whose square and whose cube is in R. Since k Ro c Ro Hi=ik (whereS
1

is the number of minimal primes of R) is the diagonal mapping we must have

deg(sI) > 0. Let R
1 R[Sl]. Then R

1
is a graded subring of (and of +R)

whose degree 0 homogeneous piece is k. If R1 is not seminormal there exists

a homogeneous element s
2

e R R
1

whose square and whose cube is in RI. As above

we must have deg(s 2) > 0 so that if R
2 Rl[S2] then R

2
is a graded subrlng

of R whose degree 0 homogeneous piece is k.

Continuing in this fashion we obtain an increasing chain of graded subrings of

R:R < R
1

R
2

< each of whose degree 0 homogeneous piece is k. Since R is

a finite R-module ([3], vol. i, Thm. 9, p. 267) this process must end in a finite

number of steps. If R is the last ring in the chain then R is seminormal by
m m

2.4. Clearly R c +R and since +R is the smallest semlnormal subring of
m
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that contains R we must have R +R.
m

It is well known that the normalization of a projective variety is again projec-

tive. Most proofs assume that the original variety is irreducible (e.g. [8] Them. 4,

p. 400). The general case follows quickly from the irreducible case. We first take

the normalization of each irreducible component and then construct the disjoint union

of these normal projective varieties observing that this union can be embedded in

some projective space. We would like to point out that if X C pn has irreducible

components and > I then the homogeneous coordinate ring of the normalization of

X cannot be realized as the normalization of some Veronese subring of the homogeneous

coordinate ring R k[Xo, "’,xn] of X. For the normalization of R (and of every

Veronese subring of R) has as its degree 0 homogeneous piece I[=lk whereas the

homogeneous coordinate ring of any projective variety has k as its degree 0 ILomo-

geneous piece.

We now show that the weak normalization of a projective variety is again pro-

jective. We include a complete proof for the convenience of the reader.

PROPOSITION 3.2. The weak normalization of a projective variety is a projective

variety.

nPROOF. Let x be a projective variety with homogeneous coordinate ring

R k[Xo,’-’,Xn]/I k[Xo’""xhI. Let S denote the seminormalization of R. Then
S is a graded ring (2.5) and S k by 3.1. Hence there exists a positive integero
d such that S(d) is generated as a k-algebra, by degree 1 homogeneous elements

([8], Lemma, p. 403). Now S(d) is the seminormalization of R(d) by 2.7 and R(d)
is the homogeneous coordinate ring of the Segre transform d(X) of X. Replacing
X by d(X) we may assume that S is generated as a k-algebra by degree 1 homo-

geneous elements.

Let Yo’’’’’YN be a k-basis for S I and let Y YN be indeterminateso
Define a degree preserving map of graded k-algebras ’P:k[Yo,’’’,YN S by "(Yi)

Yi for i O,’’’,N and let J ker P. Let y --]pN be the projective variety

defined by J. Since R is a graded subring of S the elements x ,-.-,x are ino n
SI. Let F ,---,F be linear forms whose images in S are x ,’--,x respectivelyo n o n
and let L C]PN be the linear subspace defined by the ideal (Fo-’’,Fn). Let
p:N L .]pn be the projection defined by p(a) (Fo(a),.--,Fn(a)). Since R c S

is an integral extension of graded rings Y L p (see [8], Proof of Thin. 4.1,
:y ,n is a finite morphism ([8], Prop. 6, p. 246). Thenp. 405) and P

y
(Y) is the projective variety defined by the homogeneous ideal J k[X Xo’ n

I, i.e., (Y) X.

Let f RI be an R-regular element. Then Q(R(f)) Q(S(f)) are the function

fields of -IX and Y, respectively, so that

and V (Ui) for i 0,’’" n Then U and V are affine with affinei i i
coordinate rings R(xi) and S(xi), respectively, and S(xi) is the seminormaliza-

tion of R(xi) by 2.9. Thus (Vi, Vi
is the weak normalization of U

i
for

i 0 ,n and hence Y Li=oVi is weakly normal and (Y,n) is the weak normal-

ization of X.

DEFINITION 3.3. We say that a projective variety X-pn is arithmetically

weakly normal if its homogeneous coordinate ring with respect to this embedding is
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seminormal.

REMARK 3.4. Suppose X n is arithmetically weakly normal and let R denote

its homogeneous coordinate ring with respect to this embedding. Then Rf is semi-

normal for each 0 # f g P’l by 2.8. Since R(f) is the affine coordinate ring of

the affine open subset Xf of X and these cover X (as f ranges through nonzero

elements of Rl) we see that X is weakly normal.

PROPOSITION 3.5. Let X C pn be a projective variety. Then X is weakly normal

if and only if its Segre transforms Pd(X) are arithmetically weakly normal for d

sufficiently large.

PROOF. Let R denote the homogeneous coordinate ring of X n. Suppose

that X is weakly normal. Then Xf is weakly normal for each 0 # f a R
1

so

that R(f) is seminormal for each 0 # f e RI. Thus Rf is seminormal for each

0 # f R
1 by 2.8. Hence Rf (+R)f for each 0 # f e R

1
and letting m R+

we know that Supp(+R/R) {mj. Since +R/R is a finitely generated graded R-module

this implies that (+R/R)
m

0 for m sufficiently large, i.e. R +R for m
m m

sufficiently large. Now R +R k by 3.1 so that R(d) (+R)(d) for d suf-
o o

ficiently large and the latter is seminormal by 2.2 and 2.4. Since R(d) is the

homogeneous coordinate ring of the Segre transform d(X), the Segre transforms

#d(X) are weakly normal for d sufficiently large.

The converse is clear by 3.4 as d(X) is isomorphic to X.

REMARK 3.6. We again remind the reader that the analogous statement for a reduc-

ible normal variety is false. For if X n is a reducible normal projective var-

iable with irreducible components and R is its homogeneous coordinate ring then

R for each d 0 Since R(d) is theR(d) Ro k whereas R(d)o o i=lk
normalization of R(d) by 2.2 we know that R(d) is not normal for all d 0.

Geometrically this is easy to see because R(d) is the affine coordinate ring of the

union of cones through the origin in An+l and hence is not normal.
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