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ABSTRACT: This paper continues the work started in [I]; a second

continuous Jacobi transform is defined for suitable functions f(x).

Properties of the transform are studied. In particular, the first

continuous Jacobi transform in [i] and the second continuous Jacobi

transform are shown to be inverse to each other. The paper concludes with

an extension of Campbell’s sampling theorem [2].
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I. INTRODUCTION.

^f(aIn this paper, the second continuous Jacobi transform, ,B), of a

function f(x) is developed along similar lines of Butzer, Stens, and

Wehrens [3]. The results generalize the work in [3] as well as the work of

Debnath [4 on the discrete Jacobi transform. Basic properties of ^f(a,B)

will be derived including an inversion formula tersely given by

(^f(a,)(.))^(a,)=f(.). The results are then applied to an extended form of

Campbell’s sampling theorem [2].

The paper is divided as follows. Section two includes basic notations
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and results obtained in [I] that will be used in the sequel. Section three

is devoted to the study of the second continuous Jacobi transform. In this

section, the first and the second continuous Jacobl transforms are shown to

be inverse to each other. Section four is devoted to a sampling theorem

based on Jacobi transforms and an estimate of a truncation error.

2. PRELIMINARIES.

In this section we recall all the necessary background material on

Jacobi functions and the first continuous Jacobi transform as studied in [i].

For the sake of completeness, we repeat some of the basic notions of hyper-

geometric functions.

For each a, b, c real numbers with c0,-i,-2 the hypergeometric

function is given by

(a) k(b) k kF(a,b;c;z)=k=Ol (C)kkW.

The above series converges absolutely and uniformly on each compact subset

of (-i,I). Also,

r(c) r(c-a-b)
lim F(a,b;c;z)--F(a,b;c;l)-- F-(c-a)-F(c-b)
zl

where the ganna function is always assumed to be a well-defined function of

its argument.

The Jacobi function is defined by

I’(+a+l F(-k, l+a+B+l c+l;) xe (-1,1]p a,) (x)-- F(a+l)F(+l)

where a, 8>-1. The following are some of the properties of pa,B)(x)
derived in [i] and will be used in the sequel. We refer the reader to [I]

for proofs.

LEMMA 2.1. [Lemma 2.2, [1], page 148]. For any x(-1,1) and

i_> a++l
2

we have for

(i) -l<_<0, <r (+a+l) _)(x) -f(a+l) r(1) +M(,n,) log(

) r(+a+) 2(ii) g>O, kiP a’a)Cx)[-< rc+)r(+) +M’(k,a,B)log(-)

where M(,a,) and M’(,a,B) are constants depending on %, a, and B.

We will denote the weighted LP(-I,I) (p>l) space with welgbt

w(x)--(l-x)a(l+x) by LP(-I 1). The norm on LP(-I I) is given by
W W
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i I 1 l/pEli p=(2+B+I _lW(X)I f(x) IPdx)

It was shown in [4] that

LEMMA 2.2. (I.emma 2.4, [i], p.150). P’B)(x)ELwP(-I,I) for all p>l

and for all and B such that p+l>O and -I /p< 8< I /p

Jacobi polynomials with %=nP, P is the set of all positive integers,

satisfy the following orthogonality relation

I fI I 0 n#m
w(x) e(U,6) (x) e(a,6) (x) dx=

2u++l -i
n m

n=m
n

where
r(n+a+l) r(n+B+l)

n n!(2n+a+B+l) r(n++B+l)

However, Jacobi functions do not satisfy such an orthogonality relation.

Instead, the following result holds:

than

LE4A 2.3. (;.emma 2.5, [i], p.150). Let and u both be greater

a+B+l -v and X-(u+a++l). For u, Be(-,-), we have
2

w(x)P a,g)
(x) (-x) dx

2+I #-I

r_(+a+l) r(++l) sin sin.
(X-) (X++B+I) r(,+l)r(+a+B+l) r(+l)r(v+a++l)

We also recall the definition of the discrete Jacobi transform as tudled

by Debnath in [4].

(x) f(x)dx

and under appropriate conditions

n=O n

Now, for any f, geL2w(-1,1) and for appropriate

1 i -l(a B) ^(,B)
w(x) f(x)g(x)dx 6 (n)g (n).

2
ad+l J-i n--O n

From (2.3) and Lemma 2.3 together with the identity P(na’B)(-x)=(-l)nP(n8’a)
we ob rain

(2.2)

(2.3)

(x)

n r(x+a+l) r(n.+_+_l)sin% %@n
(-n) (k+n+a++l) n r(+a+B+I)

(n)=
F (nd<x+l) r (n+B+l) =n2n+cx+B+l) n r (nd<x+B+l)

(2.4)
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The following estimates on pC,B) (x) for large will be used.

++I
LEMMA 2.4. (Lemma 2.6, [I], page 152). For X, >-------, >-q and

-1/2<<1/2, we have

(i) for each [a,b](-l,l), there holds for all xc[a,b]

IP’{) (x)I=O(X-) as X-*o.

(il) liP )(x)ll
I

o(x-h) xo.(x)
2

as

(iii) for each c,d]c_[- ++I
2

,oo), there exists a constant M>O such

that for all X, v[c,d]

I1P:’)<x)-P<’(3)<x)il <MI,-vlv 2

The continuous Jacobi transform of the first kind is defined as in

[1] by

(c Z) 1 I 1+i w(x)PX (x) f (x)dx(i
2 --1

for every fL2w(-1,1) with >-1/2 and -1/2<8<1/2. We recall that if =8-0, we

(2.5)

obtain the results of Butzer, Stens and Wehrens 3] and if X-nEP, we obtain

the results of Debnath [4].

Again, it was shown in [i] that for any fEL.2.(-I,I) we have

If (c’ ) (x)l--o(x-) as X-,’. (2.6)

and

a+l+l +)(’)(’-
2 )Co(IR nLP(IR+) p>2. (2.7)

The following Lemma will be essential for our work.

LEMMA 2.5. (Lemma 3.2, 1], page 155). Let F(x) be defined on

IR+=[0, o) such that X ++ F(X)LI(IR+). Then the function

G(x)-- F(X)P(’) .(-x)
0 X +B+i H() XsinnXdX

2

belongs to C(-I,I)nL__(-I,I) where

H(X)

+B+I.F2tX" +
2

r(x+ a-B+l B-+I.

From now on we will assume throughout the paper that and satfsfy
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(2.8)

If 3 and 8 satisfy (2.8), then it was shown in [I] that

_(a, B) (x)=4 a,) (,c’O
ek

0
P (’-)PX- (-X)Ho() sSnn)’d (2.9)

where

r2(+)
H0(R) =r(+a+)r(++)’ x(-,], kP.

The following is also true.

LEMA 2.6. (Theorem 3.1, [I], page 158). Let fL2(-l,l) be such

that X(’B)(-)LI(IR+). Then for almost every xE(-1,1)

f(x) - (a,) (.j)F_ (_X)Ho()slnwd. (2.1:0)

Moreover, if f(x) is continuous then (2.D)holds everywhere on (-I,I).

3. SECOND CONTINUOUS JACOBI TRANSFORM

^f(a,)
^fCa, S)

In this section we define the second continuous Jacobi transform

of a function f with a and 8 satisfying (2.8). We also show that

and f^(a,) are inverse of each other.

IR+For each f defined on we associate the integral

(x) ffi4I(x)v,a)(_x) r(),+,).
0

proosltlon 3.1. For each f defied on R+ Ith f and

e ve (x)C(-,)nL2(-,). thgh the proo of Proposition .
alg the sa lines as Lena 2.5, we preset the proof with the proper

modificati for the sake of selfontaient.

PROOF of PrOposition 3.1. We first show that l(x) is well defined. Observe

rcx+)
that, for large l, r(l+8+) behaves llke 1-8 (see [i]). Thus for any fixed

T>O, we have by Lemma 2.4 (il) and the hypothesis that

IT Ba) r(x+)l(x)l-<l 4 of(X)P_ (-x) r(x++) Xsinxdxl

(,) r(+)+l 4, f(),)’X_.t (-x) r(/) slnXdl

-<Cl+C2 [-+lfcx)ldX<T
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where C
1

and C
2

are some positive constants. Hence I is well-defined.

We show that l(x)C(-l,l). For any xc(-l,l), there exists a 61>0 such that

x+/-61c(-l,l). By lemma 2.4 (i) and for all lyl<l, we have

O
f (-x-y) (-x) f(l+8)

0

by hypothesis and C is some positive constant. Thus for 4
0 sufficiently

large

I (,a)(_x_y)_pa), r(+)

c be made sufficiently all. Thus for >0 given, there Ists a 0
sufficiently large such that the above difference is less than /2. Fix 0"

t. oi.ity o P)-_ (-). ., h.e o >0 tt t.,. i,t,. 2>0By

such tt

-(,) p)[X (-x-y)- (-x)[< whenever lyl<62.

oose c=2 0&%[f()ldX and 6=min(gl,2). With this choice.
0

[I(x+y)-I(x)[ whenever [y[<. Therefore I(x)C(-1,1).

We finally show that I(x)L2w(-1,1).

and by Bardy-Littleed inequality (see [1], page 148) d La 2.4

ue have

llx(x)2a x-+lf(X)ld( (X-x) Z+x)IP_ (-x)12dx)
-1

by hypothesis. Bence I(x)cC(-1,1)L2w(-I,i). This completes the proof of

Proposition 3.1.

Ne sll call I(x) the second continuous Jacobi transfo and ee

will denote this by f(a,). Thus, ee define

f(a’) (x)=4 x) (-x) r(+)
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From Proposition 3.1 we deduce that ^f(’8)eC(-l,l)OL2w(-l,l) with -<u, 8<

and u+=O. In the next theorem, we will prove an inversion formula for

the transform ^f(u,8) under appropriate choice of f. The inversion formula

proof is analogous to the proof given in [3]. We will employ the Fourier

cosine transform of a function f which is given by

Fc(f)(t)= If()costd..
THEOREM 3.1. Assume that feLl(IR+) is such that A-8+1/2f(A)eLl(IR+)

and that

Fc(f)(t)--O for all -<t<.
Then we have for almost all heiR

+

FCI+1/2) I1 (,8)1/2 (++1/2)
-1
w(x)^f (x)P) (x)dx=f ().

Moreover, if fC(IR+), then (3.1) holds for all AelR+.
PROOF. By employing Fublni’s theorem together with Lemma 2.3

(with e+=O), we obtain

w(x){4 f(t)P
(8 )(-x) r(t+1/2)1/2 r (++1/2)

-1 o t- r (t+S+%) t sintdt Pa_) (x) dx

2r(+)
tf(t)sinwtr(++:)

0

r (t+1/2) {I I P_ (x) -(8,e)r(t+8+1/2) _I
w(x) vt_1/2 (-x)dx}dt

=4
F(+1/2) ItF (%4<x+1/2) f (t)slnt r(t+%) r(,+a+%)

r(t+s+1/2) w(12-t2) r(t+)

(3.}

sin(t-1/2) -sin (l-l}) }dt

=4 tf(t)sint{ cst-csWl} dtQ(l).
0 w(12-t2)

cost-cos
Set qt 2 2

( -t

We claim that Q()gLI(IR+). Indeed, an application of Fubini’s theorem

together with the assumption that fgLI(IR+) implies that

0

Now, by another application of Fublni’s theorem, we obtain
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FC[Q] (s)-- (k)coslsd

tf(t)sintqt(%)dt)cos%sd%
0

=4 (t) slnt( (k) cos%sdk)dt

=4 f (t) sint Fc(qt) (s)dt.

We employ the result of [3] and proceed analogously and determine that

Fc(qt)(s)= - sin([-s)t, O-<s<1, t>O.

Thus

FC( Q)(s)=2 (t)sint sin(-s)tdt

FC (Q) (s)=Fc(f) (s)-Fc(f) (2-s)= Fc(f) (s) O-<s-<.

Moreover, Fc(Q)(s)=0 for -<s<. The assumption Fc(f)(s)--O for w<s<

together with the uniqueness of the Fourler-cosine transform implies that

IR+"Q(%)=f(%) for almost every % Thus

-F(+) _lW(X) ^f
(’8) (x)P ) (x) dx.

+
The continuity of f will imply that (3.1) holds for all %IR

From Theorem 3.1 and Lemma 2.6 we deduce that

r(%qx+)
f(%). (3 2)(f(a,S) (.))^(a,8) <z)=2 r(z+)

and

r(%+) f^(,8)(.))(a,8)(x)__f(x). (3 3)(r(++5)

Equations (3.2) and (3.3) reduce to the formulas obtained in [3] whenever e=8=O.

4. A SAMPLING THEOREM

In this section we give a proof of a sampling Theorem of Campbell [2] by

employing results on the continuous Jacobi transform of the first and second

kinds. Moreover, we will obtain an error estimate for a function

f that is band-llmlted in the sense of the Fourler-coslne transform.
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THEOREM 4.1. If FC(IR+) is given by

i
F(>,) t w(x) f(x)p (c’ IB)

-1
I),-%

(x) dx

for some >0 and fCL(-l,l)
p

then one obtains for all heir
+

that

(2n+l) f(n+l) f(A+a+%) F(n,+-)
F()=

2 2 2
P sin(-(n+))

n=O ,n -(n+1/2) F(n4+l) F(%W+)

PROOF. From (4.1), (2.3) and (2.4), we obtain (with +--0)

n (2n+l) r(n+l)F(,)--
r(n+c+l) r(n+lB+l)n=O

(a,) (n)(a,) (n)

(4.i)

(4.2)

or

oo (-i) nn (2n+l) r(n+l)
L r(nd<x+l) r(n+3+l)n=O

r(v+a+) r(n++l)sin(A-) (a,)
(212-(n+) 2)n

[ (-l)n(2n+l) r(n+l) r<x++s) sinr(),l-t) F(-)
n=O (X22-(n+)2) r(n+a+l)

(n)

F(),)= . <2n+l) F(n+l) r(,V+a+)s.in(Xp-(n+)) F(n.+)
n=O ( 212-(n+) 2) 7 (n++J) r(1+) v

REMARK 4.1. Theorem 3.1 when applied to the above situation yields

the series representation (4.2) for FLI(IR+), %-B+FLI(IR+) and

Fc(F)(s)=0 for s>q for some >0.

Let S F denote the n-th partial sum of the series in (4.2). We give
n,

below an error estimate for approximating F. In particular, we show that

THEOREM 4.2. Let F satisfy hypotheses of Theorem 4.1 for some fixed

>0. Then there exists a constant C>O such that

F(%)-(Sn,F) () <C(%+I ;=En(f)
where

En (f)=InfPEP f-Pn2
P is the set of all algebraic polynomials of degree n.
n

PROOF. Denote by S f the n-th partial sum of

f(x)~ I -l(x,)(n)p(Ct,)(x)
n=0

n n
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where 6-1= (n !)
2
(2n.+l

n r (n+a+l) F (n++l)

Thus

(S (X) (2k+l r (k+l) r(x++)
n F) 22 2k=O ( -(k+) F(k++l) F(+)

By Cauchy-Schwartz inequality and Lemma 2.4, we have

F(1)-(Sn, ii a,) 2F)(I) 12=1% (x)(f(x) (S (x)dxl
-i
w f) (x))P

n -<_%[i w(x) If(x)-(S f)(x)l 2

-i
n

1
dx’ w(x) P(a’s) 2

-1 ’v-’ (x) dx

n
p(a,B) 2< 2.f)lp< f-S fI122 llJ-1/2 2-En LI 2"

Thus

F(1)-(S F)(1) I-<CEn(f)(I+])-1/2 for some constant C.

The estimate obtained in Theorem 4.2 shows that the

error becomes smaller for large
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