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ABSTRACT. Results are given from which expressions for the coefficients of the simple

circuit polynomial of a graph can be obtained in terms ol subgraphs of the graph.

From these are deduced parallel results for the coefficients of the characteristic

polynomial of a graph. Some specific results are presented on the parities of the co-

efficients of characteristic polynomials. A characterization is then determined for

graphs in which the number of sets of independent edges is always even. This leads to

an interesting link between matching polynomials and characteristic polynomials.

Finally explicit formulae are derived for the number of ways of covering two well known

families of graphs with node disjoint circuits, and for the first few coefficients of

their characteristic polynomials.
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I. INTRODUCTION

The graphs considered here will be finite and will have no loops or multiple edges.

Let G be such a graph. By a circuit cover (or simply a cover) in G will mean a span-

ning subgraph of G whose components are all circuits. We will take the circuit with

one node to be an isolated node, and the circuit with two nodes to be an edge of G.

With each circuit in G associate an indeterminate or weight w and with each cover

C the weight

w(c) w

where the product is taken over all the components of C. Then the circuit polynomial

of G is Zw(C), where the summation is taken over all the circuit covers in G.

If we give each circuit with r nodes a weight wr, then the circuit polynomial of

G is written as C(G’w) where w (w w
2

w
3

...). If we now put w w for all i
i

then the resulting polynomial, denoted by C(G;w), is called the simple circuit polyno-

mial of G. In this case,

P
C(G;w) Z al. w

p-k

k=O
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where p is the number of nodes in G, and a
k

is the number of covers of G with p k

components. The basic properties of circuit polynomials have been discussed in

Farrell [2].

Throughout this article, we will assume that the graph G contains p nodes and q
edges, unless otherwise specified. First we will give a result which describes the

possible circuit covers of G. We will then use this result to deduce explicit formulae
for the coefficients of C(G’w) in terms of the circuit subgraphs of G. By applying a

theorem which relates the circuit polynomial of a graph to its characteristic polynomial,

we will deduce results about the parities of the coefficients of the characteristic

polynomial of a graph. A new characterization will then be given for graphs in which

the number of sets of independent edges is always even. We will then establish a

connection between characteristic polynomials and matching polynomials (see Farrell [3]).
Finally, we apply our results to some well known graphs.

2. PRELIMINARY RESULTS

THEOREM I. Let G be a graph with p nodes. Then the circuit covers of G with

cardinality p k (k O) consist of p c isolated nodes, together with an rl-gon an

r2-gon an rs-gOn, where k + c .....2k, s c k and (rl, r2, rs) is a

partition of c with each part greater than i.

PROOF. Let C be a cover of G with cardinality p k (k > 0), and x the number of

isolated nodes in C. Let the non-trivial components of C be r o-gons, where
i

i i, 2 s Then

s
Z r. +x= p

1
i=l

Also x + s p k which implies x p (k + s). Put k + s c Also note that

0 s _-< k. The result follows.

Q.E.D.
Notice that if G is a tree, then r.1 2, Vi which implies that G consists of p c

c cisolated nodes and edges from which it follows that s c k so c 2k. Hence
a cover with cardinality p k will consist of p 2k isolated nodes and k independent

edges, it follows that a
k

will be the number of sets of k independent edges in G.

This leads to the following corollary.

COROLLARY I.i. Let T be a tree with p nodes. Then

p-i
C(T;w) Z e

k
w
p-k

k=0

where e
k

is the number of sets of k independent edges in T.

It is clear that Corollary I.I provides a lower bound for the coefficients of C(G;w).

Thus we have

THEOREM 2. Let G be a graph with p nodes and T a spanning tree of C. Let a
k

and

e
k

be the coefficients of w
p-k

in C(G;w) and C(T;w), respectively. Then a
k

e
k.

3. THE COEFFICIENTS OF CIRCUIT POLYNOMIALS.

We will use the notation NG(n I, n
2 nk) for the number of subgraphs of G

whose components are an nl-gon, an n2-gon and an nk-gon. The following result is

clear from Theorem I.
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COROLLARY 1.2. Let a
k

be the coefficient of w
p-k

in C(G;w). Then

2k
a
k

I N
G

j=k+l
(J

where . is a partition of with j-k parts and with each part greater than I.

Some specific values of a
k

are the following:

a
0

I.

a NG(2) (the number of edges in G).

a
2 NG(2,2 + NG(3).

a
3 NG(2,2,2 + NG(2,3) + NG(4).

a
4 NG(2,2,2,2 + NG(2,2,3) + NG(2,4) + NG(3,3) + NG(5).

a
5 NG(2,2,2,2,2 + NG(2,2,2,3) + NG(2,2,4) + NG(2,3,3) + NG(2,3)

+ NG(3,4) + NG(6).
a
6 NG(2,2,2,2,2,2 + NG(2,2,2,2,3) + NG(2,2,2,4) + NG(2,2,3,3)

+ NC(2,2,5) + NG(2,3,4) + NG(2,6) + NG(3,6) + NG(3,3,3)
+ NG(4,4) + NG(7).

4. THE COEFFICIENTS OF CHARACTERISTIC POLYNOMIALS.

We will denote the characteristic polynomial of a graph G by (G;x).

The following theorem was proven in [2].

THEOREM 3. Let G be a graph. Then (G;x) can be obtained from C(G;w) by putting

w
I x, w

2
-1 and w

k
-2, for k > 2.

If we assign weights to the covers suggested by Theorem I, according to the number

of nodes in their components, and then use the general expressions for ak, we can

obtain results which give the coefficients of the characteristic polynomial of a graph

in terms of subgraphs of the graph. Such results could provide a useful check when

finding characteristic polynomials of large graphs. They could also be used to find

explicitly the characteristic polynomials of small graphs. For example, if

then

P
(G;x) E b

k
x
p-k

k=O

b
0

I, b O,

b
2 -NG(2),

b
3

-2 NG(3
b
4 NG(2,2) 2 NG(4),

b
5

2 NG(2,3 2 NG(5),
b
6 -NG(2,2,2) + 2 NG(2,4 + 4 NG(3,3 2 NG(6),

b
7

-2 NG(2,2,3 + 2 NG(2,5) + 4 NG(3,4 2 NG(7),
b
8 NG(2,2,2,2 2 NG(2,2,4 4 NG(2,3,3 + 2 NG(2,6

+ 4 NG(3,5 + 4 NG(4,4 2 NG(8),
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b
9

-2 NG(2,2,2,3 2 NG(2,2,5 4 NG(2,3,4 8 NG(3,3,3
+ 2 NG(2,7 + 4 NG(3,6 + 2 NG(4,5 2 NG(9),

etc.

The next corollary arises from Theorem 3 and Corollary 1.1 (with general weights

w nd w2).
COROLLARY 3.1. Let T be a tree with p nodes. In (T;x) the coefficient of

x
p-2k

is negative if k is odd and positive if k is even.

The following theorems give information on the parities of the coefficients of the

characteristic polynomials of graphs. These results can provide a useful check when

calculating characteristic polynomials. As far as we know these results are new.

THEOREM 4. Let G be a graph with p nodes. The coefficient of x
p-2k-I

(k _-> O) in

(G’x) is even.

PROOF. It is clear from Theorem 3 that a term in x
p-2k-I

could arise if and only
p-2k-Iif the associated monomial in C(G;w) contains the factor w Let r be the index

of w
2

in the monomial. Then, in the corresponding cover in G, p 2k nodes are

isolated and 2r of the remaining 2k + nodes are "used up" in forming independent

edges. Since 2r 2k + for any values of k and r, the monomial must contain terms
s xP-2k-iw. where s 0 and i 2. Thus the coefficient of in (G:x) must contain

1

a factor 2. The result now follows.

Q.E.D.

THEOREM 5. The coefficient of x
p-2k

(k > 0) is odd if and only if G has an odd

number of sets of k independent edges,

PROOF. A term n x
p-2k n b(G;x) arises from terms n C(G;w) which contain a

p-2k
The remaining monomial of such a term may or may not contain afactor of w

factor w., for i 2. We will consider two cases: (i) None of the associated terms

in C(G;w) contain a factor w., for i > 2; and (ii) there is an associated term

containing a factor wi, for i 2.
p-2k k

CASE (i). In this case, the associated term will be ekw w
2

where e
k

is the

number of sets of k independent edges in G. The corresponding term in (G;x) will be

(-l)kekxP-2k This coefficient is odd if and only if e
k

is odd

CASE (ii). Any associated term of C(G;w) which contains a factor Wo, for i 2,

will give rise to an even coefficient of x
p-2k

in (G;x) (from Theorem 3). Hence the

sum s
k

of the contributions of these terms will be even. If a term does not contain

such a factor then it will be of the form discussed in Case (i). The resulting

coefficient of x
p-2k

will therefore be (-l)kek + Sk; which is odd if and only if e
k

is

odd. This completes the proof.

Q.E.D.

The following theorem combines the results of Theorems 4 and 5. It gives an

interesting characterization of graphs which have only even numbers of sets of

independent edges.

THEOREM 6. Let G be a graph with p nodes. Then G has an even number (possibly

zero) of sets of k independent edges for all values of k > 0 if and only if all the

coefficients in (G;x) (except, of course, that of x
p
which is always I) are even.

PROOF. Let us assume that G has zero or an even number of sets of k independent

edges for all values of k > 0. From Theorem 5 the coefficient of x
p-2k

in (G;x) will
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be zero or even for all values of k O. By Theorem 4 the coefficient of x
p-2k-I

will

be zero or even, for all values of k 0. Hence all the terms in (G-x) (except xp)
will have even coefficients.

Conversely, let us assume that all the coefficients (except that of xp) in (G;x)
ar, even. Then it follows from Theorem 5 that G must have zero or an even number of

sets of k independent edges for all values of k. This completes the proof.

Q.E.D.

Suppose that G is a tree. Then the coefficient of x
p-2k-1

must be zero since the
r

term w
2

in the associated circuit polynomial cannot "use up" the 2k + nodes (see

proof of Theorem 4). It follows that the only terms with non-zero coefficients in
p-2k(G;x) are those in x Since p-2k is odd if and only if p is odd, we deduce the

following result for trees.

THEOREM 7. Let T be a tree with an odd (even) number of nodes. Then (T;x)

contains only odd (even) powers of x.

This result is also given in Harary et al [4].

The following corollary of Theorem 6 establishes an interesting connection between

matching polynomials and characteristic polynomials of graphs.

COROLLARY 6. i. The matching polynomial of a graph G contains only even

coefficients (excluding that of wlP) if and only if the characteristic polynomial of G

contains only even coefficients (excluding that of xP).
PROOF. Let us denote the matching polynomial of G by M(G;w). Then the coefficient

p-2kw2of w
k

(k . O) is the number of sets of k independent edges in G. This is even

if and only if G has an even number of sets of k independent edges. Hence all the

coefficients of M(G;_w_w (except that of WlP)are even if and only if G has an even number

of sets of k independent edges for all values of k. It follows that all the co-

efficients in (G:x) (except that of xp) are even (by Theorem 6).

Q.E.D.

One previously known link between the two types of polynomials is that the

matching polynomial and characteristic polynomial of a tree coincide, except for

differences in the signs of the coefficients (see [2], Theorems 6 and 8).

Some of our results about characteristic polynomials can be derived from results

given by Sachs [5]. However the circuit polynomial approach used here is basically

simpler. It also demonstrates the usefulness of circuit polynomials as a device for

investigations into properties of characteristic polynomials.

5. APPLICATIONS.

The Wheel

We define the weeZ W to be the graph obtained by joining an isolated node to all
P

the nodes of a circuit with p nodes. We will call the isolated node the ub of W
P

the circuit, the i of W and an edge joining the hub to the rim a spoke. The
P

following lemmas will be useful.

LEMMA i.

(i) fp if n p I,

Nwp(n if n p I, for n > 2.

0 if n p I.
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(ii)NWp(2,2,2 2,n) CP--k) (p-i),

where k 0 is the number of independent edges and n > 2.

NWp 2 and n. 2 for some i and j, where(iii) (n I, n
2

nk) 0 if n
i

i, <= k.

PROOF.

(i) The n-gon must contain two spokes and can "begin" with any of the p-1 spokes

if n p-l. If n p-l, then the only n-gon will be the rim.

(ii) Since the n-gon must contain the hub, the k independent edges must be chosen

from the remaining subgraph, which will be a path with p n nodes. The number of ways

of choosing these edges in

n-gons, the result follows.

(iii) Since there is only one hub and each n-gon (n > 2) must contain the hub,

the result follows.

LEMMA 2.

NWp(2,2,2 2) (p-l) Pk-I + ]’

where k is the number of independent edges.

PROOF. The sets of independent edges can be put into two classes: (i) those

contain a spoke and (ii) those which do not contain a spoke. If a set of k independent

edges includes a spoke, then the remaining k edges must be rim edges. The number

of ways of choosing k independent edges from a path with p 2 nodes is

Hence the number of elements in class (i) is (p-l)

If a set of k independent edges does not include a spoke, then all the edges must

be rim edges. The number of ways of choosing k independent edges from a circuit with

is- p[k2} (See Theorem I0 of [2]). Hence the number of sets ofp- nodes,
K

k independent edges in W is
P

The result now follows.

Q.E.D.

The following theorem is obtained by substituting for NG(n I, n
2

nk) in the

general expressions for a
k

and using Lemmas and 2.

THEOREM 8. The number of ways of covering the nodes of W with p 2 (p + 4) node-
P

disjoint circuits is

:(p-l) (3p-8).

With p 3 (p # 5) node-disjoint circuits it is

(p-l) (p3) p5)+ +i]

With p 4 (p 6) node-disjoint circuits it is

(p-l) P + - + p-4]
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With p 5 (p # 7) node-disjoint circuits it is

(p-l) + + p-5]

With p 6 (p # 8) node-disjoint circuits, it is

(p-l) P] + +

When p 4, 5, 6, or 8, we add 2 p to the respective formula.

Using the general expressions for b
k

and Lemmas and 2 we obtain simple express-

ions for the first 10 coefficients of the characteristic polynomial of the wheel W
P

The results are given in the following theorem.

THEOREM 9. Let

P

(Wp’X) b
k

x
p-k

k=0

Then

b
0

I, b O, b
2

-(2p-2), b
3

-(2p-2) (p + 4)

b
4 -(p-1)(3p-14) (p # 5),

b
5

2(p-l)(p-5) (p 6),

b
6

(p-l)[2(p-6) - (p # 7),

b
8

(p-l)[ p5 + Z 3 + 11p 30] (p + 91.

and b9 2(p_l)[ C p8). p-l), P9 -I] (p I0)
2

eorem 9 can be used to obtain simplified expressions for the characteristics

polynomials of wheels with up to I0 nodes. We note that a general formula for the

characteristic polynomial of a wheel has been given in Cvetkovic [I].

e Fan

We define the F to be the graph obtained by joining an isolated node to all
P

the nodes of a path with p nodes.

LEMMA 3.

(i) N
F

(n) p n + for n > 2.

P

p-n
(ii) N

F
(2,2 2,n) I

P r=O l+j =k

where n 2 and k is the number of independent edges.

(iii) NFp(n I, n2, nk) 0 if ni 2 and n.j 2 for som i and j, where

PROOF.

(i) and (iii) are straightforward.
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(ii) The n-gon will "use up" n nodes on the rim of the fan.

The remaining graph will consist of two paths with r and s edges, where

r + s (p-l) (n-l). Thus the k independent edges must include i from one path and

k i from the other, for i 0, I,I k. The result follows immediately
LEMMA 4. Q.E.D.

NFp(2,2 ,2) P- + l
r- k

r+s=p-2 i=O
i

where k is the number of independent edges.

PROOF. We can partition the independent edges into classes (i) those which contain

only rim edges and (ii) those which do not. The number in Class (i) is p--k
The elements in Class (ii) can be counted by the technique used in establishing (ii) of

Lemma 3.

Q.E.D.

By using the general expressions for a
k

and Lemmas 3 and 4 we establish the

following result.

THEOREM i0. The number of ways of covering the nodes of F with p 2 node-
P

disjoint circuits is

r+s=p-2

With p 3 node-disjoint circuits it is

r+s=p-2

+ (p-4)(p-5) + (p-3)

s + (r-l)(s-3) +
2

+ p 2.

3
+ (r-l)(s-2) + r (s-l) +

With p 4 node-disjoint circuits it is

P + r+s=p-Z2 i=04Z .-4+ir.4-i/7
+ r=oP-3z P-

+ (r-l)(p-4-r)+ rO + (p-5)(p-6) + (p-4).

With p 5 node-disjoint circuits it is

r+s=p-2 i=O

p-3

li p p4 r2+ Z Z r. -3.r +
r=O i+j =3 r=O

+ (r-1)(p-5-r) + + (p-6)(p-7) + (p-5).

With p 6 node-disjoint circuits it is
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The general expressions for b
k

together with Lemmas 3 and 4 yield the following

result, which gives simple expressions for the first 10 coefficients of the character-

istic polynomial of the fan F
P

THEOREM 11. Let

P
(F ;x) I b

k
x
p-k

P k=O

Then

b
0

1, b O, b
2

-(2p-3), b
3

-2(p-2),

i s]9 + (r-l)(s-3) + r79 <-),
r+s=p-2

b
5

2(p-4)(p-6),

b6 <p5 + I [s3) + (r-1)(s-2) + r-r+s=p-2
3

+ 2 (p-5) (p-7),

b
7

-2 I + (r-l)(p-4-r) + + 2(p-6)(p-8),
r=O

b8-- P + Y, I
r 4 i. -2 I r

r+s=p-2 i=O r=O

+(r-l)(p-5-r) + P-62- + 2(p-7)(p-9),

and

2 r= + (r-l)(p-6-r)b
9

-2 7, I
r p-3 r-

r=O i+j=3 r=O
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