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ABSTRACT. Let B() be the class of normalised Bazilevic functions of type 0

with respect to the starlike function g. Let BI() be the subclass of B() when

g(z) z. Distortion theorems and coefficient estimates are obtained for functions

belonging to BI().
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I. INTRODUCTION.

Let S be the class of normalised functions f which are regular and univalent

in the unit disc D {z IzI<1}. Let S* be the subclass of S consisting of

functions which are starlike, and denote by P, the class of functions which are regu-

lar in D and satisfy there the conditions p(O) I, Re p(z) 0 for p P.

v
Bazilevic [i] showed that if a and are real numbers, with a > O, then func-

tions f, regular in D, and having the representation

rz tiB-1 I/a+if(z) [(a+i)
0

p(t)g(t) dt] (I.I)

S*for g p P and z D, also form a subclass of S denoted by B(a,), which

contains both S* and the class of close-to-convex functions. (Powers in (I.I) are

principal values). When B O, we write B(a,B) B(a). Zamorski [2] and the author

[3] gave proofs of the Bieberbach conjecture for f e B(I/N), N a positive integer,

and more recently Leach [4] has shown that the conjecture is true for f B(a),

0 a I.

Si,gh [5] considered the subclass BI() of B(), obtained by taking the star-

like function g(z) z and gave sharp estimates for the modules of the coefficients

a 2, a
3, and a4, where for z D,
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n
[z) z a z [1.z)

n=2 n

We note that BI(1) is the subclass of S which consists of functions f for which

Re f’(z) 0 for z D [6].

In this paper, we shall obtain some distortion theorems for f Bl(a) and give

sharp estimates for the coefficients a in (2) when f e BI(I/N) N is a positive
n

integer.

2. DISTORTION THEOREMS.
i0

THEOREM I. Let f e Bl(a) and be given by (1.2). Then with z re 0 N r I,

(i) Q2(r)
1/a

_< If(z)I _< Ql(r) I/,
(ii) If 0 a-< I,

I-
a-I a l-r < if ,(z)l ra-IQr Q2 (r) I+--

and if a e

(r)

where

and

a l+r
1-r

1-e 1-a
a-I a l-r < f’(z)l re-IQ2(r) a l+r

r Q1 (r) i+---{ I---

Ql(r) a IrOa-I (t_0)v--l+ do,0

Q2(r) a froa-1 (o)do.
0

Equality holds in all cases for the function f defined by

f(z) (a fz ta_l.l+tei)dt)i/a (2 I)0 (l_tei
where 0 or n.

PROOF.

(i) Taking 8 0 and g(z) -= z in (I.I), it follows that f satisfies the

equation

1-a l-a
z f’(z) f(z) p(z) (2.2)

for z D and p P. Thus

f(z)a z ta-lpa f (t)dt,
0

l+r
and since Ip(z)I <_

_
for z e D [7], we have at once If(z)I < Ql(r) I/a.

To obtain the left-hand inequality in (i), we observe that, since Re p(z) > 0

1-r
for z D, Re p(z) -> r [5], and so from (2.2)

Now let Zl, [Zll r

]a l-r
dz

>_ ar
a-

(]-$r) (2.3)

be chosen so that [f(zl)a[ -< [f(z)a[ for all z with [z[ r.
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)(Then, writing w fl(z it follows that the line segment from w 0 to

f(zl)a lies entirely in the image of D. Let L be the pre-image of % thenw

by (2.3) we have

dwIf(zl)la fxldwl fL ]zl [dzl

a fr pa-1 (1.1.1)dp Q2(r),
0

which is the left-hand inequality in (i).

(ii) The proof follows at once from (2.2) and (i) on noting that for p P,

1-r lp(z)l 1+r
1+-’-’- [7].

Equality is attained in (i) for f0 and in (ii) for f when 0 and for
o

when a e 1.

We remark that as 0, the results of Theorem should in some way correspond

to the classical distortion theorems for regular starlike (univalent) functions [7].

The following shows that the bounds in Theorem are asymptotic to the classical dis-

tortion theorems as 0

THEOREM 2. Let Q1(r) and Q2(r) be defined as in Theorem I. Then for 0 r @ I,

as

I/a r(i) Ql(r)
(l_r) 2’

i/a r(ii) ’2r 2
(l-r)

(iii) Ql(r) Q2(r) I.

PROOF.

We prove (i), since (ii) and (iii) are similar. As a- O,

QI(r)I/ ( fr -I 11__+_ I/a fr i_p )do r (l+2ar- do
0 0

r l_2ar-alog (l_r)) I/ -21og(l-r) r
re

2
(l-r)

COROLLARY. Suppose that f(z) w for z D then

lwl Q2(1)
I/a

as a 0.

PROOF. Let a O, and w be a point on the boundary of f(D) closest to the orgin.

Let L denote the straight line from 0 to w and L its pre-mage in D Then

lwl If(z) for z e e n D. Since the circle Izl r, for each 0 r inter-

sects L at least once Theorem (i) gives lw] Q2(r)
I/a

and so [w[ Q2(1)
l/a

as a 0 (from Theorem 2 (ii)).

3. A COEFFICIENT THEOREM.

n n
NOTATION. nZ=O anZ nZ--O BnZ means l=.l -< lnl for n -> O.
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THEOREM 3. Let f E BI(I/N) with N a positive integer, and be given by (1.2).

Suppose also that for z D,

fo(Z) z + n
n=2 Ynz

where fo is given by (2.1). Then

(i) f(z) fo(Z),

(ii) Yn ()N N) N-I
( (log n) as n .

PROOF (i) We first note that if lenl -< IBnl then for m 1,2

Z enZ 8 zn)m(n=l (nZ-I n

To see this, let

(n=IZ anzn)m nZ=O An(m) z
n

and (nZ=O 8nzn)m nZ=O Bn(m) z

so that

A(k) A(k_l)a B(k) n B(k_l)
n =I n- n =I

We now use induction on k to show that for n -> ’IA(k) -< B "k’(
Clearly for

n n

n 2 IA(1)I lanl B B (I)
Suppose now that IA(k) < B

(k)
for

D n n n n

n 1,2 and k 1,2 ,j. Then [or n 1,2,...

n (j) n (j)A(j+I) IA II <
n I an_ Z__I B B B

n n- n

Thus (i) now follows at once, since from (22) we can write

Pkzk N
f(z) z I+ kZ__l k +I/N

k
and since [pk[ < 2 [7] we havewhere p(z) + kE__l pkz

k2 k z ]Nf(z) z[l+ k+[/N f0 (z)

(ii) When e I/N, (2.1) gives

n
n 2 z ]Nz z[ i+ I n$1/Nf0(z) z + nE__2 Yn n

n
z o(N) (.)’ (nl n+l/N

Now trivially,

n n

(nE--1 n 4-) << E << (niln n/l IN
Write these three series as

(j+l)

Z C(9)zn D()zn and l E(9)z
n= n n= n n=9 n

respectively.

Then
n

n (n _.__z)E E ())z z 0 n+ln= n
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Now a result of Littlewood [8, p. 193], states that if is a flxed positive integer

and

then n()
Thus

Also

n
z ) n() n

(nE=O n=0
z

(log n)-I as n .
n

E(V) () X(log n)
-I

n n-v n
as n =.

C(V)zn z
n

n= n n=O + and so

C
() 0

-J (j)

n
(j) (-I) n

v’--log n-I as n
n

Thus D
() (log n)
n n

and so

N (N ()v D() ()()(log n)N-IYn v$O n

as n
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