ON A SUBCLASS OF BAZILEVIC FUNCTIONS

D. K. THOMAS

Department of Mathematics and Computer Science University College of Swansea Singleton Park Swansea SA2 8PP Wales, U. K.

(Received September 24, 1985)

ABSTRACT. Let $B(\alpha)$ be the class of normalised Bazilevic functions of type $\alpha > 0$ with respect to the starlike function g. Let $B_1(\alpha)$ be the subclass of $B(\alpha)$ when $g(z) \equiv z$. Distortion theorems and coefficient estimates are obtained for functions belonging to $B_1(\alpha)$.

KEY WORDS AND PHRASES. Bazilevic functions, subclasses of S, functions whose derivative has positive real part, close-to-convex functions, coefficient and length-area estimates.

1980 AMS SUBJECT CLASSIFICATION CODE. 30C45.

1. INTRODUCTION.

Let S be the class of normalised functions f which are regular and univalent in the unit disc $D = \{z : |z| < 1\}$. Let S^{*} be the subclass of S consisting of functions which are starlike, and denote by P, the class of functions which are regular in D and satisfy there the conditions p(0) = 1, Re p(z) > 0 for $p \in P$.

Bazilevic^V [1] showed that if α and β are real numbers, with $\alpha > 0$, then functions f, regular in D, and having the representation

$$f(z) = [(\alpha + i\beta) \int_{0}^{z} p(t)g(t)^{\alpha} t^{i\beta - 1} dt]^{1/\alpha + i\beta} \dots (1.1)$$

for $g \in S^*$, $p \in P$ and $z \in D$, also form a subclass of S, denoted by $B(\alpha,\beta)$, which contains both S* and the class of close-to-convex functions. (Powers in (1.1) are principal values). When $\beta = 0$, we write $B(\alpha,\beta) = B(\alpha)$. Zamorski [2] and the author [3] gave proofs of the Bieberbach conjecture for $f \in B(1/N)$, N a positive integer, and more recently Leach [4] has shown that the conjecture is true for $f \in B(\alpha)$, $0 \le \alpha \le 1$.

Singh [5] considered the subclass $B_1(\alpha)$ of $B(\alpha)$, obtained by taking the starlike function g(z) = z, and gave sharp estimates for the modules of the coefficients a_2 , a_3 , and a_4 , where for $z \in D$,

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \dots$$
 (1.2)

We note that $B_1(1)$ is the subclass of S which consists of functions f for which Re f'(z) > 0 for $z \in D[6]$.

In this paper, we shall obtain some distortion theorems for $f \in B_1(\alpha)$ and give sharp estimates for the coefficients a_n in (2) when $f \in B_1(1/N)$, N is a positive integer.

2. DISTORTION THEOREMS.

THEOREM 1. Let $f \in B_1(\alpha)$ and be given by (1.2). Then with $z = re^{i\theta}$, $0 \le r \le 1$, (i) $0 (r)^{1/\alpha} \le |f(z)| \le 0 (r)^{1/\alpha}$

(ii) If
$$0 < \alpha \le 1$$
,
 $r^{\alpha-1} Q_2(r)^{\frac{1-\alpha}{\alpha}} \frac{1-r}{1+r} \le |f'(z)| \le r^{\alpha-1} Q_1(r)^{\frac{1-\alpha}{\alpha}} \frac{1+r}{1-r}$

and if $\alpha \ge 1$

$$r^{\alpha-1}Q_{1}(r)^{\frac{1-\alpha}{\alpha}}\frac{1-r}{1+r} \leq |f'(z)| \leq r^{\alpha-1}Q_{2}(r)^{\frac{1-\alpha}{\alpha}}\frac{1+r}{1-r},$$

where

$$Q_1(r) = \alpha \int_0^r \rho^{\alpha-1} (\frac{1+\rho}{1-\rho}) d\rho$$
,

and

$$Q_2(\mathbf{r}) = \alpha \int_0^{\mathbf{r}} \rho^{\alpha-1} (\frac{1-\rho}{1+\rho}) d\rho$$
.

Equality holds in all cases for the function f_{ϕ} , defined by

$$f_{\phi}(z) = (\alpha \int_{0}^{z} t^{\alpha-1} (\frac{1+te^{i\phi}}{1-te^{i\phi}}) dt)^{1/\alpha} \dots (2.1)$$

where $\phi = 0$ or π . PROOF.

(i) Taking β = 0 and g(z) Ξ z in (1.1), it follows that f satisfies the equation

$$z^{1-\alpha} f'(z) = f(z)^{1-\alpha} p(z) \dots$$
 (2.2)

for $z \in D$ and $p \in P$. Thus

$$f(z)^{\alpha} = \alpha \int_{0}^{z} t^{\alpha-1} p(t) dt,$$

and since $|p(z)| \leq \frac{1+r}{1-r}$ for $z \in D[7]$, we have at once $|f(z)| \leq Q_1(r)^{1/\alpha}$.

To obtain the left-hand inequality in (i), we observe that, since Re p(z) > 0for $z \in D$, Re $p(z) \ge \frac{1-r}{1+r}$ [5], and so from (2.2)

$$\left|\frac{\mathrm{d}}{\mathrm{d}z}[f(z)]^{\alpha}\right| \geq \alpha r^{\alpha-1}(\frac{1-r}{1+r}) \quad \dots \qquad (2.3)$$

Now let z_1 , $|z_1| = r$ be chosen so that $|f(z_1)^{\alpha}| \leq |f(z)^{\alpha}|$ for all z with |z| = r.

780

Then, writing $w = f_1(z)^{\alpha}$, it follows that the line segment λ from w = 0 to $w = f(z_1)^{\alpha}$ lies entirely in the image of D. Let L be the pre-image of λ , then by (2.3) we have

$$\begin{split} \left| f(z_1) \right|^{\alpha} &= \int_{\lambda} \left| dw \right| &= \int_{L} \left| \frac{dw}{dz} \right| \left| dz_1 \right| \\ &\geq \alpha \int_{0}^{r} \rho^{\alpha - 1} \left(\frac{1 - \rho}{1 + \rho} \right) d\rho &= Q_2(r), \end{split}$$

which is the left-hand inequality in (i).

(ii) The proof follows at once from (2.2) and (i) on noting that for $p \in P$,

$$\frac{1-r}{1+r} \leq |p(z)| \leq \frac{1+r}{1-r} [7].$$

Equality is attained in (i) for f_0 and in (ii) for f_o when $0 < \alpha \le 1$ and for f_π when $\alpha \ge 1$.

We remark that as $\alpha \rightarrow 0$, the results of Theorem 1 should in some way correspond to the classical distortion theorems for regular starlike (univalent) functions [7]. The following shows that the bounds in Theorem 1 are asymptotic to the classical distortion theorems as $\alpha \rightarrow 0$.

THEOREM 2. Let $Q_1(r)$ and $Q_2(r)$ be defined as in Theorem 1. Then for $0 \le r \le 1$, as $\alpha \to 0$

(i)
$$Q_1(r)^{1/\alpha} \sim \frac{r}{(1-r)^2}$$
,
(ii) $Q_2(r)^{1/\alpha} \sim \frac{r}{(1-r)^2}$,
(iii) $Q_1(r) \sim Q_2(r) \sim 1$.

PROOF.

We prove (i), since (ii) and (iii) are similar. As $\alpha \neq 0$,

$$Q_{1}(r)^{1/\alpha} = (\alpha \int_{0}^{r} \rho^{\alpha-1} (\frac{1+\rho}{1-\rho}) d\rho)^{1/\alpha} = r(1+2\alpha r^{-\alpha} \int_{0}^{r} \frac{\rho^{\alpha}}{1-\rho} d\rho)^{1/\alpha}$$

~ $r(1-2\alpha r^{-\alpha} \log(1-r))^{1/\alpha} \sim re^{-2\log(1-r)} = \frac{r}{(1-r)^{2}}$

COROLLARY. Suppose that $f(z) \neq w$ for $z \in D$, then

$$|\mathbf{w}| \ge Q_2(1)^{1/\alpha} \sim \frac{1}{4}$$
 as $\alpha \to 0$.

PROOF. Let $\alpha > 0$, and w be a point on the boundary of f(D) closest to the orgin. Let L_1 denote the straight line from 0 to w, and L its pre-mage in D. Then |w| > |f(z)| for $z \in L \cap D$. Since the circle |z| = r, for each $0 \le r < 1$, intersects L at least once, Theorem 1 (i) gives $|w| \ge Q_2(r)^{1/\alpha}$ and so $|w| > Q_2(1)^{1/\alpha}$ $\sim \frac{1}{4}$ as $\alpha \rightarrow 0$ (from Theorem 2 (ii)). 3. A COEFFICIENT THEOREM.

NOTATION.
$$\sum_{n=0}^{\widetilde{\Sigma}} a_n z^n << \sum_{n=0}^{\widetilde{\Sigma}} \beta_n z^n$$
 means $|\alpha_n| \le |\beta_n|$ for $n \ge 0$.

THEOREM 3. Let $f \in B_1(1/N)$, with N a positive integer, and be given by (1.2). Suppose also that for $z \in D$,

$$f_0(z) = z + \sum_{n=2}^{\infty} \gamma_n z^n,$$

where f_0 is given by (2.1). Then

(i) $f(z) \ll f_0(z)$, (ii) $\gamma_n \sim (\frac{2}{N})^N (\frac{N}{n}) (\log n)^{N-1}$ as $n \neq \infty$.

PROOF. (i) We first note that if $|\alpha_n| \le |\beta_n|$, then for m = 1,2,...

$$\left(\sum_{n=1}^{\infty} \alpha_n z^n\right)^m << \left(\sum_{n=1}^{\infty} \beta_n z^n\right)^m.$$

To see this, let

$$\left(\sum_{n=1}^{\infty} \alpha_n z^n\right)^m = \sum_{n=0}^{\infty} A_n^{(m)} z^n \text{ and } \left(\sum_{n=0}^{\infty} \beta_n z^n\right)^m = \sum_{n=0}^{\infty} B_n^{(m)} z^n,$$

so that

$$A_{n}^{(k)} = \sum_{\nu=1}^{n} A_{\nu}^{(k-1)} \alpha_{n-\nu}, \quad B_{n}^{(k)} = \sum_{\nu=1}^{n} B_{\nu}^{(k-1)} \beta_{n-\nu}.$$

We now use induction on k to show that for $n \ge 1$, $|A_n^{(k)}| \le B_n^{(k)}$. Clearly for $n = 1, 2, \ldots, |A_n^{(1)}| = |\alpha_n| \le \beta_n = B_n^{(1)}$. Suppose now that $|A_n^{(k)}| \le B_n^{(k)}$ for $n = 1, 2, \ldots$ and $k = 1, 2, \ldots, j$. Then for $n = 1, 2, \ldots$

$$|A_n^{(j+1)}| \leq \underset{\nu \leq 1}{\overset{n}{\subseteq}} |A^{(j)}| |\alpha_{n-\nu}| \leq \underset{\nu \geq 1}{\overset{n}{\subseteq}} B_n^{(j)} \beta_{n-\nu} = B_n^{(j+1)}$$

Thus (i) now follows at once, since from (2.2) we can write

$$f(z) = z \{ l + \frac{1}{N} \sum_{k=1}^{\infty} \frac{p_k z^k}{k + 1/N} \}^N,$$

where $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$, and since $|p_k| \le 2$ [7] we have

$$f(z) \ll z[1 + \frac{2}{N}\sum_{k=1}^{\infty} \frac{z^k}{k+1/N}]^N = f_0(z)$$
.

(ii) When $\alpha = 1/N$, (2.1) gives

$$f_0(z) = z + \sum_{n=2}^{\infty} \gamma_n z^n = z \left[1 + \frac{2}{N} \sum_{n=1}^{\infty} \frac{z^n}{n+1/N} \right]^N$$
$$= z \sum_{\nu=0}^{\infty} {N \choose \nu} \left(\frac{2}{N} \right)^{\nu} \left(\sum_{n=1}^{\infty} \frac{z^n}{n+1/N} \right)^{\nu}$$

Now trivially,

$$\left(\sum_{n=1}^{\infty} \frac{z^n}{n+1}\right)^{\nu} << \left(\sum_{n=1}^{\infty} \frac{z^n}{n+1/N}\right)^{\nu} << \left(\sum_{n=1}^{\infty} \frac{z^n}{n}\right)^{\nu} .$$

Write these three series as

$$\sum_{\substack{n \geq v \\ n \geq v}}^{\infty} C_n^{(v)} z^n, \quad \sum_{\substack{n \geq v \\ n \geq v}}^{\infty} D_n^{(v)} z^n \text{ and } \sum_{\substack{n \geq v \\ n \geq v}}^{\infty} E_n^{(v)} z^n = z^v (\sum_{\substack{n \geq 0 \\ n \geq 0}}^{\infty} \frac{z^n}{n+1})^v$$

Then

Now a result of Littlewood [8, p. 193], states that if ν is a fixed positive integer and

$$\left(\sum_{n=0}^{\infty} \frac{z^{n}}{n+1}\right)^{\vee} = \sum_{n=0}^{\infty} \phi_{n}^{(\vee)} z^{n},$$

then $\phi_n^{(\nu)} \sim \frac{\nu}{n} (\log n)^{\nu-1}$ as $n \to \infty$.

Thus

$$E_n^{(\nu)} = \phi_{n-\nu}^{(\nu)} \sim \frac{\nu}{n} (\log n)^{\nu-1} \text{ as } n \neq \infty.$$

Also

$$\sum_{n=\nu}^{\infty} C_n^{(\nu)} z^n = \left(\sum_{n=0}^{\infty} \frac{z^n}{n+1} - 1\right)^{\nu} \text{ and so}$$
$$C_n^{(\nu)} = \sum_{j=0}^{\nu} {\binom{\nu}{j}} (-1)^{\nu-j} \phi_n^{(j)}$$
$$\sim \frac{\nu}{n} (\log n)^{\nu-1} \text{ as } n \to \infty .$$

Thus $D_n^{(v)} \sim \frac{v}{n} (\log n)^{v-1}$ and so

Υ.

$$n \sim \sum_{\nu=0}^{N} {\binom{N}{\nu}} (\frac{2}{N})^{\nu} \sqrt{D_n^{(\nu)}} \sim (\frac{2}{N}) (\frac{N}{n}) (\log n)^{N-1}$$

as n → ∞ .

REFERENCES

- BAZILEVIC, I. E., On a case of integrability in quadratures of the Loewner-Kurafew equation, <u>Mat. Sb. 37</u> (79), 471-476. (Russian) MR17, #356.
- 2. ZAMORSKI, J., On Bazilevic schlicht functions, <u>Ann. Polon. Math.12</u> (1962), 83-90.
- 3. THOMAS, D. K., On Bazilevic functions, <u>Math. Z. 109</u> (1969), 344-348.
- LEACH, R. J., The coefficient problem for Bazilevic functions, <u>Houston J. Math. 6</u> (1980), 543-547.
- 5. SINGH, R., On Bazilevic functions, Proc. Amer. Math. Soc. 38 (1973), 261-271.
- MacGREGOR, T. H., Functions whose derivative has positive real part, <u>Trans. Amer.</u> <u>Math. Soc. 104</u> (1962), 532-537.
- 7. POMMERENKE, Ch, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- 8. LITTLEWOOD, J. E., Theory of functions, Oxford, 1944.