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ABSTRACT. For 0, let B() be the class of regular normalized Bazilevi functions

defined in the unit disc. Choosing the associated starlike function g(z) z gives

a proper subclass BI() of B(). For B(), correct growth estimates in terms of the

area function are unknown. Several results in this direction are given for BI(1/2).
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1. INTRODUCTION.

Let S be the class of regular, normalized, univalent functions with power series

expansion

n
f(z) z + nE__2 a z (i.I)

n

for z D where D z zl I}.

Denote R, S*, K and B() the subclasses of S which are functions whose deri-

vative has positive real part [8], starlike with respect to the orgin [9 p.221], close-

to-convex [6] and Bazilevic of type [13] respectively. Following [13] we define

f B(a), 0 to be the class of functions f regular and normalized in D, such

that, there exist g e S* such that for z e D,

Rc zf’(z) O. (1.2)
f(z) l-g (z)a

Then if g(z) f(z), B() S* and B(1) K Let C(r) denote the closed curve

which is the image of D under the mapping w f(z), L(r) be the length of C(r)

and A(r) the area enclosed by the curve C(r) For f e S*, it was shown [7] that,

i0
with z re 0 r I,

e(r) 0(I) (M(r) log i_-) as r I, (I.3)

where M(r) max f(z)l, and Hayman [4] gave an example to show that this estimate is

best possible when f is bounded. In [14] this result was extended to starlike func-
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tions with A(r) A constant. A modification of this method also shows .that for

f S*,
e(r) 0(1) /A(r)(log _J__l

l-r
as r- I. (I 4)

Thomas [14] also showed that (1.3) holds for the class K and for the class B(a),
0 a _< [13]. It is apparently an open question that (1.4) is valid for f K or

B(a).

Pommerenke [II] showed that if f S* then for n 2

nla C/A(I-
n -)’ (1.5)

where C is constant, and Noor [lO] extended this to B(a) by showing that

nla C M(I- I). (I 6)n n

The question as to whether (1.5) is valid for f K or B(a) is also apparently open.

In [12] the subclass Bl(a of B(a) consisting of those functions in B(a) for

which g(z) _= z was considered and sharp estimates for the modules of the coefficients

a2, a3, and a
4 were given. In [15] Thomas gave sharp estimates for the coefficients

a in (i.i) when a I/N, N a positive integern

In this paper we shall be concerned with the class BI(1/2) and will use the method

of Clunie and Keogh [I] to establish (1.5) and hence (1.6) and the method of Thomas [14]

to prove (1.4) and hence (1.3). The methods will in fact give results which are

stronger for this subclass.

2. STATEMENTS OF MAIN RESULTS.

THEOREM 1. Let f BI(1/2) and be given by (i.i). Then

(i) nla -< o(I) + 0(i) /A(I -I), as n ,
n n

log 1r as r I.(ii) L(r) 0(i) (A(r)

We shall need the following:

LEgIA I. Let f BI(1/2) and be given by (I.i). Define the function F in D by

2F(z) 2 f(z ). Then

A(r,F) _< A(r2 f)
2(-2) 2

i0PROOF. For z pe 0 -< r I,

Now
f(z

A(r,F) f2 fr iF,(z)12 pd0d0
0 0

f2 fr Izf’(z2)i2h 0d0d0.
0 0 f (z 2

<_ 4___ [15] and so using (I.I) we have
(-2)

A(r,F) _< 4 f2 fr zf, (z2)]2 od0dO
(_2)2 0 0

nla ]2r4 (where
n=[ n2 (-2) 2

2 (r-2)
A(r2,f).

lal )
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LEM 2. For S

(i) the map r (l-r) b A(r)/(l+r)2r2 is decreasing on the interva| (0, I),

(ii) A(/r) 5__i_2_ A(r) for 0 r I.r

PROOF. Since

we have

A(r) f2 fr f’(z)[ 2 0dod0,
0 0

rA’(r) f2 ]zf,(z)[2d0
0

<- 2 f2rr fr[f,(z)[[zf"(z
0 0 1 odpdO + 2 f2 r

0
f’ (z) 12 ododO.

The classical distortion theorem for f S [3,p.5] gives

rA’ (r) -< 4r(r+2)l_r2 f02 irlf, (z)120 0dod0 + 2 f2n0 /rlf’ (z)le0dod00

Thus

r2+4r+12A(r) }.

d d
d- (logA(r)) -< rr (log r2 (l+r) 2

(l-r) b

and part (i) of Lemma 2 is now obvious. Part (ii) follows immediately.

PROOF OF THEOREM I.

(i) Since f BI(1/2) we can write from (1.2)

zf’(z2) f(z2) 1/2
h(z2)

where Re h(z) O, for z D.

(2.1)

Set h(z2) l+w(z2),
l-w(z2

nwhere w(z2) is regular, lw(z2)I in D, w(O) 0 and w(z) nZ=l w z
n

Then with F(z) f(z2) 1/2
and

2n-IF(z) z + nl=2b2n_l z (2.1) gives

(zf’(z2) + F(z)) w(z2) zf’(z2) F(z).
Thus

2k-1 2k-1{2z + kl=2 (ka
k
+ b2k_l)Z w(z kZ=2 (kak b2k_l) z

2n-IEquating coefficients of z in (2.2), we find that for n -> 2

(2.2)

na b
2

2 Wn_ + (2a
2
+ b Wn_ + + [(n-l)a + ]wn n-I 3 2 n-I b2n-3

This means that the coefficient combination nan b2n-1 on the left hand side of (2.2)

depends only on the coefficient combinations [2a
2
+ b3],...,[(n-1)an_l + b2n_3] on

the right-hand side. Ilence, for n 2 we can write

n 2k-l+ 2k-1(kak+b )z2k-1}w(z2) (kak-b2k )z ckz (2.3)
{2z +2 2k-1 k---g2 -1 k=n+l
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say. Squaring the moduli of both sides of (2.3) and integrating round Izl r, we

obtain, using the fact that lw(z2)l < for z D,

n 4k-2
k$2 kak b2k_112 r4k-2 + k=Zn+! Ck 12 r

4 +n
k=2 kak + b2k-112

letting r 1, we have

n

kZ=2 Ikak b2k_112 4 + n-1Z__ 2 Ikak + b2k_iI2.
Thus

(where

Inan b

fall Ibl I= I).

n-I2n_112 -< 4 + k_Z_2 klakl Ib2k_l I, (2.4)

Hence

Inan -b2n_112 4 =Ii klakl2)(k--El

_<4r
-4n+1 (k klak 12 r4k)(k= (2k-l)Ib2k_l12 r4k-2)

for 0 r < I, and so

-4n+l /(A(r2 f)) /(A(rF)).Ina 2 <4 r
n b2n-I

Lemma now gives

4 -4n+ 2Inan b2n-112 72(-2) r IA(r ,f).

and choosing r2 we obtain
n

Ina 12 C A(I
n b2n-I ), where C is constant. (2.5)

Finally, it is easy to see that from the definition of BI(), F e R and so [8] for

2
n 2, Ib2n_ll -Z" Thus (2.5) gives

nlanl o(I) + 0(I) /(A(I )) as n =.

This proves part (i) of Theorem I.

(ii)

Since L(r) 12 Izf’(z)Id8 and F(z) 2 f(z 2) (2.1) gives
0

y2 2)e(r2 f2 iz2f (zm)id8 < r IF(z) h(z Id8
0 0

< /27 [r IF ,(z) h(z 2) Idod@ + 2r /2z ir iF(z h’(z 2) lOdod@ (z=oe0 0 0 0

ll(r) + 12(r) say.

Again using (2.1) we have

/r /2 2) (1 + n_E_r lh(z 12d8do 2r Ir lhnl204n)dOIi(r) 0 0 0

n=l
L hnzn for z e D, and since lhnl _< 2 for n _> [2 p. I0],where h(z) +
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Also

I l(r) _< 2nr
0
fr(l + 4 nl 04n)d0

0(I) log(z as r I.

12(r) 2r (/r
0 0

27 iF(z)2 h’(z 2) [0d0d0)

2r (Jl (r)) (J2(r)) say.

(fr f2w [h’ (z 2) [od0d0)
0 0

Since Re h(z 2) 0, for z D we may write

2 + z 2
-it

h(z2 f e
-it0 z2 e

d(t),

f2 d(t) I. [5 p. 68].where (t) increases and - 0

Therefore

and so

Thus

-it
h’ (z 2) 1 f2 e

0 (I z 2 e-it) 2
d(t),

[h’(z2)[ < i f2 d(t)
0 [I- z 2 e-itl2

fr f2r fJl (r)
0 0 0

F(z)

z 2 e
-it

Since F is an odd function we may write

2
odOdla (t)do

2n-Im(z)
n=
Z (t)z

z 2 e
-it S2n-1

and so

2". 2

0 0

F(z)

z 2 e
-it

We now show that for n I,

d0d(t) 2 04n-2 f2 IS (t) 12 d(t)
n=l 0 2n-I

n02 S2n_l (t) 12 d(t) _< 27 jlI= lajl Ib2j_l
2n-I

where F(z) n__El b2n_iZ for z D.

From (2.7) we have

2n-i
b z

2n-I
l S

2
(t) z (nZ=l 2n-In=l n-1

and so for n I,

-int 2n)(nZ=0 e z

-i(n-k) t
S2n_l(t) k_Zl b2k_l e

Now (2.1) gives

2n-1 2n-1 2n)(nZ_l na z (n__Z z )( hnZn b2n_l n=ZO
(where h

0
1) and so for n

n
na Z b h

n v=l 2v-I n-v

It is easy to see from (2.6) that, for k l,

789

(2.6)

(2.7)

(2.8)
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and so

f27 -kit
e d(t).hk 0, b2 02n -i(n-’)t

na ,-I e
n

(2.9)

Now

IS2n_l(t)l S2n_l(t) S2n_l(t)
n k b2 Re jZ__ 2j-I 2k-I

-i(k-j)t n
e Z__ [b2_i[2

where we have used (2.8). Therefore, using (2.9)

n

f2 iS (t)l 2 d(t) 2 Re jl kE__l b2j ib2k_l f2e-i(k-j)t
0 2n-I 0

2 RejZ__ b2j_l b2-I

n
d(t) 2 Z Ib [2=I 2-I

n
<- 2 Re jE=I jaj b2j_l

Thus

n
2 jE__Ij lajl Ib2j_l I.

0
4n-I jlaj] ]b 2 [)doJl(r) <_ 4 r n=l (j=l j-I

<_ 47 fr 0
0 n=l

4n-I n n

<_ 4n O O
0 n=| j=l

< 4 fr A(O f)1/2 A(0 F) 1/2
do

0 1-0

4 r A(0, f)
(-2)/2 6 -$ do, by lemma I.

Since A(0) is increasing on (0, i)

(2j-l) Ib2_l
4]-2 1/2

doo

Now

and since

4 r_Jl (r) (-2) A(r,f) f
0 I-0

(-2)7 A(r,f) log( ).

J2(r fr f2 Ih’ (z2)lododO
0 0

ih ,(z2) _< Re h(z2)
for 0 _< r < 1,

1-r

r 27 Re h(z2)
J2 (r) _< 2 f

0 0 1_

-< 4 f
r do

0 l_pU
since h is harmonic in D

Thus

J2(r) _< 47 log l-r"

pdOdp
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Combining the estimates for Jl(r) and J2(r) shows that

12(r) 0(i) /(A(r)) log (r) as r

and the result is proved.

COROLLARY i. Let f BI(1/2) then as n ,
(i) nlanl.. o(I) + 0(i) e(1 !)1/2

n

nwhere for 0 <_ r i, P(r) n=Ig lanlr
i)(ii) nla -< o(1) + 0(i) A(I (log n)

n n

))-(iii) L(r) 0(I) A(r)k(Zog(1--r as r

2
PROOF From (2 4) and the fact that Ib2k_l <- 2k--I for k I, it follows that, for

0 r i,

Ina b 12 _< 8 n-Iz klakl
n 2n-I k=l 2k-I

<_ 4r-np(r).

Choosing r _I (i) follows.

(ii) follows since

P(r) _< (n=l nlan]2rn)1/2(n=l rn)1/2"n
It follows trivially from(2.1) that

e(r) 0(I) M(r) log -r as r

and so (iii) follows at once on noting that

M(r) 2 _< A(/r)_ log.
l-r

and on using lemma 2.

REMARK. In view of Theorem and Corollary i, it is possible that for f BI(1/2) the

following conjectures are valid
2 2

(i) n a 0(i) M(I I) as n ,
n

4 4
(ii) n an 0(I) A(I ) as n =o,

(iii) e(r) 0(1) (A(r)) log(r) as r I.

We note that (ii) is stronger that (i) and that we have proved (ii) and (iii) in the

case when A(r) is finite.

The following extensions to Theorem support the above conjectures.

3. INTEGRAL MEANS.

For f regular in D define for real,

ll(r,f f2 if(rei0)lid8"
0
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THEOREM 2. For f e BI(1/2) and )‘ I,

)‘12
M(0)l)‘(r2,zf ’) < fr

o (t_p))’
where C()‘) is a constant depending only on )‘

PROOF. (2.1) gives

dp,

l)‘(r2,zf, f2 iz2f (z2)I)‘
0

d@

2n izf,(z2)l)‘-11F#(z) h (z2)Idedp

2 jzf,(z2)j)‘-llF(z) h,(z2)ipd6dp

Jl’(r) + J2’(r) say.

Now for )‘ I,

I-;
Jl(r) -< Ir fO

r (M(p2,zf’))-I 02n IF’(z) h(z2)IdOp do.

From the proof of Theorem (ii), we have with z pe

f2 iF,(z) h(z2)Id0 _< 0(i) I__ as p i.
0

Also (2.1) and the distortion theorem for functions of positive real part [4] gives

Thus

M(p 2 zf’) < 2p M(o,F)
I_0

-I
’(r) < C()‘) fr M(p,F)

doJl 0 (l_p)

and since F(z) 2 f(z2), %-i
2

’(r) C() fr M(p,f)J1 0 (l_p) x

Similarly, using the fact that h is harmonic, we have

J2(r) C(I) 0
r M(P-’-F)%(I-o) pldp

/2
C(%) fr M(p,f)

dp
0 (l-p)>,

’(r) we obtain the result(r) and J2Combining the results for Jl
THEOREM 3. Let f BI(1/2), then for 0 r I,

1 l(r2, f) _< I l(r2,f0)
where

f0(z2) (f0
z l+t----- dt)2

l-t

PROOF. Since f e B I(1/2), then F e R.
Thus

,2n

__
f2n if(z2)id0 =-# 0 IF(z)l dO

2 0

r2 + n2 Ib2n_li2 4n-2
r
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and since for n I, ib2n_l 2
2n-I

4n-2
r 2

(zll(r2,f) r + 4 nl=2 - /0 If0 -)Id0
(2n-i)

ad the theorem is proved.
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