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THE SPACES Oa AND Oc ARE ULTRABORNOLOGICAL

A NEW PROOF

JAN KUCERA

Department of Mathematics
Washington State University

Pullman, Washington 99164-2930, USA

(Received February 28, 1985

ABSTRACT. In [1] Laurent Schwartz introduced the spaces 0M and @ of multiplication

and convolution operators on temperate distributions. Then in [2] Alexandre

Grothendieck used tensor products to prove that both and 0 are bornological. Our

proof of this property is more constructive and based on duality.
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We use C, N, R, and Z, resp., for the set of all complex, nonnegative integer,

real, and integer numbers. For each q N, the space

2
l f x2a IDBf (x) 12e {f: R

n
C; llflq I+I <qq

R
n

dx < + oo} is Hilbert.

Here Df stands for the Sobolev generalized derivative. We denote by L the strong
-q

dual of L and by II’II the standard norm on L Then the space S of rapidlyq -q -q
decreasing functions, resp. its strong dual S’ is the proj lim L resp.

qq
ind lim L

-q
q

It is convenient to introduce the weight-function W(x) (I + Ix12) 1/2
x R

n

mapping T
k

f wkf: S’ 5’ k Z is injective. We denote by WKL--The m’
k, m Z, the image of Lm under T

k
and provide it with the topology which makes

T
k Lm WLm a topological isomorphism. Further, @q, q N, stands for the

ind lim wPL and for its strong dual. It is proved in [7] that for each
q -q

p+=

proj lim w-PL Finally, the spaceq N the space =@n is reflexive and @_q
0
M

of multiplication operators on S’ equals proj lim 0 see [6].q
q

equals ind lim O_q.PROPOSITION The strong dual @M of @M
q

PROOF. The space is dense in each L q N. Hence wP is dense inq’
wPL for each p N. Then and $ fortiori its superset @M’ are dense in eachq
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Oq indlim wPL q N. By [3, ch. IV, 4.4], the dual of OM’ equipped with the
q

p/
Mackey topology, equals ind lim @_q. The Mackey and strong topologies on

q

M is semireflexive,coincide since as a projective limit of reflexive spaces q,
see [3, ch. IV, 5.5].

PROPOSITION 2. is the strong dual of ind lim O_q.
q

PROOF By [3 ch. IV 4.5] the topology T of @M proj lira @ is consistent
q

q/

with the duality < @M’ M > Hence T is coarser than the strong topology

B( 0M’ @ )" On the other hand, it is proved in [5, Prop. 4] that is finer than

THEOREM 1. The space @M is reflexive and @ is the strong dual.

LEMMA I. Let r + [1/2 hi, q N. Then W-rL c L and every set bounded in
q q

W-rL is relatively compact in L
q q

PROOF Let B be an absolutely convex bounded and closed, set in W-rL Then
q

B is weakly compact as a polar of a neighborhood in WrL By [3, Ch. IV, II.I,
-q

Cor 2], B is weakly sequentially compact and every sequence in B contains a subse-

quence {fk which converges weakly to some g B. We may assume g O.

Since the set {wr+qf; f B} is bounded in L2(Rn), the set {wqf; f B} is

bounded in LI(Rn) and for any Nn, II q, the set {FP; f B}, where Ff is the

Fourier transform of f, is uniformly bounded and locally equicontinuous on Rn. Hence

{fk contains a subsequence, let it be again {fk }, such that {DFfk(x)} converges

uniformly on R
n

for all Nn, lal q.

h(x)dx and put hi(x) inh(ix), iN.Take a non-negative function h @
n

Then f , h
i

f as i in the topology of L uniformly on B. Given e > O, there is
q

< g for any f B. We fix this i. For every , B Nn,i N such that llf-f,hill q
R
n

Is + 81 q, the sequence {WD(Ffk Fhi)} converges uniformly to 0 on as k

and has an integrable majorant from 2. Hence F(f
k

, h
i

O, and fortiori

fk* h 0 both in the topology of L If we choose k
0

N so that Illk,hiIIq < E
i q

for > kO, then Ifk q
< 2E for k > kO.

LEMMA 2 Let r + [1/2n q N. Then W-rL e L and every set bounded in
-q -q

W-rL is relatively compact in L
-q -q

PROOF Let B be an absolutely convex, bounded, and closed set in W-rL By

the same argument as in Lemma I, every sequence in B has a subsequence {fk which

converges weakly to some g B. We again assume g O.

resp. Ii’ll the norm in W-rL resp. wrLq. Let A be theDenote by If" -r,-q r,q -q
f B}.closed unit ball in L B

0
the open unit ball in WrL and a sup{Ilfll

r,-qq q
Choose g > O. By Lemma A is compact in the topology of WrL Since Lq is dense

q
in WrL there exists a finite set {i" i F} c L such that A U{@i + B0; i F}.

q q
For any A, there exists i such that ll-illr,q < g and for any k N we have

I< ’ fk >I I< -i fk >I + l<i fk>I II-ilr,q Ilfkl-r,-q i’ fk<

ga + I<i, fk>l. If we choose k
0

N so that l<i, fk>I < e for all i F and

k > k
0

and the sequence {fk converges in L
-q
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PROPOSITION 3. For each q N, 0 is a Schwartz space.
-q

PROOF. By Lemma 2, for every p N the closed unit ball is w-r-PL where
-q

r + [1/2n is compact in w-PL By [4 Ch. 3.15 Prop. 9] the space

@ proj lim w-PL is Schwartz.
-q -q

PROPOSITION 4. Let E c E
2

c be locally convex spaces with identity maps:

E
k Ek+I, k N, continuous and E ind lim E

k
Hausdorff. Assume:

k+
(1) every set bounded in E is bounded in some Ek,
(2) every Ek

is a Schwartz space.

Then E is a Schwartz space.

Proposition 4 is slightly more general than Prop. 8 in [4, Ch. 3.15] and its

proof requires only minor changes of the proof presented in [4].
THEOREM 2. @ is a Schwartz space.

ind lim @ Each space @ is Schwartz and Fr{chet.PROOF. We have @M -q -q
q+

Further, @ is reflexive, hence quasi-complete, which in turn implies fast complete-

is a Schwartzhess. By [8, Th. 1], the assumption (I) of Prop. 4 is satisfied and @M
space.

is complete.THEOREM 3. @M
PROOF. The space B of C functions, whose derivatives vanish at & was intro-

duced in [I]. We denote the space wm by and provide it with the topology for
m

which f [--wmf is a topological isomorphism. Then the strong dual C of Cm
equals indlim see [2 Ch. 2 4.4]. Also, @C is isomorphic to @M via Fourier

m
transformation. Hence it suffices to prove that ind lim is complete.

Let F be a Cauchy filter on C’ G a filter of all O-neighborhoods in C’ and H

the filter with base {A+B; A F, B G}. By [4, Ch. 2.12, Lena 3], there exists

m N such that H induces a filter H on which is Cauchy in the topology inherited
m m

from @C" On each ball {x Rn, Ix[ n}, r > 0, the filter Hm converges uniformly

pointwise to a function f Then f adheres to H on the subset of @C and by
m m m

[4, Oh. 2.9, Prop. 1] the filter F converges to f.

THEOREM 4. The spaces @M and @M are ultrabornological.

PROOF. By Exercise 9 in [4, Ch. 3.15], the strong dual of a complete Schwartz

space is ultrabornological. Hence @M is ultrabornological by Theorems I, 2, and 3.

The space @ is ultrabornological as an inductive limit of Frchet spaces

0 q N.
-q

THEOREM 5. The spaces @C and its strong dual @C are both complete, reflexive,

and ultrabornological spaces.

PROOF. The space @M is complete as a strong dual of a bornological space. Since

and F: C are topological isomorphisms,the Fourier transformations F: OM C M
Theorem 5 follows from Theorems i, 3, and 4.
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