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ABSTRACT. Beginning with a group theoretical simplification of the equations of

motion for harmonically coupled point masses moving on a fixed circle, we obtain

the natural frequencies of motion for the array. By taking the number of vibrating

point masses to be very large, we obtain the natural frequencies of vibration for any

arbitrary, but symmetric, harmonic coupling of the masses in a one dimensional lattice.

The result is a cosine series for the square of the frequency,
s

f2 i 2j
2, j {1,2 3, N} and a() depends uponj --F a()cosE where 0 B N ......

=0
the attractive force constant between the j-th and (j+g)-th masses. Lastly, we show

that these frequencies will be propagated by wave forms in the lattice.
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i. iNTRODUCTION.

In this paper, we suppose that N identical, point masses are symmetrically and

uniformly arranged around a fixed circle so that the masses are coupled with massless,

ideal springs. All motions are confined to the fixed circle. We write potential

energy matrices and show how to diagonalize these matrices when the symmetry is that

of the rotational group of order N. Having begun with quite simple examples, we

next take N to be very large to obtain the natural frequencies for a one dimensional

crystal lattice in which both nearest neighboring point masses and next nearest

neighbors are coupled by harmonic forces. We then extend this result to include all

symmetric couplings and show that the lattice will support wave disturbances of pre-

cisely the natural frequencies of the lattice. It should be noted that our results

follow from the consideration of the interactions of all pairs of particles around
the circular lattice rather than from a Fourier expansion of the potential energy of

interaction. This work represents a further use of group theorectic methods which have
been reported elsewhere [1,2,3,4,5].
2. POTENTIAL ENERGY MATRICES.

Let us consider the symmetric N N matrix V(N,s) (Vjk) defined in the following
manner: N _> 3; v..j3 2 for j {1,2,3,...,N}; Vjk -I for k j -+ s(mod N) where
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s e {1,2,3,..[lN--!l]} and [l--!l] +/- the greatest integer less than or equal to --;
and Vjk 0 for all other entries of V(N,s).

For example,

2 -i 0 0 -I 2 0 -i 0 -i 0

V(3,1) 2- V(5,1)-- 0-1 2-1 0 and V(6,2)-- -1 0 2 0-1
-i 10 0 -I 2 -12 0 -i 0 2 0 -i0 0 -I -i 0 -I 0 2

0 -I 0 -i 0

The matrix V(N,s) arises in writing the elastic potential energies of a symmetric

circular array of N point masses interconnected with ideal springs [i]. If each point

mass is coupled to both nearest neighbors but to no other masses, then s i. If each

point mass is coupled to its two next nearest neighbors but to no others, then s 2.

Consider the case for N 4, s i. Four identical masses move on a fixed

frictionless circle. They are connected by springs of force constant k as shown.
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FIGURE I.

Let the coordinates, Xl,X2,X3,X4, denote very small displacements of the masses

from their equilibrium positions. All motion is confined to the circle, and the

elastic potential energy is
i 2 2 2 2 1P.E. k [(Xl-X2) + (x2-x3) + (x3-x4) + (x4-xI) k V(4,1)X where

x2 is the transpose of X, and V(4,1) is as defined.X
x3
x
4

We can represent the system with a graph on four vertices. The vertices repre-

sent the point masses, and two vertices are connected by an edge if and only if the

two corresponding masses are coupled by springs.
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FIGURE 2.
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Suppose that N 5, s 2. Thai is, each mass is coupled only to its two next

nearest neighbors as indicated below. We emphasize that the springs lie along the

circle and all motion is on the circle itself.
i

2

3

FIGURE 3.

If the springs have force constant k, we have

1 2 2 2 2 2] 1P.E. k [(Xl-X3) + (x2-x4) + (x3-x5) + (x4-xI) + (x5-x2) k V(5,2)X.

3. GROUP REPRESENTATIONS AND UNITARY TRANSFORMATIONS.
2

As rotations by -- leave the system of N point masses and springs unchanged in so

far as kinetic and potential energies are concerned, we take the rotation group

C(N) {R,R2,...RN} where R denotes a rotation of the circle by - to be the symmetry

group of the system. As the group is abelian, all irreducible, nonequivalent matrix

representations of C(N) are one dimensional Thus the N cyclic groups under complex

multiplication which have generators exp(-), {1,2,3 N}, give all irreducible

representations [2].

From these representations we can construct the unitary transformation matrix U

which will simultaneously diagonalize V(N,s) for all s:

"P-- "PT T
4i 8i 12i 4(N-1)__t

exp exp -- exp - exp N

U 6i 12i 18i 6(N-1)_t
N exp --- exp -- @xp -- exp N

Since much of what is to follow depends upon this fact, the statement should be
-1

justified. Consider the transformed matrix UV(N,s)U The j-th row of UV(N,s) is

1 (exp exp -- exp - exp 1)V(N,s) (4 exp sin
2

4 exp sin
2 rsj /4 exp sin

2 sj /4 exp
2Njt sj

N N N N sin
2

N

Recalling that U
-I

is simply the complex conjugate of the transpose of U, we

can write the j, k-th entry of [UV(N,s)]U-I-" This entry is- for k,

(_4N)
__

N exp 2(j-k)iN
"4 sin2 zsJ

sin2
N

=i for j # k.

The claim has been justified, and UV(N,s)U-I is diagonal for each s.
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4. AN APPLICATION.

Let us consider a circular arrangement of N identical, uniformly spaced particles

of mass m. For very large N, we have, in effect, applied the Born condition to trans-

form a linear, one dimensional crystal into a circular array [2]. Suppose that near-

est neighbor particles are coupled with ideal, massless springs of force constant

k(1) and that next nearest neighbors are coupled with ideal, massless springs of

force constant k(2) as indicated below.

/ \

FIGURE 4.

This configuration would serve as a model for a physical lattice in which harmonic

forces between next nearest neighbors were much larger than anharmonic forces between

nearest neighbors. In the event that the reader does not wish to visualize such a

mechanical arrangement, he could easily interpret the problem in terms of identical

LC circuits with capacitors coupled in the appropriate manner.

The Lagrangian for the system is

L [ k(1) C(N,1)X + k(2) (N,2)X]

where I is the N N identity matrix,

and X (XlX2 ). We can now transform the Lagrangian to diagonalize

N

1 -i I -iV(N,I) and V(N,2): e =- m (UIU-I)u[- [--k(1) iU (UV(N,I)U I)UX
1 -i+ k(2) U (UV(N,2)U-I)ux]

sin 0 0 0

2
sin -- 0 0

sin 0 0 0

41"
0 sin - 0

0 0 sxn
3

0 0 0 0

1/2k(2) *
n

i! o0 sin N

o o 0

The column matrix N UX gives the new symmetry coordinates in which all the
potential energies are uncoupled The row matrix is the complex conjugate of the
transpose of N. The equations of motion are given by

0
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is its complex conjugate. Thus wewhere j is the j-th symmetry coordinate and j
+ 4(k(1)sin2 J_i + k(2)sin

2
)njhave mj N 0 for j {i 2 3 N}.

The natural frequencies are then

/k(1)sin j_ + k(2)sin2 2j

fj =--I 4 N N

This expression reduces to the well known result for the linear lattice for k(1) > O,

k(2) 0[2].

5. AN EXTENSION.

It should be clear that if the N point masses are coupled with force constants

k() 0 and potential energy matrices V(N,) for e{1,2,3 s}, then the J-th fre-

quency would become

1 /i [k() sin2 ]/mfj 7j=i

In this event, we can write

k()sin2 j k() (i cos( )) . [ a()cosB where a(0) k()2
=i =1 =0

a() k()
for e {i 2,3, s} and 0 < B

2j
2. The variable 8 will2 N

be called the wave number of the vibration. If we let N and s while assuming

Iabsolute convergence for we have a model in which we can take the harmonic
=l

vibrations for all possible symmetric couplings to approximate some frequency distri-

bution obtained from an arbitrary potential energy of interaction

Supposing that f is computed or found experimentally to be
3

1
then we can obtain a() by noting that g() cosB d8 a()cos2Bd8

4m 0 0

1 12g()cosSd. Since, the frequency function should be symmetric withand a()
0

respect to
j-
N

our model will be consistent for g(8) symmetric with respect to

B 7, thus explaining the absence of sine terms in the Fourier series.

6. LOCALIZED DISTURBANCES AND WAVE PROPAGATION.

The frequencies obtained are those for the lattice moving as a whole. That is,

the frequencies are those of the normal modes of oscillation which involve motions of

all constituent parts of the lattice at once.

We now return to the original coordinates in our circular array. These are xj
for j e {1,2,3 ,N} where x. is the displacement of the j-th point mass from its

3
equilibrium position. For the moment, letus take "the force constant k() > 0 with

k(s) 0 if s # . Suppose that at t O, the j-th particle is disturbed. The dis-

turbance will not be registered at the site of the (j + )-th particle until some time

later. If we postulate that a wave front will move out from the site of the j-th

particle at t 0, then the time required for the front to reach the (J + )-th

particle will be proportional to J + J .
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Taking the proportionality factor to be b, we express this Dhysical observation

by the introduction of a phase factor e2bji/N to multiply the time dependent part of
the displacement of the j-th particle from its equilibrium position. That is, we make2bji/Nthe change of variable x.(t)3 e yj(t). Then xj+(t)/xj(t)

2bEi/Ne yj+E(t)/yj(t) implies a difference in phase equal to Ibl as required.
1 1From the Lagrangian in the original coordinates, L m XIX + k ()V(N,)X,

we obtain the equation of motion m. k(%)[-2x
j
+ xj+ + xj_].

If we now suppose that a periodic wave moves through the array, we write for each
2vbj i/N 2bj i/Ny 2fitj, x.3 e yj(t) e e where Y is a constant amplitude. Then the

equation of motion becomes mj -m(2f)2ye2bji/Ne2fit= k(g)ye2fit(e2b(j+)i/N

2e2J i/N 2b (j-)i/N 2 (e2b -2bi/N)+ e ),or m(2f) -k() li/N
2 + e Therefore

f2 k() .b. k() 2b i /()(l-cos2 sin2(--) (I cos(N) or f j where 2b

Thus a longitudinal traveling wave having freuqency of any of the normal modes
(k() > 0, k(s) 0 for s) will be supported by the lattice.

Similarly, from the general Lagrangian in the coordinates .,
3

i 1
s s

e m I + E()V(N,)X, we obtain m. k()[-2xj + xj+ + xj_E]=i 3

implying the existence of a traveling wave form constructed from the superposition of
all waves for some fixed b and with the summation taken over .

We have x. ye2ji/N 2fit 2 1 s s

e where f ----- [ k()sin2 b i [ )cosS3 m =i
N =2m =0

a

with a() and 8 as previously defined, provided that b is an integer.
We conclude with a change to a notation more familiar in solid state physics.

Let u
0

be the equilibrium spacing between successive particles in our array, let

2
Then x. x(u) ye<Ui 2fit (<ui+2=fit)ju0 u, and let < Nu

0 J
e Ye and, for

(42f2 2x 2xfixed b, x(u) satisfies the wave equation 2-)---=----" Then the velocity of
u t

the wave is / s
__if _2 7N [ a()cos s< < =0
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