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ABSTRACT. Singular solutions for linearized MHD equations based on Oseen
alproximati(,r.s have beer obtained such as Oseenslet. Oseenrotlet. mass source, etc.
Cy suitably distributing these singular solutions along the axes of symmetry of an

axially sy..metric bcdies, we derive the approx;mate values for the velocity fields.
he force ar.d the momentum for the case of translational and rctational motions of

such bodies in a steady flow of an ircompressble viscous and magnetized fluid.
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I. ]NTRODtlCTION.

The motion of a body in a steady flow of an incompressiblE, viscous and

mau.etizeo fluid is gover,ed by a set of nonlinear equations known as magnetohydro-
dynamic (MND) equations. Exact solutions for these equations have bee. obtained only
for a few very specific problems. However, or many applications these equations can

be lnearized ;y using two ir.earization schemes known as Oseen and Stokes approxima-
tiens [1.2].

Different t[.alytical technicues have been applied to solve these l.earized
forms for simDle configurations, such as the classification separation of variables
method [3,4.]. matched asymptotic expan_ions, and integral eouation techniques [2].

A method of singularities has been developed recently to solve various boundary
value preblems in matenoical Fhysics dispi.es such as potential theory, scattering
thecry [5], h,rodynami(. [6.7], en elasticity [8]. Our aim n this paper is to
extend this metho to solve some boundary value ,roblems i MD. using Oseen’s
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appro:<:ration of the V,HD equatlon.. In Section 2 we present the mathl,,atical

formu’dtion of the Eo:uations oi the basis of this aPF, Yf.,ximation. In Sectiop 3, we

pre:.e:t the fundomeptal solution (singularity) of Oseens equatior, s and cclstruct

other sipoulor;ties reded in our analysis, including Ocens rotlet, Oseens doubl.,

(!seens stveslet. In the last two sections we so le two typ(:s ef motion problems for

o>-:!Iv symmF..ic bedes by s11itably distributin9 singularities about their axes of

symmet,’,;- First, ti.E steady rotation of the bocies about their lonstudinal a><s;
ttccnd, the uF,form Lranslational ruction of those bodies in the direction of their

axi- L, symmetry. C.(r, iguratior.. of interest in this tudy are pro!te and ob]t

_pi:erinds and *Peir limit ipg cases including the sphere, the circular disc, and the

slende’ body. For these probler,;, we derive formulae for the velocity fields along

with tF.- plysical qt:cr,tities, the drag and the force.

L!_.g the analog.,, between ti,e MHD and cla;,sicial hdrodynamics= the resu!s ior

.;{’!ar pro,!e,s in the tter are deduced.

L. MATHEE#TCAL FOPKULATION.

ll nen-dimensicnal equations governing the steady flow of d: incompressible,

visccus, electrically copducting fluid are

M2Ru- u - p + R-1- v x x
m

v.5- 0 v.N= 0 v x[-- 0 (2.1)

Rm v x -: Rm( + x )

where R aU/u is the Reynolds number, Rm OeaU is the magnetic Reynolds number,
o 1/2

and M PeHoa () is the Hartmann number.

TI:e vectors , and are the velocity field, the electric current

density, he magnetic field strength, and the electricl field strength, respectively.

The cohstants p, , u, ue, and c are the fluid density, pressure, kinematic

viscos,ty, magnetic permeability, and the electric conductivity. The constants U,

d, an H aFe the typical velocity, characteristic length, and the uniform
o

magnetic field. It is assumed that the magnetic field is orieted in the e
dection i.e., along the x-axis. Furthermore, for the steady rotation problem the

typical velocity is U a q where R is the uniform angular velocity, and for the

tar.slational motion U is the velociSj’ of the uniform flow in the ex direction.

The O, seeFs apprcximation replaces the convective (non-linear) terms in equations

(2.]) b) convectiop due to the uniform velocity and uniform magnetic fields at

iT, finity. Furthermore, bcause of t.e symmetry conditions, the electric field E is

taken to t.e zero. So writing the velocity field and the magnetic field H as

and H e + H’x

in equations (2.1), neglecting the quadratic terms, and dropping the primes, we

obtain the f(jllowing lir,ear sysi-e:, [2]"

R_]-R] [(R-I R)u (R R)U_l] (2.2)
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R

v i O, .,. (2.4)

ui 2R + vP r C’. (2 5),,x

EKe E and R_ are the roots o. the equatior,

Z M2R {R + Rm) R ’P’m M2 O, and P p + - H-e (2.6)
m

O,.,eer,s aplro, imation is volid for Rr, -<I apd R/M2 <<1, hat is, when the magnetic

ieid oni;,ates over the inertia f(,rces; however, it is valid for small and large
P, al’ Llqdnn number.

in th presence of : solid, the boundary conditions associated with the above

s,’.tem of equations, in 6ddition to the no-slip copdition ( O on the surface),
are H C inside and c, the solid since it is ir.sulated, and all the perturbations

must vanish at iniinity.

Two ir.,por*ant special cases emerqe from the above system of equations" FLsly

hn Pi R 0 equations (2.4) and (2.5) reduce to Stokes flow of non-conducting

fluids. Secondly, the case IP, R # O) gives the equations of Oseens flow.

3. THE FUNPAM[NTAL SOLUTIONS.
lhe solutions of the equations

v2iR + VP g (3.1a)

and v u 0 (3.]b)

where g forcing function having some singular behavier in an infinite medium,
are called fundamental solutions. The primary fundamental solution is called the
Cseenslet .pd it correspcnds to d forcing function

8.- 6() (3.2)

where a is a constant ector, and 6() s the three dimensional delta function.

dt (3.3)

The velocity and p[essure for the Oseenslet are

Tki (x-r)

s (,)= 2eki (-r’)
r v( v)

o

pOS ,,) 2 a-x (3.4)
r

where r lI and i li
lhe r,c.t force experienced by a control volume containing the Ossenselt is given by

8 (.5)
l,.e ]inearlty of Oseep’s equation nplies that derivatives of any order of the

Cseenslet iF an arbit’E, ry fixed direction is again a solution of (3.1), ith a

forcer.9 function Faving the same derivatve of . Thes derivatives can be obtained

easily f,y conslderir,g the Taylc.r sries expansions of the velocity and the pressure

of the Oseenslet abcut a fixed point # O, that s,
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Dos )oo.s 2 ,os-OSc_,)Ui i (,)-(.v. (’)+-2 (T-.v) ]i (’)+ (3.6)

with a similar expa,sion for the pressure pCS (_,e) The first term in (" ,) is

tt, Oeenslet itself. The second term is the "OseensHoublet" and the third one is

the ..(.CnSQuadropole".

he Oseensdeublet is oiven by

eki (x-) ki (x-r) -t
od(, B} -2(.v) F + v(.v)(.v 1-e dt (3 7)

i ’.. t

pd
r

E;I,d the correspondin9 forcing function

od -8 { v(i)} (.9)

The Oeensdoublet can be written as a s,m cf antisyetric and symaetric (witt

respect to intercancing and ) team,s, respectively calle "Oseensrotlet" and

"Cseensstresslet" as in hydrodynamics Stokes flow [7]. The velocity and the pressure
of the Oseensrotlet Ere give by

ki(x-r)
e T (:x) ( IO)orti (,y) v x r

p?r (,) 0 (3 11)

th the corresponding (orcing functien

-gor -4 v x () y (3.12)
The net torque exerted by an Oseens rotlet enclosed by a control volume on the

surrounding fl,id is

-4, y (3.3)

The velocity vector, the pressure, and the forcing furction of the Oseens stresslet

are

eki (x-r)
-SS(x,,)u [(.v) + (.v)]

i (x’r) -t
+

pSS (,,) 2[(.v) + C-v)] -r (3.15)

ss :-4[(.v)(;) + (;.v)a()] (3.6)

hue to the symmetry property this singularity contributes neither a net force nor a

r,omentum to the surrounding medium.

Another sir.oularity which is useful in the present study i. called "mass

source". Its velocity, pressure and forcing functions are

pmS () (3.18)
r

gins () va() (3.19)
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Solutic,,s (,f variou’- boundary vaue problems in MHD irvolving the motion of

xily syiT,etric bodies can be obtained by superposition cf flows due to a suitable

distrit,utlon uf some of these singular solutions along tt’ axis of symmetry of the

b,c). This wl! be demonstrated in zl following sections.

4. STEADY RCIATIL)N OF PLOLATE SPHEROID.

Let us assue that he prolate spheroid

2 2x p 2 2 2-- + p y + z a > b (4.1a)
a

s ’ota$in.q around the x-axis with angular velocity ir. a viscous ano electrically

conductirc i]ow. The (cl length ?c and the eccentricity e ef the spheroid are

Fe ated by

c (e ? b?) =ea 0-_’- e 1 (4.]b)
[he elociy vector of the spheroid is

-0 fz x x>’ R (-Z-y + yz (4.2)

Now we const,’uct the required solution of (2.4) and (2.5) by taking a line distribu-

ticF {,f Oseensrotlets along the x-axis, between the fool, that is,

c

i(,) I-] j" g(+)(c2-t2)r (x-t, x)dt (4.3)
-c

where t x’ r,d g(t)(c2 t 2) is the strength of the distribution. This

solutior: atisfies the boundary condition at infinity. Applying the no-slip ccrdi-

riot. ( O) we obtain the following Fredholm equation for the function g(t)

ki (x-t-r)c g(t)(c2_t2)e (l+kir)
3 dt (4.4)

-C
J r"

TEe solutie, oi this equation will b obtained using a perturbation technique for

small olues of k or equivalently, for small Hartmann number M. For tI1is purpose

we write g(t) as a power series in k i, that is

g(t):gc(t) gi(t)k + g2(t)k + g3(t)k3 + g4(t)k4 + O(k) (4.5)

Expanding the exponent al function in the integrand and then equating the coeffi-

cients of different powers of k. leads to the following system of integral equa-

tions-

c go(t)(c2_t
-C

2)
dt ’o (4.6)

c glt)(c2_t2)

-C

c go(t)(c2_t2)(x_t)
dr=- 3r

-12

dt (4.7)

c g2(t)(c -t

-C

C

dt (c2-t2)= (x-t)gl(t) + - {(x-t) 2 r2}go(t) dt (4.8)
r-c
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t2.c 3(t)(c- rc 2-t2) 2( 3 dt (Cr3 (x-t)g2(t) + {(x-t) r2}g,(t)
r-c -c

+ {(x-t) 3 3(x-t)r2+ 2r3}9o(.) dt (4.9)

c 2_t2 c

,.3 dt (lC’;;t2) (x-t)g3(t) + {(x-t) 2 r2}g2(t)
-C -C

+ ((x-t)3-3(x-t)r2 + 2r3}g1(t)
+ {(x-t)4-6(x-t)2r2 + 8(x-t)r3- 3r4}ge(t) dr. (4.10)

Equation (4.6}is the same integral equation which appears in the rotational
motion of pro’ate spheroids in Stokes flow. Thus its solution is

go(t) a 2e_______ L
l_e2-

l+ewhere L log e (4.12)

Next, substitution of (4.11) into (4.9) yields

c gl(t)(c2_t2)f r3 dt 2 go(2e L)x
-c

To solve (4.13) we set

(4.13)

So the integrated form of (4.13) is
gl(t) A]t (4.14)

A1(c2B3,1 B3, 3) 2go(2e L)x (4.15)

where the functions B are defined bym,n
c

tnBm, n - dt (n 0,1,2,3, m -1,1,3,5

-c

They sotisfy the recurrence relation

cn-!Bm,n m-2
(-I) n n-I

rl
m- m-2 Bm-2,n-2 n

r2
m-2 + + +xBm, n 2

r2 (x-c)
B], 0 log r{- (x#T

nc x-c
B3 0- 2 r r2p

BI, r2 r + ;< B1, 0

B3,1 r- r2 B3,0
wh_re

(4.16a)

(4.16b)

(4.16c)

(4.16d)

(4.16e)

(4.16f)

2r ..x+c) 2 + p r2 C (x_c)2 + p2 (4.16h)
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On tIe spheroid surlace, equation (4.15) takes the form

A \ ]-e-, 4e 3L x 2go(2e L)x

TheFfoe,

-I
A] c(?e-L)[ 2e- + 4e 3L ] (4.17)

e
By th a,le proceouFe we solve equations (4.), (4.9) ad (4.10). Curtailing he

det,.:,s, we obta<n the following solutions"

g2(t) a2Co + C2t
2 (.Ig)

3(t) Doe3 D1a2 + D^t3
Eoa4 Ela3 t4 (4.20)g4(t t E2a2t k + E 4

where

_e___. ae a(s-e)k
19e

a(a-e) k (!r
LZ e 2 2 2 go{e (4.la)

Co 2e_ e 2
k C2(3e t) 1(3e -- k / o(e 2 k ,(4.lb)

4 ?e (422a)Do g ge
1 e2

3 2e-K---_e / 3e =--e63 5(7-3e2)2 k {20e e3 -*(5-3e2) ktc

{3e 2e3 3(l-e22 L} A1- e3go I (4.22b)

I ]-iD1 2e___l_e2 + 4e- 3L [H I D3{-15e + 4e3 + 3(5-3e)2 L}] (4.22c)

HI {4e3 12e + 2(3-2e2)L} C2 + (4e 2L) Co

+ 3e 2e3 3(l-e2) L A + p e3g2 1 o

and

E4
2e

2
+ -e- I3 e3

1-e

2e 3e 3(5-e
2 + ,,,.

l_e

-1- (21 14e2 - e4)L ] L4

2) L ] [ L 3 E4 e + e 3

+ (35 30e2 + 3en)L
-I

E F...._e + 4e 3L 2
1

(4.22d)

(4.23a)

(4.23b)

(4.23c)
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-1
[ L 13e3 _3(1-e2) t-.r’-e2) L2e

4 -I. ] -E4 e- 8
1-e

-E 2
{-3e + e2 L }]

and

(4.23d

LI D3
15 13 3 3(l-e2)(5-e2) L + D -3e + 3e2
-e - e 8

--L

+ C -3 3 e3 2 3_e2 e 2
e + (l-e)( L + Co e ----L

&

(4.24a)

[2 Do (4e 2L) - e3go (4.24b)

L3 D3 {_ _5 e + 7 e3 + 3(25-24e2+3e4) 9-3e2

4 L + D2 9e 2 L

+ C 2 9e -Be 3 1/2 (l-e2)(9 2e:L) + C
O

-e + [}

A
+ -3e + 5e3 + (1-e2)2L + 1/2 e3g

0
(4.24c)

275 3
L4 D3 15 e- 1T e --C35 30e2 + 3e4) L

3
i e go

+ - e- e3 (1-e2)2L (4.24d)

The value of the torque - experienced by the spheroid is obtained by adding

the torques exerted by the distributed Oseensrutlets, that is,

c 2-8u e (c t2g(t) dtMi x_i[- ua323 x[e3go + (e3Co { e5C2)(aki )2
3 3

E2 + e7 4 5)+ e D
O (aki) + (e3Eo + e5 E4)(aki) + O(k ] (4.25)

The results for a sphere can be obtained from the above by taking the limit as e

approaches zero, and those for an oblate spheroi by replacing c by ic and e by

ie(1-e2) 1/2. Then by takina, the limit as e approaches one in the latter, the results

for a circular disc are obtained. Thus the torques exerted by a sphere of radius a

and by a circular disc of radius b are, respectively, given by
a 2 3 43I -8 ,.qa3 x[Z + (ak i) 1/2 (ak i) + r (ki) (4.26)

and
3__2. 2 3 4]Mi 3

p’b3 [1 + (bki) (bki) + 1 (bki) (4.27)

Formulae for the torques on the rotating sphere and rotating circular disc about
its (’iameer have been obtained previously by severa authors [9,2] using different
techniques, up to the third order. Those results are special cases of (4.26) and
(4.27) whe ak bk. M/2 while the fourth order term appear to be new
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5. TRANSLAI !ON OF PROL# [ SPHEROID.

In this sectlon the pYolate spherold (4.1) is assumed to have a unifurm velocity

U orected along its a>is o symmetry. In this case the velocity will be ob;ained

by eI;loylni a i,,e distribution1 of Oseenslets in the e directicr with strengthx
t(x): and a line distribution of mass sources with strength h(, between the foci

of tile spleriod. Thus the solutior will have the followir,c. functional expression

c
i(;-) U x + f(t) iis(-, x dt

-c

c
f h(t p.ns(_) dt (5 I)

-c

On the sbr;a(.e of the sheroid the no-slip cGndition gives the follewing integral

equation ,or f(t) and h(t).

U x f(t) c.,s(_,1 x dt
-c

c
.I ,(t) s(7-T) t. (5.21

-C

A’cain, for .mall values of k we have

-OSui ([, ex) o (’ x + !(’ x ki
+ U2( ex)k 2 3+ O(ki) (5.3a)

wllere

lx/XXU (’ x)= F r- r ll (5.3b)

2 2x-___rx + x r (5 3c)Uo(’ ex) r 2r3

U2(’ x Xrr)2 --x -(x-r)2(x+2r)3 ’ (5.3d)
6r

The strengths f(x) and h(x) are assumed to have the Maclaurin series

fo(X + fl(X)k + f2(x)k2 3f(x) + O(ki) (5.4a)

h(x) ho(X) + hl(X)k + h2(x)k 2 + O(k (5.4b)

Substitutig (5.3), (5.4), and (5.5) into equation (5.2), and equating the coeffi-

cients of likE, powers of k i, we obtain the following system of equations"

c
j [fol]o(_ x he(t ms(_)] dt U x (5.6)

-c

c c
] Ill ti’c(x-t’ x hl(t) Ins(_)] dt fo(t) l(x-t, x dt (5.7)

-c -c

c

f [f2(t)To(_, x h2(t ms(_)] dt
-c

c
j" [fl(t)l(x-t, x) + fo(t) 2(x-t, x)] dt (5.8)

-c
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To snlw equation (5.6), we set

fo (t) Fo ho(t) Hot (.9a,b)
here Fo and t! ,,re constants to be found Substituting (5 q) into (5 6) a,d

using[F(t).e(B1,0function+2B3 Pm,n equationl+ I5 (5.6))+ Ho(xhaS the following]_fm
,0 E3, 3,2 B3,1 B3,2) ex

[Fo(X B3, 0 B3, I) + Ho B3,11. pp U
x (5.10)

P.y F,aing use of the recurre)c relation (4.16b) and the values of B
ir,)n

surface oF the prolate spheroid, equation (5.10) (kes the form
2- 2b e + E: XPep Ie2 Fc + ------..2e HO)( -a--, 2--

/ [(2L )Fo- Lollo] ex U x (5.11)
e e2x

This equation is satisfied if

F (l-e- e2Ho Ue2 2e- (l+e2) L (5.12)

Folowing the same procedure for equation (5.7) we find, after some computations,
that

fl(t) FIO + FIIt (5.13a)

on the

tZan h l(t) HIO + Hllt + HI2 (5.13b)
wher

2-e -2ea F2FIO ’_ e2 HII ’- o (5.13c)

2 2

2H1 a (l-e){2e-(1-e2)L F (5.13d)H!O e2a 2 1Ze 2(3 e2)L o

and

-6e + iOe3 + 3(I-e2)
2
L FOFII -[12e 2(3..e2) L]

The solution of equation (.8) is

t2f2(t) F20 + F21 t + F22

(5.13e)

(5.aa)

where

t2 t3 (5 14b)h2(t H20 + H21 t + H22 + H23

ae(l-e2) {-fOe + (5-e2)L}Fo
H22 {6e+(3_5e2)k}._e+(l+32)L}

(s.15a)

2ae2{38e3- 18e + (9-22e2+ 5e4)L}
3(I-e2) {-2e +61+e2)L}{6e-(3-e2)L}

(5.15b)

(2e3 6e + (3-2e2-e4) L} Fo+3e{-2e2+(1-e2)(L -3)L}F

H23 6e2* 2e4 (6e 5e3 e5)L + - (1-e2)2L 2’
11 (5. 5c)
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2)L }H23 + 3e2-I _e2
3e Fo {e-(1 )L}F11

8e- (4- 2e2)L ,(5.1Bd)

222 ae a F22 + [ -6e + 16e3 12e5 + 3(1-e2)3L}Fo18e2

_2e3aFlo + 2_ -6e + 2e3 / (l-e2)(3-e2)L }Fll][2e-(l+e2)t]-I (5.5e)

2
e2 2F + 6e3H2 + 4e(]-e2H20 a {(i_ ]0 2 )F21 (5.15f)

Z) [ a2(l_e2)2 e2 + 6a2e4 ]H21 _{l-e,Oe 6F20 + e2 Fo + 3a2(i )FII {I e}H?-3 + 6e2a:F22 (5.15h)

By super position of (3.5), the force experienced by the spheroid is

c
-F -8u ’ f(t)dt x (5.16)

-c

2+0(3-16u a[eFo + eF10k + (eF20 + 1/2 a2e3F22)ki ki)] ex (5.17)

Following the procedure of section 4, the forces exerted by a sphere of radius a

and a circular disk of radius b are given by

i 6u Ua{ 1 + (aki) - (aki)2 + O(aki)3 x (5.18)

and

2 + ,2.+121 2 3 (5 19)F I6u bU{ + (aki) 12 21(aki) + O(aki) ex
Results (5.18), (5.19) agree up to the first order with the known results [2],

For a non-conducting fluid we have Rm O, and therefore M O, hence the
system of equations (2.4, 2.5) breaks down into two uncoupled systems of equations
each associated with one of the roots (O,R) of equation (2.6).

The first system is
v2j p

0v. u
which describes the steady Stokes flow, thus all the previous results in Section 4
and 5 reduce to that of CHWANG and WU [6,7], by putting k. O.

Secondly, the system associated with the root R is

while the second order tern appears to be new.
Another interesting limiting case is the elongated rod, in which the slenderness

bration is small. In this case the force is given by

Ua +Fi B T 18 x
6. NON-CtNDUCTING FLUID FLOW.
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R au =-v P+ u

which governs the steady Oseen flow.

For *.his type cf flow the results of section 4 and 5 with k. R/2 arc

believed to be new, apart from the limiting formulas (4.26), (4.27), (5.18), ano

.r.19) which agree up to the first order with Lamb []0]. Finally, formula (5.20) for

the slender bodies concides w%l the formula derived by Dorel [II].
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