A DIGRAPH EQUATION FOR HOMOMORPHIC IMAGES

ROBERT D. GIRSE and RICHARD A. GILLMAN

Department of Mathematics Idaho State University Pocatello, Idaho 83209

(Received November 20, 1985)

ABSTRACT. The definitions of a homomorphism and a contraction of a graph are generalized to digraphs. Solutions are given to the graph equation $\overline{\phi(D)} = \theta_{\phi}(\overline{D})$.

KEY WORDS AND PHRASES. Homomorphisms of graphs, contractions of graphs, digraphs. 1980 AMS SUBJECT CLASSIFICATION CODE. 05C20

By a graph G we mean a finite graph with no multiple edges or loops. If graphs G and H are isomorphic we write G = H. An elementary homomorphism of a graph G is an identification of two non-adjacent vertices of G and a homomorphism is a sequence of elementary homomorphisms. A homomorphism of G onto H preserves adjacency. Likewise, an elementary contraction of G is the identification of two adjacent vertices of G and a contraction is a sequence of elementary contractions [1]. Thus for every homomorphism ϕ of G there is a related contraction θ_{ϕ} of the complement of G, \overline{G} . This contraction is constructed as follows: ϕ is a sequence of elementary contractions θ_1 , θ_2 , ..., θ_n where θ_i identifies the same vertices in \overline{G} that ε_i identifies in G.

Recently [2] the graph equation $\overline{\phi(G)} = \theta_{\phi}(\overline{G})$ was studied. In this paper, we generalize the definition of a homomorphism and its related contraction to digraphs and find general solutions to this graph equation. In doing so, we find an easier proof of the result given in [2].

A digraph D consists of a finite vertex set V(D) together with a set E(D) of ordered pairs of distinct elements of V(D), called arcs. Again, if D₁ is isomorphic to D₂ we write D₁ = D₂. By an elementary homomorphism of D we mean an identification of two mutually non-adjacent vertices of D (neither uv nor vu are in E(D)). Similarly, an elementary contraction is an identification of two mutually adjacent vertices of D (both uv and vu are in E(D)). A homomorphism (contraction) of D is again a sequence of elementary homomorphisms (contractions). The contraction θ_{ϕ} of \overline{D} related to the homomorphism ϕ of D is defined as for undirected graphs. We will use the following notation as need arises: Ib(u) is the set of vertices v of D such that vu is an arc of D, Ob(u) is the set of vertices v of D such that uv is an arc of D, Ob(u) set of u in the graph G.

THEOREM 1. Let ε be an elementary homomorphism of D identifying vertices u_1 and u_2 . Then $\varepsilon(D) = \theta_{\varepsilon}(\overline{D})$ if and only if $Ib(u_1) = Ib(u_2)$ and $Ob(u_1) = Ob(u_2)$.

PROOF. Let $u = \varepsilon(u_1) = \theta_{\varepsilon}(u_1)$. First suppose that $Ob(u_1) \neq Ob(u_2)$. Excluding u as a possible endpoint of an arc, we have vv' is an arc of $\overline{\epsilon(D)}$ if and only if vv' is an arc of $\theta_{F}(\overline{D})$. Hence there is a one to one correspondence of those arcs in $\overline{\epsilon(D)}$ without u as an endpoint and those of $\theta_{\epsilon}(\overline{D})$ without u as an endpoint. The vertex v of the arc uv must be in $Ob(u_1) \cap Ob(u_2)$, $(Ob(u_1) \cup Ob(u_2))^c$, or $Ob(u_1)$ ∇ $Ob(u_2)$, the symmetric difference. In the first case, uv is not an arc of $\overline{\epsilon(D)}$ or $\theta_\epsilon(\overline{D})$ and in the second case, uv is an arc of both. The latter case implies that uv is not an arc of $\overline{\epsilon(D)}$ but is an arc of $\theta_{r}(\overline{D})$. Thus for every vertex in $Ob(u_1) \vee Ob(u_2)$, $\theta_{\varepsilon}(\overline{D})$ has one more arc than $\overline{\varepsilon(D)}$. The same holds for vertices in $Ib(u_1) \nabla Ib(u_2)$. Thus if $Ob(u_1) \neq Ob(u_2)$ or $Ib(u_1) \neq Ib(u_2)$, $|E(\partial_{\varepsilon}(\overline{D}))| > |E(\overline{\varepsilon(D)})|$ and hence $\overline{\epsilon(D)} \neq \theta_{\epsilon}(\overline{D})$. Now let $Ib(u_1) = Ib(u_2)$ and $Ob(u_1) = Ob(u_2)$. We will use the identity map from $V(\overline{\epsilon(D)})$ onto $V(\theta_{\epsilon}(\overline{D}))$ and hence need only consider arcs to and from u. If uv is in $E(\theta_{\epsilon}(\overline{D}))$ then u_1v and u_2v are arcs in \overline{D} . Thus u_1v and u_2v are not arc of D and subsequently uv is in $E(\overline{\epsilon(D)})$. By the same argument, if uv is an arc of $\overline{\epsilon(D)}$, uv will be an arc of $\theta_{\epsilon}(\overline{D})$. This holds for arcs vu, so $\overline{\varepsilon(D)} = \theta_{\varepsilon}(\overline{D}).$

COROLLARY 1: $\overline{\phi(D)} = \theta_{\phi}(\overline{D})$ if and only if ϕ is a sequence of elementary homomorphisms, each of which satisfies the conditions of Theorem 1.

A digraph D is pseudo-complete n-partite if there is a partition V_1, V_2, \ldots, V_n such that u, u' in V_i for some i implies u and u' are mutually non-adjacent, if u is an element of V_i and v is an element of V_j , $i \neq j$, then either uv or vu is an arc of D, and finally if u and u' are in V_i , v and v' are in V_j , $i \neq j$, and uv is an arc then uv', u'v, and u'v' are also.

THEOREM 2. $\overline{\phi(D)} = \theta_{\phi}(\overline{D})$ for all homomorphisms ϕ of D if and only if D is pseudo-complete n-partite.

PROOF. If D is pseudo-completely n-partite, every elementary homomorphism identifies two vertices u_1 and u_2 in the same partition set and thus $Ib(u_1) = Ib(u_2)$ and $Ob(u_1) = Ob(u_2)$. Hence $\overline{\epsilon(D)} = \theta_{\epsilon}(\overline{D})$ for every elementary homomorphism and thus for every homomorphism of D. Conversely, partition V(D) according to the relation: u_1 and u_2 are in V_i if and only if $Ib(u_1) = Ib(u_2)$ and $Ob(u_1) = Ob(u_2)$. We need only show that if u_1 is in V_i and u_2 is in V_j , $i \neq j$, then either u_1u_2 or u_2u_1 is in E(D). Suppose u_1 and u_2 are mutually non-adjacent and let ϵ be the elementary homomorphism identifying them. Since $\overline{\epsilon(D)} = \theta_{\epsilon}(\overline{D})$, $Ob(u_1) = Ob(u_2)$ and $Ib(u_1) = Ib(u_2)$ by Theorem 1 and hence u_1 and u_2 are in the same partition set. Thus if u_1 is in V_i and u_2 is in V_j , $i \neq j$, there is an arc between them and D must be pseudo-complete n-partite.

410

If, for every vertex u of D, Ib(u) = Ob(u), D is a symmetric digraph and can be represented by a graph G. This leads to the following corollaries to Theorems land 2.

COROLLARY 2. An elementary homomorphism ε identifying vertices u and v of a graph G satisfies $\overline{\varepsilon(G)} = \theta_{\varepsilon}(\overline{G})$ if and only if $A(u_1) = A(u_2)$.

COROLLARY 3. A homomorphism ϕ of G satisfies $\overline{\phi(G)} = \theta_{\phi}(\overline{G})$ if and only if ϕ is a sequence of elementary homomorphisms, each satisfying Corollary 2.

COROLLARY 4. $\overline{\phi(G)} = \theta_{\phi}(\overline{G})$ for every homomorphism ϕ of G if and only if G is complete n-partite.

A study of the equation $\phi(D) = \theta_{\phi}(\overline{D})$ would be interesting, yet is apparently difficult considering the work done in [2] for graphs. We conjecture that if $D = \overline{D}$ and $\phi(D) = \theta_{\phi}(\overline{D})$, ϕ nontrivial, then D is a symmetric digraph.

REFERENCES

- 1. HARARY, F. Graph Theory, Addison-Wesley, 1969.
- GIRSE, R. D. Homomorphisms of Complete n-Partite Graphs, <u>Internat. J. Math</u> <u>Math. Sci.</u>, <u>9</u>(1986), 193-196.
- 3. GIRSE, R. D. and GILLMAN, R. A. Homomorphisms and Related Contractions of Graphs, Internat. J. Math. Math. Sci., submitted.