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ABSTRACT. This paper deals with a generalization of the Binary Quasi-Order
Theorem. This generalization involves a more complicated algorithm than (0.2)t.
Some remarks are made on relative merits of two dual algorithms called the
-algorithm and the G-algorithm. Some illustrative examples are given.

KEY WORDS AND PHRASES. Number Theory, quasi-order, algorlthm, polygon
1980 AMS SUBJECT CLASSIFICATIONS. 10A10, 10A30

O. INTRODUCTION
In [HP3] the authors gave an algorithm for computing the quasi-order of 2 mod b

for any udd number b. Here we understand the quasi-order of t mod b, where b,t are

mutually prime positive integers, to be the smallest integer k such that tk: +l

modulo b. The algorithm, which also determined whether tk +I or tk -I, was based

on a procedure for olding arbitrarily good approximations to regular star polygons
(with b sldes) from straight strips of paper, developed in [HP1,2].

All the number-theoretical work which accompanied the evolution of the algurithm
in [HP1,2,3] suggested that it should be possible to generalize the algorithm rom
the case of t 2 to the case of a general positive integer; all that should be lost

would be the original geometrical significance. However, the generalization propused

and studled in [HP4] had the serious defect that, though it was a generalization o$

the Quasi-Order T’heorem of [HP3], it was not an algorithm. Let us briefly review the

situation to clarify ths point.

We introduced in [HP3] the symbol

k2
where ai b are odd, a < b/2, and
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k
b=a. +2 ai+ 1, 1,2 r (ar+ a I) (U.Z)2

Such a symbol always exists for a glven b and a al, and is uniquely determlned by b
arid a up to repetition. Then we proved the following theorem in [HP3].
Theorem 0.1 (The Bnary .Quasi-Order Theorem) If (0.1) is reduced (i.e.,
gcd (b,al) I) and contracted (i.e., the symbol involves no repeated a then therquas-order of 2 mod b is k Z k, and, in fact, 2k -,(-]r mod b.

I=I

We chose a proof of this theorem which contained steps of great interest from

the geometrlc (paper-folding) point of vew, but which wa not the most dlrect proof

avallable. The generalization we proved n [HP4] was ths"

Theorem 0.2 S.uppose b prime to t, and ta, and suppose a < b/t. If the symbol (0.1)
mean that

k.
b a + t a+I, 1,2 r (at+ (0.2) t

then, provided (0.1) is reduced and contracted, the quasi-order of t mod b is

k and tk m (-i) r mod b.k

In fact, we proved a refinement of this if r is even, since then we did not

that (0.1) be reduced but merely that gcd (b,al)l(t-1).require

However, it is no longer true, if t > 3, that a symbol in the sense of Theorem

0.2 always exists (for example, there is no symbol with t 3, b 11, whatever value

we give to al); and much of the discussion in [HP4] centered on specifying criteria

for the exlstence of a symbol.

In this paper we give a somewhat different generalization of Theorem 0.1, though

it Is very similar in spirit to Theorem 0.2. This generalization involves a more

complicated algorithm than (0.2)t but It has the compensating merit that it is

genuinely an algorithm. The condition a < b/t is replaced by a < b/2 (after all,

both are generalizations of the condition a < b/2, imposed if t 2!); but now,

given any two positive integers b and , with b prime to t, and given a a not

divisible by t, there is always a (modified) symbol (0.1) and a (generalized)

quasi-order theorem holds. This is our Theorem 2.2.

In fact, there are two dual (or mutually inverse) algorithms for generating a

symbol from b and a. We use one (which we call the @-algorithm and which generalizes

(0.2)2) to prove that symbols, suitably modified, always exist (for gven b,a), and

the dual algorithm (which we call the c0-algorithm) to prove the Quasi-Order Theorem.

Our impression is that the -algorithm would appeal to an intelligent human being,

while the c0-algorithm is much better adapted to the computer.

The paper continues with some remarks on the relation of the proof to arguments

given in [HP3,4] and on the relative merits of the two algorithms; and concludes with

some illustrative examples.

1. PRELIMINARY RESULTS

Throughout this section, b,t will be fixed coprime positive integers with t > 2.

The following lemma is quite obvious.

Lemma 1.1 Let T be a set of t consecutive integers, and let a be an arbitrary
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in.teger. Then the set

{qb+a, q T}
o__[f t integers runs through the complete set of residues modulo t.

Proposition 1.2 Suppose t # a. Then

(i) if t is odd,. the set of integers {qb+a, < q<_ "--; qb-a, <q_ <_-
contains precisely one integer divisible by t;

(ii) if t is even, the set of intecers{qb+a, < q <-i; qb-a, < q <}
contains precisely one integer divisible by t.

Proof We will be content to prove case (i). By Lemma 1.1, the set of integers

q --2-- < q -< contains exactly one integer qob+a divisible by t; but qo # 0

since ta. If qo > O, then thls is the integer required by our proposition, since if

tl(qb-a) then tl(-qb+a). If qo O, then -(qob+a) is the integer required by our

proposltion.

Let us write

b + (-l)Ea, E 0 or I, (i.I)

for the integer described in Proposition 1.2; thus

< < t-I if t is odd2

_< _< - if t Is even and E 0

if t s even and

(1.2)

Further, suppose b > 3 and let S be the set of positive integers a such that ta and

a < b/2. For a ( S, it is plain from (1.2) that the integer (1.1) is always

positive, so that there exists a maximal k, with k > 1, such that

b + (-I)
E

tka a a E S, a > 0 (1.3)

Since k is maximal, ta’ We claim more, namely,

Theorem 1.3 The function a a’ is a permutation of the set S.
b tb

Proof Assume first that t is odd. Then k >_ and tka < b + T’ so that

a’ < b/2 and so a’ E S. Thus a a’ is a function 4"S S. It only remains to show

that is surjective, since S is a finite set.

Let a’ ( S a,d let k be minimal such that tka > b/2. Then k > so that

tka’ > b/2. In fact, tka’ # b for any integer n; for if tka b, then

nb 2tka ’, bl2tka ’. bl2a’, contradicting 0 < a’ < b/2. Thus tka may be uniquely

expressed as

tka qb + (-l)Ca, E 0,I, 0 < a < b/2, q >_ I. (1.4)

We claim that q < for if q >_ then tka > b -2-’ so that

tk-la > b/2, contradicting the minimality of k. It is now plain that t2a; for if

tla, then, from (1.4), tlqb, tlq, contradicting <_ q <--[. Thus a E S, and

Proposition 1.2(i), together with (1.4), ensures that (a) a’.

A small inodification is needed if t is even. Again, in (1.3), k > and

tka < b so that a’ 6 S, a.d we have a function :S S. To show that is
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surjectlv we proceed as above as far as (1.4). We now claim that

:o;

For if E 0 and q > t/2, then, from (1.4), tka > b, contradicting the minimality

of k; and if and q >_ + i, then tka > + b T b, again

contradicting the minimality of k. Thus (1.5) is established. Once more we conclude

that ta; for if tla, then tlq, and q > is constrained by (I.5). We involve

Propositlon 1.2(Ii), together with (1.4), to complete the proof of the theorem.

Remark If t 2, then the integer described in Proposition 1.2(ii) is simply b-a.

Thus (1.3) yields in this case the rule

b- a 2ka (1.6)

whlch was precisely the basis of the algorithm in Theorem 0.1; see (0.2) 2
(1.3) provides a generalization of that basis.

Thus

2. THE GENERAL QUASI-ORDER ALGORITHM

Let b and t be any two coprime positive integers; define S as in

Section I. Since ’S S is a permutation, we may start with any a ( S and we will

get a cycle

a, (a), 2(a) r(a) a

Let r be the strict period of the cycle. Then we may write a t-symbol (with a a)

la a 2 a r

b Ikl k 2 k r (2.1)

c2 Cr
where, as in (1.3),

cib + (-I) a t ai+ 1,2 r, ar+ al, i 0 or

k]. _> i, and Ti is constrained as in (I.2)

(2.2)

Note that (2.1) is contracted, in the sense that there is no repeat among the ai’s.
We will not systematically develop the properties of the symbol (2.1) as in [HP3],
but will proceed as directly as possible to the main theorem. We first prove an easy

emma.

Lemma 2.1 In the symbol (2.1), gcd (b,ai) is independent of i.

Proof This follows immediately from (2.2) and the fact that b,t are mutually prime.

We call the symbol (2.1) reduced if gcd (b,ai) I; notice that this is a change
r r

of terminology from [HP3,4]. Now, in (2.1), let k Z k i, E Z c i. We prove
i=l i=l

Theorem 2.2 (The General Quasi-order Algorithm) Let b and t be any two coprime
posltive integers. Let the symbol (2.1) be contracted and reduced. Then k is the

quasi-order of t mod b. In fact,

tk=- (-i)c modulo b. (2.3)

Proof In the course of proving Theorem 1.3, we found an explicit form for 0, the

inverse of b.S S. Thus 0(a’) a, where K is minimal such that tka > b/2 and

(1.4) holds" moreover, the value of q in (1.4) is constrained exactly as in (I.2).
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We now concentrate on the -algorithm, that is, we make (1.4) the fundamental rule

for generating a symbol and write (2.1) in ’skew-reverse’ notation as

c r Cr_ c2 c

r-I r-2. 1 r
nr n n

r-2 nr
(If one were to regard , rather than b, as the fundamental algorithm, it would be

natural to introduce a change in the format of our t-symbol to relate it better to

=a " =k i<r =k;n = i< r n =(2.4).) Then c
rr r+l-i’ r-i’ r r r-i r r"

Z i’ n n i, then we must prove that is the quasi-order of t rood b,
i=I t iinland that =_ (-l modulo b. Our defining equation (I.4) now reads

i nit c qi b + (-l) ci+ 1,2 r (Cr+ ci) (2.4)

Consider the sequence of (#+1) integers sj < b/2

i-I 2-i r-Ic I, tc t c I, c 2, tc2 t c 2 c r, tc r t C r, Cl}
Then s.i+l :_ +ts modulo b, for all j. Indeed, si+Im tsi modulo b unless

sj t c i, sj+ ci+ and n I; in that case, Sj+l-tsj modulo b.

follows that

It

If

c (-l)ntc- modulo b (2 5)

We claim that sj +c modulo b unless j or + i. For if sj c modulo b,
then, since 0 < s

i,
c < b/2, we must have s

i
c I. This is impossible if s

iJ tnci
n >_ I, since t#c I. It is also impossible if si c (unless I) since our symbol
is contracted. Again if s i -c modulo b, then bl(sj + Cl) but 0 < si + c b,
which is an obvious contradiction. Thus is the minimum m such that

tmc lm +_c modulo b.

But since, by Lemma 2.1, b, c are mutually prime, it follows that / is the minimum m

such that tm- +i modulo b and, from (2.5), that t2m (-1)n modulo b. This completes
the proof.

Remarks (a) If t 2, then E for all i, so that r. Thus
Theorem 2.2 does generalize the binary quasi-order theorem. Of course, the proof
given here applies in the special case and, indeed, it then reduces to an argument
equivalent to that shown to us by Gerald Preston.

(b) Theorem 0.2 may also be proved along the lines of our proof of Theorem 2.2.
However, as we mentioned, that theorem had a refinement which our proof does not

yield. Namely, it was shown that, if

a a2 a r

k k k2 r

k k.
i=1

is a t-symbol in the sense of [HP4], that is, satisfying (O.2)t, if it is contracted,

and if r is even and gcd (b,ai)l(t-1), then k is the quasi-order of t mo(lulo b. Our
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line of proof of Theorem 2.2 would enable us to conclude that, if 0 < m k tnen

tm +I modulo b. But we would need to depend on the argument given in [HP4] to

conclude that, in fact, tk=- modulo b.

(c) We hmve two dual algorithms for determining the quasi-order of t moaulo b,

which we are calling the. V-algorithm and the to-algorithm; it is a matter of taste and

convenience which is used in any particular case. For t 2, the V-algorithm seems

simpler to handle and has, moreover, the merit of being intimately related to the

paper-folding algorithm for constructing regular star polygons. For t > 3 it may
well be that the to-algorithm is sometimes simpler to handle. The to-algorithm made no

appearance in [HP3] and only appeared in [HP4] to prove the Order Theorem [HP4;
Theorem 3.3].
3. EXAMPLES

It is Illustrative to compare the V-algorithm used in this paper with the

’non-algorlthm’ based on (O.2)t. Let us take the simplest example, t 3. Then, as

already stated, we do not always get a symbol in the sense of [HP4] for given b,a.

Indeed, with b II, a a 2, we have immediately a2 since ii 2 + 32.1", but

then we are trapped in a hopeless spin! If we use the V-algorithm (a) a’, given

by (1.3), then we must take I, so we simply have to decide, and record, at each
sage whether to take 0 or I; thus our 3-symbol (see (2.1)) is

2 4 5

II 2

0 0

We conclude that the quasi-order of 3 mod II is 5 and that 35_ +I mod II. As a

second example of a 3-symbol, let us take b 25, a I; then our 3-symbol is

811 4 7 2

25 2 2 3

0 0 0

We conclude that the quasi-order of 3 mod 25 is I0 and that 310m -I mod 25.

In these two cases our algorithm yields a cyclic permutation of the entire

subset of the set S (see Section I) consisting of those a prime to b; this, however,
is not necessary. With b 80 and t 3, we get the four reduced 3-symbols

7 29 17 II 23 19 13 31 37

80 4 80 2 80 2 80 2

0 0 0 0 0 0

Of course, it is qulte obvious that the quasi-order of 3 mod 80 is 4 and
43 m +I mod 80. Perhaps less obvious is the following example of two ll-symbols,

with b 25, which show that the quasi-order of Ii mod 25 is 5 and 115= +I mod 25

25

9 6 4

2

2 7 12 8 3

0 0 0
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Notice that the P-algorithm is really very easy to execute by hand, even without the

use of a calculator. The W-algorithm is, however, more mechanical. Notice, too,

that, in executing the -algorithm we are concerned with the residues mod t, while

our conclusions are concerned with residues mod b.

We close wih two "classical" applications of our algorithm in case t 2; of

course, as explained in Remark (a) of Section 3, it is then unnecessary to display

the c
i, since they are always i. First the symbol

111 3 5 9 7
23

2 2 4

shows that the quasi-order of 2 mod 23 is 11 and that 2
IiMersenne number 2 is not prime.

Finally, the coup de grace! The symbol

11
i mod 23. Thus the

5 159 241 25 77 141 125 129
641

7 2 4 3 2 2 2 9

32
shows that the quasi-order of 2 mod 641 is 32 and that 2 m-1 mod 641. Thus the

Fermat number 225 + is not prime. (Incidentally, as explained in [HP3], the symbol

contains the information from which the complementary factor 6,700,417 may be derived

the calculation should take about 31/2 minutes by hand!)

Added in proof The interest in this problem among computer scientists is attested

Dy the reference [5].
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