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f f be a sum of l-dependent random variables of zeroAB3TRACT. Let S fl 2 n

mean. Let o2= E S 2, L o 3 Z Elfi 13. There is a universal constant a such that for
-<_i<n

altlL < I, we have

IE exp(itSo )I =< (1+altl)sup{(altlL) I/4 in L exp(_t2/80)}
This bound is a very useful tool in proving Berry-Esseen theorems.
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I. INTRODUCTION.

Consider a sequence of independent random variables f1’ f2 fn of zero

means having third moments. Let S fl/...+fn and a 2-- ES 2.

If t < E(f2)/Elf 3 for each i<n one has

-I -IIE[exp (itsa )]1 I’[exp(ttfto )]1 < n exp(-t2/3 f -2)
tn n

exp(-t2/3).
This trvai estimate lays a fun6amenal eole n the oof of geeey-Esaeen rates of

eonveegenee n the eenteal mL theoeem. The puepoae of this oek is to fin6 an

estimate of E[ex(ttSo ) for the sequence of m-6een6ent eano vaeiables.

e say that a sequence (ft)Pt of ean6om vaeables ie m-6een6ent if foe each

n-m-, the sequences (ft) an6 (ft)t>p*m aee n6een6ent of each other.

In a eeeent eey [nteeeattng ae by g. g. Sheegtn[], the authoe gles the

bet ate of eonveegenee tn the central limit theoeem foe m-6eendent eandom
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-I
variables. We will estimate the bound of IE[exp(itSe )]I by Shergin’s methods. This

result extracts the most important ideas of Shergin’s work. Also we want to point

out that this estimate turns out to be an essential tool in the proof of Berry-

Esseen type bounds in other limit theorems for m-dependent random variables. In a

subsequent work, we shall establish such a convergence rate for U-statistics[2] and

an Edgeworth expansion for a sum of m-dependent random varlables[3].

2. CONSTRUCTION.

We follow the lines of Shergin’s ingenious construction to decompose S in an

amenable way. We do not however assume the reader to be familiar with Shergin’s

paper. The exposition is self contained, and some long details of h p Jof at._

eliminated by our approach.

We assume now on m=1. We denote ao,aI,...,a universal constants. No attempt is

made at finding optimal values for these universal constants, .ince the numerical

values involved here are too large to be of any interest.

Set U E E Ifi 13, L U-3 and R In L. In the sequel, we assume Rat0. It
i<n

follows that for i<n, we have

Ef
2 < (Elf 13) 2/3< 2L2/3< 2/50R (2.1)

By induction we define indices s(i) as follows. Set s(1) I, and

s(i+1) 1+min{s: s>s(i), E(fs(i)+...+fs)2.> 2/R}.

The construction stops at an index h such that either s(h) n or

E(f )2<
s(h) "’’+f c2/R for s(h)<s<.n

LEMMA I. ([I]) We have IOR/11 <. h <. 2R and s(i+1) s(i) >. 15R for 1.<i<-h-1.

PROOF. From the l-dependence of the f it follows that
oi

h-1
2 2+ 2

c 7. E(fs(i)+ )-I )+...+fsi+ E(fs(h /fn)
i--I

h-1
2 7. E{fsi+I ,-Ifsi+1)}"
i--I

It follows from Schwartz’s inequality and (2.1) that

2> 242(,h-1,2/R 2(h-1)sup Efi2. h-1)/25R

so that h < 25R/24 .< 2R. Moreover

h-1
2

)+ +fs(i+1)-2)2+ E(fs(h)+ +fn )2E E(fs(
i=I

h-1 h-1 h-1
I Ef

2
2 I E(f fs 2 I E(f f

i=I
s(i+1)-

i=I
s(i+1)-2 (i+I)-I

i=I
s(i+1)-1 s(i+1)

SO,
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2<c hc2/R 5h sup Ef2. < 11h2/10R
and hence h>10R/11. On the other hand, for i<h-1,

s(i+1)-1 s(i+1)-2
2/R < E(fs(i)+ +f )2= I E 2

2E(fjfs(i+1 )-I
j--s(i fJ j--s(i j+1

< 3(s(l+1) s(i)) Max Ef.
2 < 3(s(i+1) s(i))2/50R

whlch proves the lemma. Q.E.D.

s(i+1)-1 h-1
E El fjl3. We have E ..< U. Hence if p is the numberFor i<h-1, let i

j=s(i) i--I

-Iof indices i<h-1 such that .>. 10U(h-1) we have p <- (h-I)/I0. It follows that

-I
there are at least 9(h-I)/I0 indices for which i < 10U(h-1)

Let H [9(h-I)/20-I]. If R.>IO, we have H.>R/IO. This follows from the fact that

h=>0R/11 and straightforward computations. We can moreover select indices il,...,i H

such that for 1<<=h,

-I > 2 2 < <- h-2 (2.2)i < 10U(h-1) .< 20U/R; i+ i

a, a a’ 15R 15H.For < < H we set s(i) s(i+1) a:. We have

Let -- (a a)
-I .
a<j<a

for which E Ifjl<2’, one canSince there are at least 15H/2 => 7H indices a< j < a
[a ’[ with this property such thatpick indices p(-H) p( O) ..,p( H) of ,a

no two of them are consecutive.

LEMMA 2. For each-H < < H we have Elf <- 4OL
p(,i)

PROOF. By Holder’s inequality, we have,

)2/3 1/3,E Elfjl < E (Elf 13) I/3< (a a ia<j<a a<j<a

I Elf 13 -< (Elfj 13) 2/3<. (a’ a )I/3I2/3"a<j<a a<j<a

As already shown, E( I f.)2< 5 I Ef 2. so we get by combining the above
-<_j<a a a[ 3a .<j<

2 2< < 40Uinequalities, and since < R E(a<j<aEf.)2O 2R i" Q .E.D.

Set
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Z,O= f Z fp fp for O’--qH,
p(,O) 2q (,-q) (,q)’

Z2q+1 E f. E f for O<qH.
p(,-q-1)<i<p(, q) p(,q)<i<p(,q+1)

i’

For 1<-s<H, let bs: (e es) be a collection of integers 0.<es2H+1. We set

-I
W(bs) o (S r. Z Z,j).

=I

For s<H, HI, bs: (e 1,...,es), we set W(bs ’) W((el,...,es),). Let

Cs(t) maxlE[exp(it-W(bs))]
and if s<H, let

ks(t) maxlE[exp(itW(bs)) exp(itW(bs,O))]l.
Here the maximum is taken over all possible choices of bs.

3. ESTIMATES.

LE MMA 3.

have

There is a universal constant a such that for a11tlL<1 and I<H we

s(t) <- (alltlL)H+1+ a11tlLCs+1(t).

and for 0<k<.2H+1 let k exp(itZs, kPROOF. Let us fix bs,

one sees by induction that

2H+ -I

exp(itW(bs )) exp(itW(bs,O)) =lY exp(itW(bs,E))k=NOYk
2H+

exp(itW(b,2H+1) k"
k=O

By a well known estimate and lemma 2, we have

-I
Elerl S Itlo ElZrl-< 801tl. for 0<.2r:H-1.

(3.1)

So, since Iki<2, if we set [12], we have

E n kl "< 2E n_lel -< (16ItI L)/I
k=O

Thus the lemma follows (with al-- 320) by taking expectation in (3.1), and since

(1601tlL) +I< 2 for a11tlL<1.
-’0

LEMMA 4. CH(t) <= (exp(-t2/4R) a41tlL) H.
PROOF. We fix bH= (e ell). For I<-H, we set

r= p(,-q)-1, r p(,q)+1 if e is of the form 2q

and
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r p(,-q-1), r p(,q-1) if e

and r n. For O<<H letLet r
0 H+

-I
We have W(bH)__ o

(2.2) that each T

is of the form 2q+I.

T-- E f’’l
r<i<-r+

(To+...+TH) and the T are independent. Moreover it follows from

is the sum of the f. over an interval which contains an interval

+I)[ It follows thatof the type [s(j) s(j
2 2>

s (j)<i<s(j +I
__> o212R.

Let m= Z E(fi )3
<.i_<_rr +1

each z,

fi )2_ 2E(fs(j)fs(j_1))- 2E(fs(j+1)fs(j+2 ))

It follows from the theorem of R. V. Erickson [4] that for

IE(exp izTo I) exp(-z2/2)l < a31zlme3

and using # >. 2/2R, one gets
-I

By taking z to

Thus, we get

E(exp itTe-I)I <. exp(-t2/4R) 2a3-3Rm.
IE(exp itW(bH) .<

H
H (exp(-t2/4R) 2a3-3R).--q

The concavity of the function in (1+x), and the fact that

the result.

4. RESULTS.

PROOSITION 5.

that

PROOF.

-I0),If a51tlL < (and L < e we have

H
I o-Rm< RL .< OHL prove

--0

Q .E.D.

IE(exp itSo-1)l < (1+a Itl)(exp(-t2/4R) a51tlL)H5
(4.1)

s
it follows easily from lemma 3 and by inductionSince s < s+I +I’

q
7. z(t) <: q(l/a, It IL)q((al t IL)H+I+ al ,t.s+II=I

(t)).

--I
H
Z
=I

(t)(1 HalltlL(1+alltlL)H)+ H(1+al]tlL)H(alltlL)H(alltlL) I1+
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If aIItlL <. e I/2- I, we have, since H < R in L-I,

H(1+a ItlL) H< 2(In L-I)L-I/2< a L-I
a

So proposition 5 follows from lemma 4 with a5= sup(1Oal, 2a3, aa).
It is well worthwhile to reformulate the above result to show more precisely

the behaviour of the bound.

THEOREM 6. There exists universal constants a
7

and a 8 such that for q e and

Itl, a7<_-Itl and a81tlL < I, and

-IIE(exp itS )I < (1+a51tl)sup(exp(-t2/80), (aBltl L)In L). (4.2)

PROOF. Let a8= 3a 5. By taking a
7

large enough, the existence of one Itl
10

satisfying the hypothesis implies L=>e so we can assume that (4. I) holds. We can

also assume that a7.> 80a
5.

If Itl<2/, we have exp(-t2/4R) .> I/e. Thus, since

H.>R/I O,

(exp (-t2/4R) a51tlL)H<, exp(-t2/40)(1+ealtlL) H

< exp(-t2/40 ea51tlgH).

Since LH LR < I/e and It .> 80a5, we have-t2/40 ea51tlLH .<-t2/80, which

proves (4.2) in that case. If t 2/, then exp(-t2/SR) .> /(exp(-t2/4R)), and it is

easy to check that

exp(-t2/4R) a51tlL < Max{exp(-t2/8R), 3a51tlL}
and theorem 6 follows. Q.E.D.

REMARK. (I) In case of a m-dependent (m>1)sequence of random variables, an

-I
estimate of IE(exp itS )I can be obtained by considering S as the sum of l-

dependent blocks of f..

(2) The constant I/4 in the exponent of (4.2) plays no particular role. It is clear

from the method that it can be replaced by any number; but the values of a
5

and a
8

depend on this exponent. However for the applications we have in mind, any positive

number will be sufficient.

To support our claim that theorem 6 is useful tool, we deduce Shergin’s theorem

in a simpler way. Let be the distribution function with the normal law.

SHERGIN’S THEOREM.

sup IP(S<t) (t) 5 aL.
t

PROOF. It is possible either to use the construction of sections 2 and 3 or to

do again a similar but much simpler construction. In order not to repeat arguments
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already used, we choose the first approach. Let q [H/2] and p p(q, 0). Let S I-
T. f and S T. f For s(i ) s < p (resp. p < s <. s(i+1)), it is easily

2 i"
O<i<p p<i&n

2/ 16)seen that E( E fi)2.> o2/10 (resp. E( E fi)2 o The method of lemma 3 and
-<i.<s 1<-i<-n

the result of theorem 6 gives for 4asltlL <. I:

S2)IE(exp itSo -E(exp it(S - in L/64
< (a 11tlL) H+I+ a 11tlL(1+4a51tl)Max{exp(-t2/320), (4a81tlL) }.

Moreover, if o E S
2 2 2

and o
2

E $2, we get for e I, 2, from Erickson’s theorem:

-I 202 2)IE(exp its o )- exp(-t /20 16a
e e 3

So it follows, using again theorem 6, that

-I 2 2IE(exp it(S1+ $2) o )- exp(-t (o 02)/2

.< 36a31tlL(1+4a51tl)Max{exp(_t2/320) (4a81tlL)- In L/64
).

Now, if we set T -I= 4e8a8L, a straightforward computation gives

T
2 o)/2o2)i a10LJ(T) t 1,E(exp itS) exp(-t2(o1

-T

The familiar Esseen inequality gives

sup (P(So < x) ’(x)) <. a(J(T) T < a11L
x

where ’(x) is the normal distribution function with variance

k2= -2(o 022 o-2E(S f )2. We have
P

(’(x)- (x)) <. 1-k 2<- o2(E(f2)p 2E(fp_1 fp )+ 2E(fpfp+1) )"sup
x

We can also assume that at the time we picked the indices p(q,j) we have made

the extra effort to choose p p(q,O) such that for 1,0,1, we have

E(f2p+e)<" 10(a’q aq) E Elfjl2_ It then follows by an estimate similar to lemma 2

that the right hand side of the parenthesis is also bounded by a12L, and concludes

t he proof.
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