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ABSTRACT. The amalgam of L
p

and q consists of those functions for which the

sequence of LP-norms over the intervals [n,n+l) is in q. These spaces (Lp,q) have

been studied in several recent papers. Here we replace the intervals [n,n+l) by

a cover {In;neZ of the real line consisting of disjoint half-open intervals I
n

each of the form [a,b), and investigate which properties of (LP,q) carry over to

these irregular amalgams (LP,q) In particular, we study how (LP,q) varies as

p, q, and vary and determine conditions under which translation is continuous.
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[. INTRODUCTION.

The amalgam of Lp and q is the space (LP,q) of functions f which are locally

in Lp and satisfy

f! [ [[n+l if(x)iPdx]q/p}I/q < =, (I.I)
p,q -n

n=-

that is, the LP-norms over the intervals [n,n+l] form an q-sequence. (If either p

or q is infinite, the expression in (I.I) is modified in the usual way.) Special

cases of amalgams were first introduced by Wiener [I], [2] and Stepanoff [3] in the

1920’s but their first systematic study is due to Holland [4].

Notice that for p q we have (LP,p) Lp and indeed some of the properties of

Lebesgue spaces can be carried over to amalgams. For instance, if 4 p,q < , the

norm given by (I.I) makes (LP,q) into a Banach space with dual (LP’,q’), where

I/p + I/p’ I, and the analogues of Holder’s inequality and Young’s inequality are

also valid.

It is not difficult to establish the following inclusion relations between

amalgams.

ql Lp q2
If ql < q2’ then (LP, c , ). (1.2)
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P2 LPlIf Pl P2’ then (L ,q) c ,q). (1.3)

For further information about amalgams we refer the reader to [5].

In this paper we propose to replace the cover consisting of .the intervals

In n+l) in (I I) by a cover {I ;neZ} of the real line consisting of disjoint

half-open intervals I each of the form [ab), whose union is the real llne.
n

Throughout the paper we use the term cover to refer to a cover of this type. If

’f! {" [fl If(x)IPdx]q/p}I/q
P,q,

n n

we define the irregular amal.am

(Lp q) {f; flp,q,a
Such spaces have arisen in the work of Jakimovski and Russell [6] on approxima-

tion theory. Given a complex sequence (Yn)nEZ and a linear space S of real-valued

functions, they considered the interpolation problem: For a given increasing

sequence (=), find a function f in S such that f(a Yn" For certain normed
n n

sequence spaces E they took S to consist of the functions f with

L
p an

and showed the existence of optimal solutions to the interpolation problem. Notice

that if we take E q then S becomes the irregular amalgam (Lp q) where

n
An important special case of an irregular amalgam is the dyadic amalgam

(Lp,q) where {[n,n+l)} is the cover given by o O, n 2n if n > O,

-2
-n

If n < O. J.W. Wells proved that if f g LP(--,-), < p 2, then its
n

Fourier transform f lies in the dyadic amalgam (Lp’,2). (Kellogg [7] and Williams

[8] proved similar results for the circle group and connected groups, respec-

tively.)

Certain facts about irregular amalgams are straightforward generalizations of

kno results about regular amalgams. Thus we state the following theore without

proof.

THEOREM I. If p,q < , the irregular aIgam (Lp, q) is a Banach space
* (Lp ,qwhose dual space is (Lp q)

LTHEOREM 2. If f e (LP,q) and g e (Lp ,q ), where p,q I, then fg e and

lfgH |fl; glp,P,q,a ,q ,
Other aspects of regular amalgams do not always generalize to irregular

amalgams. For instance, as stated in [5], although the inclusion (1.2) holds for

irregular amalgams, (1.3) does not hold in general. In fact we show in Section 2

that the analogue of (1.3) holds if and only if the lengths of the intervals I are
n

bounded above.

In Section 3 we discuss inclusion relations between irregular amalgams when p

and q are fixed and the sequence varies. We write . B if the intervals I En
intersect boundedly many of the intervals of B and show that if q p and = B,

then (LP’q)c (LP’q)B with strictness if =. If q p, the inclusion is

(L
p Eq) if and only if = B and B .reversed. It then follows that (L

p q) B
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We write the latter conditions as B and this defines an equivalence relation on

the set of all amalgams.

In Section 4 we investigate conditions under which translation is a continuous

operator on (Lp,gq) In particular we show that all the translation operators are

continuous, with uniform bound on their norms, if and only if = p, where

On {[n,n+l)} is the cover that gives the regular amalgam.

Finally, in Section 5, we discuss generalizations to functions on measure

spaces and groups.

2. THE VARIATION OF (Lp,gq) WITlt p q

In this section we consider the irregular amalgam (Lp,q) defined by a fixed

cover a {I and investigate how it varies when p and q vary.
n

The variation with q is an immediate consequence of Jensen’s inequality [9,

p. 28]:

q I/q2 q I/q
[ lanl 2] < [. lanl I] I, 0 < ql < q2

Taking an Ill If(x)IPdx] I/p, we have the following inclusion.
n

THEOREM 3. If ql q2’ then

ql q2(LP, (LP,

(2.1)

and flfH fif
P,q2 ,a P,ql ,a

When (LP,q) varies with p, the truth of the corresponding inclusion will

depend on the lengths llnl of the intervals In E a"

P2 Pl
Then (L ,gq) c (L ,q) if and only if the setTHEOREM 4. Let Pl < P2"

(]I I;nEZ} is bounded above.
n

PROOF: Let f be the function which agrees with f on I and is 0 elsewhere.
n n

Suppose that the set {[I l;nZ} is bounded above. It follows from Holder’s
n

inequality that

I/PI-I/P2
Hf < If ilnln Pl n P2

q(I/p -I/P2gfflq . gf flq < I flf Iq II < K If
q

Pl ’q’= n
n Pl n

n P2 n p2,q,

and so

where K is an upper bound for the set {IIn
P2 Pl(L ,q) c (L ,q)

q(I/PI-I/P2)
nZ}. It follows that

Now assume that {llnl;nZ} is not bounded above. Without loss of generality we

may assume that llnl lln+ll. (If not, we take a subsequence, reorder if neces-

sary, and assume the function constructed below is zero on intervals not in this

subsequence.) Observe that if f is constant on I say f(x) c on I then
n n n

P2 Pl
llf c II I/p. In order to construct f E (L q) with f (L q) we shall
n p n n

choose the c’s in such a way that
n
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while

1/P2 ]qHf|q I If
q I [CnlInl < (2.2)

P2 ’q’ n P2n n

I/p
If

q . If
q I [Cnllnl l]q (2.3)

Pl ’q’= n p
n n

To do this we use the following fact due to Stieltjes [I0, p. 41]: If a x 0, then

there is a sequence (d n) of positive numbers such that . d diverges while . a d
n n n

converges. If we choose

0 since II -. By the result of Stieltjes there exist numbers d withthen a
n n n,. a d < and d . Let

n n n
1/qd

n
n 1/Pl

q/P2
llflq I cq ]I I a d <

P2 ’q ’= n n n n
n

Iflq I cq lln lq/pl . d
Pl ’q’ n

n n

P2 Pl
This shows that (L ,q) is not contained in (L ,gq).
3. THE VARIATION OF (Lp q) WITH

In this section we fix p and q and consider how the irregular amalgam (Lp, q)
varies when the cover = varies. For that purpose we need the inequalities provided

by the following lemmas.

LEMMA I. If a 0 and p I, then
n

N_I/p,
N N N. a I aP] I/p . a

n n n
n=l n=l n=l

PROOF: The left inequality follows from Holder’s inequality and the right one

is just Jensen’s inequality (2.1).

LEMMA 2. Suppose f f]En, where El, ..., EN are disjoint measurable subsets
n

of R and f f
N

(a) If q p I, then llf
q

IfH q.
n=l

n p p

N
(b) If q p, then lfll

q . If q.
P n=l

n p

N N
(c) If p,q l, then N-q/P’( I If q) Ifl

q Nq/q’ I If q)
n=l

n p p
n=l

n p

PROOF: (a) Since q/p I, Jensen’s inequality gives

If lq [I f IP] q/p I If q
p n p n p

(b) Here q/p and the result again follows from Jensen’s inequality.

(c) From Lemma we have

q(l/P2-1/P

Then (2.2) and (2.3) give
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Iflq [I If IP]q/P N-q/P’II If )q N-q/P’II Ifnlqp n p n p p
The inequality on the right follows from Minkowski’s inequality and Lemma I:

Ifl
q (I Ifnl )q Nq/q’[l If q]p p n p

DEFINITION. Let = {Inl and B {Jn} be covers of the real llne of the type

described in Section 1. We say that has index N in B and write "N B if each I
n

[ntersects at most N of the J ’s. The notation B will mean that K 8 for
m N

sore N.

THEOREM 5. Suppose a has index N in B.

(i) If q > p I, then (LP,q)Bc (LP,q)= and

P,q, P,q,B

c (Lp q) and(ii) If q < p, then (Lp q)
NfH N I/q NfNP,q,B P,q,

PROOF: (i) Using parts (c) and (a) of Lemma 2, we have

NfNq I Nfll Nq I Nq/q’ I Nfll NJ q
p,q,= n p n m p

n n m

Nq/q’ I llflJ q Nq/q’ NfNq
m p P,q,

m

Thus IfN N l’q’
I

NfN
P,q, P,q,B

(ii) Using Theorems and 2 we write

Nf Np,q, B sup {lffgl; Nglp, ,q, ,B

sup {NfN NgN ; NgNp,P,q, P ,q ,q ,B

But q’ > p’ and so, by part (i),

slnce q > p, but

Then

We note that part (ii) could also be proved directly (using Lemmas and 2), but the

constant NI/q would be replaced by N I/p’.
THEOREM 6. If B , then the inclusions in Theorem 5 are strict.

PROOF: (i) If B , there are two cases. First we consider the case where

’s. Let I’there is an interval, say Jl’ which intersects infinitely many I
n n n

Define f to be 0 outside J and

fl I’ c [nlI’ I]-lIpn n n

"fl l’nq-- I cq II’1 q/p= In p n n nqp
<

n n

If NP fj Ifl p: I cp li’l 17n nP q g
n

If no Jm intersects infinitely many In’S then we may assume there exist Jl’ J2’
such that J intersects at least m of the I ’s, say I .-., I and the intervals

m n m. m
n

Ifllp,q, sup {fl Igll ; igi N I/q} N llq Ifl
P,q, P ,q P’,q , P,q,
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Ik are all disjoint. Let l’m. Im. N Jm and define

fll’ c. n-(I/p+I/q)ll’ -I/p
m. j m.
3 3

and f 0 off J U J U Then
2

Ifq . Ifllklq . I flfl I’ fiq
P’q’a

k P n k=l k p

n n
cq I’ q/p= n-q/p-l= n-q/P<

n k=l
n m

k nk=l n

and

m
nfn

q y. ’flJ ,q . Ifll’ ,P]q/P
Pq,8 mp

m m j=l mj p

m m

I . cp. I’ I] q/p I I m-l-p/q]q/p .
m 3 m.

m j m
Thus, in both cases,

(LP,q) s (LP,q)
(ii) We consider the same two cases as in (i). In the first case we define

-I/q I’ -I/p
n n n

Then

’Ifq I cq I’ q/p Ip,q,a n n
n n

whlle

’fliP I cp I’1 I n-P/q <p,q,13 n n
n n

since q < p. In the second case we take
-2/q I’ -I/p

f I’ c- n
m. m.
3

so that

while

n n
-2 -Ilf lq . I cq I’ q/p . I n I n

p,q,a
n k=l

n m
k n k=l n

m m
"f’q I I =P. I’ I] q/p= Y I m-2p/q]q/p= re(q/p-2) <p,q, j m.

3 m j=l mm 3

This completes the proof.

By combining Theorems 5 and 6 we obtain the following.

if and only If = .THEOREM 7. (i) If q > p I, then (Lp q)B c (Lp q)
(ii) If q < p, then (Lp,q)C (Lp,q) if and only if = K . (iii) If

p,q I, p * q, then (Lp q) (Lp q) if and only if and K
Furthermore, the norms are equivalent.

DEFINITION. We write a if a B and < a.

From Theorem 7 (iii) we note that is an equivalence relation on the set of

all irregular amalgams.

For example, consider the class of amalgams given by (r) {[an,an+i) where
r

a n n > O. (In these and the following examples we assume that 0 andn (r) o

=- .) Then (s whenever 0 < r < s and (I) O, where (Lp q) is-n n p
the regular amalgam (Lp, q) discussed in Section 1. Thus we have infinitely many
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mutually inequlvalent amalgams both p and > p. Clearly the dyadic amalgam

satisfies but where {[n’n+l )I(LP,q) with n 2n a(r)
n

3n
Another amalgam of some interest is defined by taking intervals I such that

n

llmn_l I, llmn I/n, n 1, 2, ..-. This amalgam is equivalent to the regular

amalgam but has intervals of arbitrarily small length. We shall see in the next

section, however, that no amalgam with arbitrarily large intervals is equivalent to

the regular amalgam.

4. TRANSLATION.

For the case of regular amalgams, Holland [4] showed that the translation

operator is continuous on (Lp,q) and used this fact to investigate the Fourier

transform of functions in this space. Here we determine when the translation

operator is continuous on an irregular amalgam. In order to state the first result

we use the notation a
t

to mean the cover a shifted units to the right and

ft(x) f(x-t).

THEOREM 8. (i) If q > p I, the translation operator T
t

f ft is continuous

on (LP,q)a if and only if a at. (ii) If q < p, the operator T_t is

continuous on (LP,q)
a

if and only if a - a
t

PROOF: (i) If a "N at and q > p I, then, by Theorem 5 (i) applied to ft’
we have

Nl/q’lftl N I/q’Ift Wp,q,a p,q,a
t

p,q, a

and so there existsIf = at, then by Theorem 6, (Lp q)at q (Lp q)a

(LP,q)=t such that f (LP’q)a" Thus f_t (Lp’ q)a and (f_t)t (Lp’ q)"
(ii) If a "<N at and q < p, then Theorem 5 (ii) gives

f f! Nl/qf
-t p,q,a P’q’at p,q,a

If a at, then by Theorem 6, (LP,q)
a (LP,q)at so there exists f (Lp q)a

such that f (LP,q)t that is f
t

(Lp q)a
REMARK. It is possible for the translation operator T

t
to be continuous for

some values of t but not for other values. For example, consider the amalgam

obtained by splitting each unit interval [n,n+l) at the points n+2-k k 2 3

-.. By Theorem 8, T
t

is continuous for integer values of t but for no other value.

We also note that it is possible for all translation operators T
t

to be

continuous, but without a uniform bound on their norms. It is not hard to see that

the dyadic amalgam has this property. Another example is obtained by taking

intervals of successive lengths -.., 4, 3, 2, I, I/2, I/3, I/4, In fact we

show in Theorem I0 that {TtW t R} is bounded if and only if a .
THEOREM 9. If there exists N such that a "N at for all t, then a and

conversely.

PROOF. If a {Inl we claim that sup II < . For if sup I -, then
n n

given any positive integer k and k adjacent intervals Inl,...,Ink we can choose an

interval IN such that INI > lnl + + Inkl" Thus there exists t such that
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(InlU "I" Ulnk)tC I
N

Since k is arbitrary, this contradicts our hypothesis.

Therefore we can write sup lnl M where M is an integer. It follows that any

interval In meets at most M + intervals from p, i.e.,

Suppose now that a. Then there are intervals in 0 which contain

arbitrar1y many l.’s. It follows from the pigeon-hole principle that there are

interval of R of any given size which contain arbitrarily many l.’s. In

sparticular, a given interval in a can be translated to cover arbitrarily many lj
so a

N at"
To prove the converse we assume that a . Then sup llnl K < . Suppose

there is no N such that a a for all t. This means that we can find an intervalN t
in a containing arbitrarily many I +t’s for some t. But, since II K, it followsn n
(as above) that there is a unit interval which intersects arbitrarily many I +t’s

n
and therefore a unit interval [k,k+l) meeting arbitrarily many I ’s. This is a

n
contradiction.

THEOREM I0 The translation operators Tt, t R, are continuous on (L p q)
with uniform bound on their norms, if and only if a O. In this case we have

sup ;ITt N
I/q’

if q p

sup l;Tt N
I/q

if q p

where N [s the smallest integer such that a N at for all t.

PROOF. This follows from the two preceding theorems together with the proof of

Theorem 4.1.

REMARK. Continuity of translation is an essential ingredient in the proof that

if f (Lp,q), I p,q 2, then the Fourier transform f (Lq ,P [4, Theorem

8]. Thus, in view of Theorem I0, it seems unlikely that any such result will hold

for amalgams other than those equivalent to the regular amalgam.

Translation also arises in the consideration of convolution and Young’s

inequality. If {In} B {Jm}, and y are covers and a + B {I
n

+ Jm; n,m Z},

we write y ~N(a + B) if y N (a + B) and (a + B) N Y" With this notation we can

state the following version of Young’s inequality for irregular amalgams. The proof

is similar to that of Theorem 4.2 in [II].

Pl P2 ql q2
and g e (L ), whereTHEOREM II. Suppose y ~N (a+B). If f (L

r r
2

where i/r
i I/Pi + I/qi andI/Pi + I/qi I, then f*g (L )y,

f*gI N f gqrl,r2,Y Pl,P2 ,a l,q2,B
Theorem |I holds for amalgams on groups (see the next section for definitions)

but on R the condition y ~N (a + B) holds if and only if a, , and y are all

equivalent to the regular amalgam, as we now show.

THEOREM 2. If y (a + ), then a, , y p.

PROOF. If y (a + B), then clearly y a
t

for all t and so a a
t

for all t.

Then a O by Theorem 9. Similarly B 0 and it follows that y also.

5. AMALGAMS ON MORE GENERAL SPACES.

In this section we discuss the extent to which our results can be generalized

from functions on R to more general functions. The amalgam spaces themselves make

sense on any measure space.
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Let (X,v) be a measure space and E {E; % J} any covering of X by disjoint

measurable sets of finite measure:

X kJ EX’ u(Ek) <

In terms of this decomposition E of X we define the amalgam (Lp q) to consist of
E

functions f such that

llfH I lflq ]I/q <
p q E pJ L (E )

Then all of the results of the first three sections extend to this setting In

particular, the extension of Theorem follows from a general result [12, p. 359]

the dual of the space q(B%) of nets x (xk), where x B%, each B isconcerning

a Banach space, and llxN [ llxnUq]I/q < . Taking B-- LP(Ek), and using this

result, we have

(LP’q)*=E q(LP(Ex))* q’(LP’(Ex)) (Lp’’q’)E
Theorems 3, 4, 5, 6, and 7 have verbatim proofs in the general context of measure

spaces

For translation, of course, we need algebraic structure and so we assume that G

is a locally compact abelian group (with Haar measure) and easily see that Theorem 8

s valid for amalgams on G. The question then arises as to an analogue of Theorem

10 for groups Regular amalgams on groups have been defined and studied in [13],

[14], and [II]. Nonetheless we do not see how to extend Theorem I0 to groups

without imposing severe restrictions on the shape of the sets E k, even for groups as

simple as G R2.
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