CERTAIN SUBCLASSES OF BAZILEVIČ FUNCTIONS OF TYPE a

SHIGEYOSHI OWA

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577 Japan

and

MILUTIN OBRADOVIĆ

Technološko-Matelurški Fakultet Kernegijeva 4 11000 Beograd Yugoslavia

(Received October 25, 1985)

ABSTRACT. Certain subclasses $B(\alpha,\beta)$ and $B_1(\alpha,\beta)$ of Bazilevič functions of type α are introduced. The object of the present paper is to derive a lot of interesting properties of the classes $B(\alpha,\beta)$ and $B_1(\alpha,\beta)$.

KEY WORDS AND PHRASES. Bazilevič function, starlike function of order β , convex function of order β , subordination.

1980 MATHEMATICS SUBJECT CLASSIFICATION. 30C45.

1. INTRODUCTION.

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 (1.1)

which are analytic in the unit disk $U = \{z: |z| < 1\}$. Let S be the subclass of A consisting of univalent functions in the unit disk U. A function f(z) belonging to the class A is said to be starlike of order β if and only if

$$\operatorname{Re}\{zf'(z)/f(z)\} > \beta$$
 (1.2)

for some β ($0 \leq \beta < 1$), and for all $z \in U$. We denote by $S^{\star}(\beta)$ the class of all functions in A which are starlike of order β . Throughout this paper, it should be understood that functions such as zf'(z)/f(z), which have removable singularities at z = 0, have had these singularities removed in statements like (1.2). A function f(z) belonging to the class A is said to be convex of order β if and only if

$$Re\{1 + zf''(z)/f'(z)\} > \beta$$
(1.3)

for some β ($0 \leq \beta < 1$), and for all $z \in U$. Also we denote by K(β) the class of all functions in A which are convex of order β .

We note that $f(z) \in K(\beta)$ if and only if $zf'(z) \in S^{*}(\beta)$. We also have $S^{*}(\beta) \subseteq S^{*}(0) \equiv S^{*}$, $K(\beta) \subseteq K(0) \equiv K$, and $K(\beta) \subset S^{*}(\beta)$ for $0 \leq \beta < 1$.

The classes $S^{*}(\beta)$ and $K(\beta)$ were first introduced by Robertson [1], and were studied subsequently by Schild [2], MacGregor [3], Pinchuk [4], Jack [5], and others.

A function f(z) of A is said to be in the class $B(\alpha,\beta)$ if and only if

$$\operatorname{Re}\{zf'(z)f(z)^{\alpha-1}/g(z)^{\alpha}\} > \beta \qquad (z \in U) \qquad (1.4)$$

for some α ($\alpha > 0$) and for some β ($0 \le \beta < 1$), where $g(z) \in S^*$. Furthermore, we denote by $B_1(\alpha,\beta)$ the subclass of $B(\alpha,\beta)$ for which $g(z) \equiv z$.

Note that $B(0,0) = B_1(0,0) = S^*$, $B(0,\beta) = B_1(0,\beta) = B^*(\beta)$, and that $B_1(1,\beta)$ is the subclass of A consisting of functions for which $Re\{f'(z)\} > \beta$ for $z \in U$.

The class $B(\alpha, 0)$ when $\beta = 0$ was studied by Singh [6] and Obradović ([7], [8]). Since $B(\alpha, \beta) \subseteq B(\alpha, 0)$ for $0 \leq \beta < 1$, the class $B(\alpha, \beta)$ is the subclass of Bazilevic functions of type α (cf. [6]).

Let f(z) and g(z) be analytic in the unit disk U. Then a function f(z) is said to be subordinate to g(z) if there exists a function w(z) analytic in the unit disk U satisfying w(0) = 0 and |w(z)| < 1 ($z \in U$) such that f(z) = g(w(z)). We denote by $f(z) \prec g(z)$ this relation. In particular, if g(z) is univalent in the unit disk U the subordination is equivalent to f(0) = g(0) and $f(U) \subset g(U)$.

348

The consept of subordination can be traced back to Lindelöf [9], but Littlewood [10] and Rogosinski [11] introduced the term and discovered the basic relations.

2. SOME PROPERTIES OF THE CLASS $B(\alpha, \beta)$.

We begin to state the following lemma due to Miller and Mocanu [12].

LEMMA 1. Let M(z) and N(z) be regular in the unit disk U with M(0) = N(0) = 0, and let β be real. If N(z) maps U onto a (possibly many-sheeted) region which is starlike with respect to the origin then $\operatorname{Re}\{M'(z)/N'(z)\} > \beta$ ($z \in U$) \implies $\operatorname{Re}\{M(z)/N(z)\} > \beta$ ($z \in U$), (2.1) and

$$\operatorname{Re}\{M'(z)/N'(z)\} < \beta \quad (z \in U) \implies \operatorname{Re}\{M(z)/N(z)\} < \beta \quad (z \in U).$$
(2.2)

Applying Lemma 1, we prove

LEMMA 2. Let the function f(z) defined by (1.1) be in the class $S^{\star}(\beta)$, and let α and c be positive integers. Then the function F(z) defined by

$$F(z)^{\alpha} = \frac{\alpha + c}{z^{c}} \int_{0}^{z} t^{c-1} f(t)^{\alpha} dt \qquad (z \in U)$$

is also in the class $S^*(\beta)$.

PROOF. Setting

$$\frac{\alpha z F'(z)}{F(z)} = \frac{z^{c} f(z)^{\alpha} - c \int_{0}^{z} t^{c-1} f(t)^{\alpha} dt}{\int_{0}^{z} t^{c-1} f(t)^{\alpha} dt} = \frac{M(z)}{N(z)}, \qquad (2.4)$$

we have M(0) = N(0) = 0 and

$$Re\{M'(z)/N'(z)\} = \alpha Re\{zf'(z)/f(z)\} > \alpha\beta.$$
(2.5)

As N(z) is $(\alpha+1)$ -valently starlike in the unit disk U, Lemma 1 shows that Re{M(z)/N(z)} = α Re{zF'(z)/F(z)} > $\alpha\beta$ (2.6) which implies F(z) $\epsilon S^{*}(\beta)$.

Now, we state and prove

THEOREM 1. Let the function f(z) defined by (1.1) be in the class $B(\alpha,\beta)$ for $g(z) \in S^{*}(\beta)$, where α is a positive integer and $0 \leq \beta < 1$. Then the function F(z) defined by (2.3) is also in the class $B(\alpha,\beta)$.

PROOF. It follows from (2.3) that

$$\frac{\alpha z F'(z)}{F(z)^{1-\alpha}} = \frac{\alpha + c}{z^{c}} \left[z^{c} f(z)^{\alpha} - c \int_{0}^{z} t^{c-1} f(z)^{\alpha} dt \right] . \qquad (2.7)$$

Note that there exists a function g(z) belonging to the class $S^*(\beta)$ such that

$$\operatorname{Re}\{zf'(z)f(z)^{\alpha-1}/g(z)^{\alpha}\} > \beta.$$
(2.8)

Define the function G(z) by

$$G(z)^{\alpha} = \frac{\alpha + c}{z^{c}} \int_{0}^{z} t^{c-1}g(t)^{\alpha}dt . \qquad (2.9)$$

Then, by using Lemma 2, we have $G(z)~\epsilon~S^{\star}(\beta).$ Combining (2.7) and (2.9), we observe that

$$\frac{\alpha z F'(z)}{F(z)^{1-\alpha} G(z)^{\alpha}} = \frac{z^{c} f(z)^{\alpha} - c \int_{0}^{z} t^{c-1} f(t)^{\alpha} dt}{\int_{0}^{z} t^{c-1} g(t)^{\alpha} dt}.$$
 (2.10)

Setting

$$\frac{\alpha z F'(z)}{F(z)^{1-\alpha} G(z)^{\alpha}} = \frac{M(z)}{N(z)} , \qquad (2.11)$$

(2.10) gives

$$Re\{M'(z)/N'(z)\} = \alpha Re\{zf'(z)f(z)^{\alpha-1}/g(z)^{\alpha}\} > \alpha\beta.$$
(2.12)

Consequently, with the help of Lemma 1, we conclude that

$$\operatorname{Re}\{zF'(z)F(z)^{\alpha-1}/G(z)^{\alpha}\} > \beta$$
, (2.13)

that is, that $F(z) \in B(\alpha, \beta)$. Thus we have Theorem 1.

COROLLARY 1. Let the function f(z) defined by (1.1) be in the class $B(\alpha,0)$, where α is a positive integer. Then the function F(z) defined by (2.3) is also in the class $B(\alpha,0)$.

THEOREM 2. The set of all points $\log\{z^{1-\alpha}f'(z)/f(z)^{1-\alpha}\}$, for a fixed z ε U and f(z) ranging over the class B(α,β), is convex.

PROOF. We employ the same manner due to Singh [6]. For the function f(z) belonging to the class $B(\alpha,\beta)$, we define the function

$$h(z) = zf'(z)/f(z)^{1-\alpha}g(z)^{\alpha} , \qquad (2.14)$$

where $g(z) \in S^*$. Then, it is clear that $\operatorname{Re}\{h(z)\} > \beta$ for $z \in U$. We denote by $P(\beta)$ the subclass of analytic functions h(z) satisfying $\operatorname{Re}\{h(z)\} > \beta$ for $0 \leq \beta < 1$ and $z \in U$. We note from (2.14) that

$$\log\{z^{1-\alpha}f'(z)/f(z)^{1-\alpha}\} = \log h(z) + \alpha \log\{g(z)/z\}.$$
 (2.15)

Since, for a fixed $z \in U$, the range of $\log h(z)$, as h(z) ranges over the class $P(\beta)$, is a convex set, and the range of $\log\{g(z)/z\}$, as g(z) ranges over the class S^* , is a convex set, we complete the proof of Theorem 2.

Taking $\alpha = 0$ in Theorem 2, we have

COROLLARY 2. The set of all points $\log\{zf'(z)/f(z)\}$, for a fixed $z \in U$ and f(z) ranging over the class $S^{*}(\beta)$, is convex.

Furthermore, taking $\alpha = 1$ in Theorem 2, we obtain

COROLLARY 3. The set of all points $\log\{f'(z)\}$, for a fixed $z \in U$ and f(z) ranging over the class $C(\beta)$, is convex, where $C(\beta)$ is the class of analytic functions f(z) which satisfy $\operatorname{Re}\{zf'(z)/g(z)\} > \beta$ for $g(z) \in S^*$

3. SOME PROPERTIES OF THE CLASS $B_1(\alpha, \beta)$.

In order to derive some properties of the class $B_1(\alpha,\beta),$ we shall recall here the following lemmas.

LEMMA 3 (Miller [13]). Let $\phi(u, v)$ be the complex function, $\phi: D \rightarrow C, D \quad C \propto C$ (C-complex plane) and let $u = u_1 + iu_2, v = v_1 + iv_2$. Suppose that the function ϕ satisfies the conditions:

(i) $\phi(u,v)$ is continuous in D;

- (ii) (1,0) ε D and Re{ $\phi(1,0)$ } > 0;
- (iii) $\operatorname{Re}\{\phi(\operatorname{iu}_2, v_1)\} \leq 0$ for all $(\operatorname{iu}_2, v_1) \in D$ and such that $v_1 \leq -(1 + u_2^2)/2$.

Let $p(z) = 1 + p_1 z + \cdots$ be regular in the unit disk U, such that $(p(z), zp'(z)) \in U$ for all $z \in U$. If $Re\{\phi(p(z), zp'(z))\} > 0$ ($z \in U$), then $Re\{p(z)\} > 0$ for $z \in U$.

LEMMA 4 (Robertson [14]). Let $f(z) \in S$. For each $0 \leq t \leq 1$ let F(z,t) be regular in the unit disk U, let F(z,0) = f(z) and F(0,t) = 0. Let p be a positive real number for which

$$F(z) = \lim_{t \to +0} \frac{F(z,t) - F(z,0)}{zt^{p}}$$

exists. Let F(z,t) be subordinate to f(z) in U for $0 \le t \le 1$, then

$$\operatorname{Re}\{F(z)/f'(z)\} \leq 0 \qquad (z \in U). \qquad (3.1)$$

If in addition F(z) is also regular in the unit disk U and $Re{F(0)} \neq 0$, then

$$Re{F(z)/f'(z)} < 0$$
 (z ϵ U). (3.2)

352

LEMMA 5 (MacGregor [15]). Let the function f(z) be in the class $K(\beta)$. Then $f(z)~\epsilon~S^*(\gamma(\beta))$, where

$$\gamma(\beta) = \begin{cases} \frac{2\beta - 1}{2(1 - 2^{1 - 2\beta})} & (\beta \neq 1/2) \\ \frac{1}{2\log 2} & (\beta = 1/2). \end{cases}$$
(3.3)

We begin with

LEMMA 6. Let the function f(z) be in the class $B_1(\alpha,\beta)$, where α is a positive integer and $0\leq\beta<1.$ Then

$$\operatorname{Re}\{f(z)/z\}^{\alpha} > \beta$$
 (z \in U). (3.4)

PROOF. For $f(z) \in B_1(\alpha, \beta)$, we have

$$\operatorname{Re}\left\{zf'(z)f(z)^{\alpha-1}/z^{\alpha}\right\} = \operatorname{Re}\left\{\frac{df(z)^{\alpha}/dz}{dz^{\alpha}/dz}\right\} > \beta . \qquad (3.5)$$

Applying Lemma 1, we can prove the assertion (3.4).

THEOREM 3. Let the function f(z) be in the class $B_1(\alpha,\beta)$, where α is a positive integer and $0 \leq \beta < 1$. Then the function $F_1(z)$ defined by

$$F_1(z)^{\alpha+\gamma} = z^{\gamma} f(z)^{\alpha}$$
(3.6)

belongs to the class $B_1(\alpha+\gamma,\beta)$ for $\gamma \ge 0$.

PROOF. Note that

$$\frac{(\alpha + \gamma)F_1^{!}(z)}{F_1(z)^{1-(\alpha+\gamma)}} = \gamma z^{\gamma-1}f(z)^{\alpha} + \frac{\alpha z^{\gamma}f'(z)}{f(z)^{1-\alpha}} , \qquad (3.7)$$

or

$$\frac{(\alpha + \gamma)zF_{1}'(z)}{F_{1}(z)^{1-(\alpha+\gamma)}z^{\alpha+\gamma}} = \gamma \left(\frac{f(z)}{z}\right)^{\alpha} + \frac{\alpha zf'(z)}{f(z)^{1-\alpha}z^{\alpha}} . \quad (3.8)$$

Therefore, by using Lemma 6, we have

$$\operatorname{Re}\{zF_{1}'(z)F_{1}(z)^{(\alpha+\gamma)-1}/z^{\alpha+\gamma}\} > \beta$$
(3.9)

which implies $F_1(z) \in B_1(\alpha + \gamma, \beta)$. Thus we completes the theorem.

Applying Lemma 3, we derive

THEOREM 4. Let the function f(z) be in the class $B_1(\alpha,\beta)$ with $\alpha>0$ and $0\leq\beta<1.$ Then

$$\operatorname{Re}\left(\begin{array}{c} \frac{f(z)}{z} \end{array}\right)^{\alpha} > \frac{1+2\alpha\beta}{1+2\alpha} \qquad (z \in U). \qquad (3.10)$$

PROOF. We define the function p(z) by

$$A{f(z)/z}^{\alpha} = p(z) + B,$$
 (3.11)

where $A = (1 + 2\alpha)/2\alpha(1 - \beta)$ and $B = (1 + 2\alpha\beta)/2\alpha(1 - \beta)$. Then p(z) is analytic in the unit disk U and p(0) = 1. Differentiating both sides of (3.11) logarithmically, we obtain

$$\frac{zf'(z)}{f(z)} = \frac{1}{\alpha} \left(\frac{zp'(z)}{p(z) + B} + \alpha \right) , \qquad (3.12)$$

$$zf'(z)f(z)^{\alpha-1}/z^{\alpha} = \{zp'(z) + \alpha(p(z) + B)\}/\alpha A.$$
 (3.13)

Since $f(z) \in B_1(\alpha,\beta)$, (3.13) gives

$$Re\{zp'(z) + \alpha(p(z) + B)\} - \alpha\beta A > 0.$$
(3.14)

Letting $p(z) = u = u_1 + iu_2$ and $zp'(z) = v = v_1 + iv_2$, we consider the function

$$\phi(\mathbf{u},\mathbf{v}) = \mathbf{v} + \alpha(\mathbf{u} + \mathbf{B}) - \alpha\beta\mathbf{A}$$
(3.15)

which is continuous in D = C x C, and which (1,0) ε D and Re{ $\phi(1,0)$ } = 3/2 > 0. Then, for all (iu₂,v₁) such that v₁ $\leq -(1 + u_2^2)/2$, we have

355

$$\operatorname{Re} \{ \phi(iu_{2}, v_{1}) \} = v_{1} + \alpha \beta - \alpha \beta A$$

$$\leq -u_{2}^{2}/2$$

$$\leq 0. \qquad (3.16)$$

Consequently, with the aid of Lemma 3, we conclude that

$$Re{p(z)} > 0$$
 (z ϵ U), (3.17)

that is, that

$$\operatorname{Re}\left\{ A\left(\frac{f(z)}{z}\right)^{\alpha} \right\} > B . \qquad (3.18)$$

This completes the proof of Theorem 4.

Putting $\beta = 0$ in Theorem 4, we have

COROLLARY 3 ([8, Theorem 3]). Let the function f(z) be in the class $B_1(\alpha,0)$ with $\alpha>0.$ Then

$$\operatorname{Re}\left(\begin{array}{c} \frac{f(z)}{z} \end{array}\right)^{\alpha} > \frac{1}{1+2\alpha} \qquad (z \in U). \qquad (3.19)$$

Taking $\alpha = 1$ in Theorem 4, we have

COROLLARY 4. If the function f(z) belonging to A satisfies $Re\{f'(z)\}>\beta \mbox{ with } 0\leq\beta<1,\mbox{ then }$

$$\operatorname{Re}\left(\begin{array}{c} f(z) \\ \hline z \end{array}\right) > \frac{1+2\beta}{3} \qquad (z \in U). \qquad (3.20)$$

REMARK 1. Letting $\beta = 0$ in Corollary 4, we have the corresponding result due to Obradović [7, Theorem 2].

Next, we prove

THEOREM 5. Let $\alpha > 1$, $0 \leq \beta < 1$, and $\gamma(\beta)$ define by (3.3). Let $-1/4 \leq \alpha - \beta - (\alpha - 1)\gamma(\beta) \leq 1/4$. If the function f(z) belongs to the class $K(\beta)$, then $f(z) \in B_1(\alpha, \beta')$, where

$$\beta' = 1/[2\{\alpha - \beta - (\alpha - 1)\gamma(\beta)\} + 1].$$

PROOF. Define the function p(z) by

$$Azf'(z)f(z)^{\alpha-1}/z^{\alpha} = p(z) + A - 1$$
, (3.21)

where $A \approx 1 + 1/2\{\alpha - \beta - (\alpha - 1)\gamma(\beta)\}$. Differentiating both sides of (3.21) logarithmically, we know that

$$1 - \alpha + \frac{zf''(z)}{f'(z)} + (\alpha - 1) \frac{zf'(z)}{f(z)} = \frac{zp'(z)}{p(z) + A - 1}, \quad (3.22)$$

or

$$1 + \frac{zf''(z)}{f'(z)} - \beta + (\alpha - 1) \left(\frac{zf'(z)}{f'(z)} - \gamma(\beta) \right)$$

$$= \frac{zp'(z)}{p(z) + A - 1} + \alpha - \beta - (\alpha - 1)\gamma(\beta). \qquad (3.23)$$

With the help of Lemma 5, (3.23) implies

$$\operatorname{Re}\left\{\begin{array}{c} \frac{zp'(z)}{p(z)+A-1} \end{array}\right\} + \alpha - \beta - (\alpha - 1)\gamma(\beta) > 0. \tag{3.24}$$

Let the function $\phi(u, v)$ be defined by

$$\phi(u,v) = \frac{v}{u+A-1} + \alpha - \beta - (\alpha - 1)\gamma(\beta) \qquad (3.25)$$

with $p(z) = u = u_1 + iu_2$ and $zp'(z) = v = v_1 + iv_2$. Then $\phi(u, v)$ is continuous in D = (C - {1-A}) x C. Further, (1,0) ε D and

$$Re\{\phi(1,0)\} = \alpha - \beta - (\alpha - 1)\gamma(\beta)$$

> $(\alpha - 1)\{1 - \gamma(\beta)\}$
> 0. (3.26)

Consequently, for all (iu_2, v_1) such that $v_1 \leq -(1 + u_2^2)/2$, we obtain

$$\operatorname{Re}\left\{\phi(iu_{2},v_{1})\right\} = \frac{(A-1)v_{1}}{(A-1)^{2}+u_{2}^{2}} + \alpha - \beta - (\alpha - 1)\gamma(\beta)$$

$$\leq \frac{2\left\{\alpha - \beta - (\alpha - 1)\gamma(\beta)\right\}\left\{(A-1)^{2}+u_{2}^{2}\right\} - (A-1)\left(1+u_{2}^{2}\right)}{2\left\{(A-1)^{2}+u_{2}^{2}\right\}}$$

$$\leq 0. \qquad (3.27)$$

By virtue of Lemma 3, we have

$$\operatorname{Re}\{p(z)\} > 0$$
 (z ε U),

that is,

$$Re{Azf'(z)f(z)^{\alpha-1}/z^{\alpha}} > A - 1.$$
 (3.28)

It follows from (3.28) that

$$\operatorname{Re}\left\{\frac{zf'(z)f(z)^{\alpha-1}}{z^{\alpha}}\right\} > \frac{1}{2\{\alpha - \beta - (\alpha - 1)\gamma(\beta)\} + 1}$$
(3.29)

which completes the assertion of Theorem 5.

Finally, we prove

THEOREM 6. Let $f(z) \in A$, $\alpha > 0$, $0 \le \beta < 1$, and $0 \le t \le 1$. If

$$g(z) = \int_{0}^{z} \left(\frac{f(s)}{s} \right)^{1-\alpha} ds \in S$$
(3.30)

and

$$G(z,t) = f((1-t)z) - f(1-t^{2})z) + (1 - t^{2}) \int_{0}^{z} \left(\frac{f(s)}{s} \right)^{1-\alpha} ds + zt\beta \left(\frac{f(z)}{z} \right)^{1-\alpha} \langle g(z), (3.31) \rangle$$

then $f(z) \in B_1(\alpha,\beta)$.

PROOF. Note that

$$G(z) = \lim_{t \to +0} \frac{G(z,t) - G(z,0)}{zt}$$

$$= \lim_{t \to +0} \frac{\partial G(z,t)/\partial t}{z}$$

$$= \beta \left(\frac{f(z)}{z} \right)^{1-\alpha} - f'(z)$$
 (3.32)

and $g'(z) = \{f(z)/z\}^{1-\alpha}$. It is clear from (3.32) that $\operatorname{Re}\{G(0)\} = \beta - 1 \neq 0$. Consequently, applying Lemma 4 when p = 1, we have

$$\operatorname{Re}\left\{\beta - \frac{zf'(z)f(z)^{\alpha-1}}{z^{\alpha}}\right\} < 0, \qquad (3.33)$$

or

$$\operatorname{Re}\{zf'(z)f(z)^{\alpha-1}/z^{\alpha}\} > \beta$$
(3.34)

which shows $f(z) \in B_1(\alpha, \beta)$.

REMARK 2. Letting $\beta = 0$ in Theorem 6, we have the corresponding theorem by Obradović [8, Theorem 1].

REFERENCES

- Robertson, M. S., On the theory of univalent functions, <u>Ann. of</u> <u>Math. 37</u>(1936), 374 - 408.
- Schild, A., On starlike functions of order α, <u>Amer. J. Math. 87</u> (1965), 65 - 70.
- MacGregor, T. H., The radius of convexity for starlike functions of order 1/2, <u>Proc. Amer. Math. Soc. 14</u>(1963), 71 - 76.

- Pinchuk, B., On starlike and convex functions of order α, <u>Duke</u> Math. J. <u>35</u>(1968), 721 - 734.
- Jack, I. S., Functions starlike and convex of order α, <u>J. London</u> <u>Math. Soc. (2)3(1971)</u>, 469 - 474.
- Singh, R., On Bazilevič functions, <u>Proc. Amer. Math. Soc. 38</u>(1973), 261 - 271.
- Obradović, M., Estimates of the real part of f(z)/z for some classes of univalent functions, <u>Mat. Vesnik 36</u>(1984), 266 - 270.
- Obradović, M., Some results on Bazilevič functions, <u>Mat. Vesnik</u> <u>37(1985)</u>, 92 - 96.
- Lindelöf, E., Mémoire sur certaines inéqalités dans la théorie des fonctions monogénes et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel, <u>Acta</u> <u>Soc. Sci. Fenn. 35(1909)</u>, 1 - 35.
- Littlewood, J. E., On inequalities in the theory of functions, <u>Proc.</u> <u>London Math. Soc. (2)</u>23(1925), 481 - 519.
- Rogosinski, W., On subordinate functions, <u>Proc. Cambridge Philos</u>. <u>Soc. 35(1939)</u>, 1 - 26.
- 12. Miller, S. S. and Mocanu, P. T., Second order differential inequalities in the complex plane, <u>J. Math. Ana. Appl. 65</u>(1978), 289 - 305.
- Miller, S. S., Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81(1975), 79 - 81.
- Robertson, M. S., Application of subordination principle to univalent functions, Pacific J. Math. 11(1961), 315 - 324.
- MacGregor, T. H., A subordination for convex function of order α, J. London Math. Soc. (2)9(1975), 530 - 536.