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ABSTRACT. Certain subclasses B(a,) and Bl(a,B) of Bazilevi functions

of type a are introduced. The object of the present paper is to derive

a lot of interesting properties of the classes B(a,B) and BI(a,B).
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I. INTRODUCTION.

Let A denote the class of functions of the form

f(z) z + a zn

n=2 n (I. I)

which are analytic in the unit disk U {z- zl < i}. Let S be the

subclass of A consisting of univalent functions in the unit disk U. A

function f(z) belonging to the class A is said to be starlike of order

if and only if
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Re{zf’ (z)/f(z)} > B (1.2)

.
for some B (0 < 8 < i), and for all z e U. We denote by S (8) the class

of all functions in A which are starlike of order 8. Throughout this

paper, it should be understood that functions such as zf’(z)/f(z), which

have removable singularities at z 0, have had these singularities

removed in statements like (1.2). A function f(z) belonging to the class

A is said to be convex of order 8 if and only if

Re{l + zf"(z)/f’(z)} > 8 (1.3)

for some B (0 =< 8 < I), and for all z e U. Also we denote by K(8) the

class of all functions in A which are convex of order 8.,
We note that f(z) e K(8) if and only if zf’(z) E S (8). We also have

, ,
S (B) S (0) 5 S K(B)___ K(0) K, and K(8) S*(8) for 0 < 8 < i.

The classes S () and K(B) were first introduced by Robertson [I],

and were studied subsequently by Schild [2], MacGregor [3], Pinchuk [4],

Jack [5], and others.

A function f(z) of A is said to be in the class B(a,8) if and only if

Re{zf’(z) f(z)-I/g(z)} > B (z e U) (1.4)

for some ( > 0) and for some (0 =< < I), where g(z) e S

Furthermore, we denote by BI(,) the subclass of B(,8) for which g(z)z.

Note that B(0,0) BI(0,0) S B(0,) BI(0,) B (8), and that

BI(I,B) is the subclass of A consisting of functions for which

Re{f’(z)} > for z e U.

The class B(,0) when 8 0 was studied by Singh [6] and

Obradovi ([7], [8]). Since B(,8)__. B(,0) for 0 < 8 < I, the class

B(,) is the subclass of Bazilevic functions of type (Cfo [6]).

Let f(z) and g(z) be analytic in the unit disk U. Then a function

f(z) is said to be subordinate to g(z) if there exists a function w(z)

analytic in the unit disk U satisfying w(0) 0 and lw(z) < i (z U)

such that f(z) g(w(z)). We denote by f(z)-< g(z) this relation. In

particular, if g(z) is univalent in the unit disk U the subordination

is equivalent to f(0) g(0) and f(U) g(U).
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The consept of subordination can be traced back to LindelDf [9],

but Littlewood [i0] and Rogosinski [Ii] introduced the term and discovered

the basic relations.

2. SOME PROPERTIES OF THE CLASS B(a,B).

We begin to state the following .lemma due to Miller and Mocanu [12].

LEMM i. Let M(z) and N(z) be regular in the unit disk U with

M(0) N(0) 0, and let 8 be real. If N(z) maps U onto a (possibly

many-sheeted) region which is starlike with respect to the origin then

Re{M’(z)/N’(z)} > 8 (z e U) Re{M(z)/N(z)} > B (z e U), (2.1)

and

Re{M’(z)/N’(z)} < B (z e U) Re{M(z)/N(z)} < 8 (z e U). (2.2)

Applying Lemma i, we prove

LEMMA 2. Let the function f(z) defined by (i.i) be in the class

S (8), and let and c be positive integers. Then the function F(z)

defined by

F(z)
+ c |z tc_If(t)dt (z e U)
zc J 0

is also in the class S (8).

PROOF. Setting

c I zzF’(z) z f(z) c tc-lf(t)dt M(z)0

F(z) I z tc-lf(t)dt N(z)
0

(2.4)

we have M(0) N(0) 0 and

Re{M’(z)/N’(z)} Re{zf’(z)/f(z)} > . (2.5)
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As N(z) is (+l)-valently starlike in the unit disk U, Lemma I shows that

Re{M(z)/N(z)} eRe{zF’(z)/F(z)} > 8 (2.6)

which implies F(z) e S (8).

Now, we state and prove

THEOREM i. Let the function f(z) defined by (I.i) be in the class

B(,8) for g(z) e S (8), where is a positive integer and 0 _< 8 < i.

Then the function F(z) defined by (2.3) is also in the class B(=,8).

PROOF. It follows from (2.3) that

zF’(z) + c

[zCf(z)ezc Iz tc_If
F(z)

I_ e
c

0
(z) dt (2.7)

.
Note that there exists a function g(z) belonging to the class S (8)

such that

Re{zf’(z)f(z)-I/g(z)a} > 8. (2.8)

Define the function G(z) by

+ c I z tc IG(z) c g(t) dt (2.9)
z 0

*Then, by using Lemma 2, we have G(z) e S (8). Combining (2.7) and (2.9),

we observe that

ezF’ (z)

F(z) l’eG(z)
zCf(z)a c I z t

c-I
0

f(t) adt
z

tC_ig(t) adt
0

(2. lo)

Setting

ezF’ (z)

F(z) i-eG(z) e

(z)

N(z)
(2.11)
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(2.10) gives

le{M’(z)/N’(z)} Re{zf’(z)f(z)-i/g(z)e} > ,8. (2.12)

Consequently, with the help of Lemma i, we conclude that

Re{zF’(z)F(z)e-I/G(z) e} > 8

that is, that F(z) B(a,8). Thus we have Theorem I.

COROLLARY i. Let the function f(z) defined by (i.i) be in the

class B(a,0), where is a positive integer. Then the function F(z)

defined by (2.3) is also in the class B(a,0).

(2.13)

THEOREM 2. The set of all points log{zl-=f ’(z)/f(z)l-e},
a fixed z e U and f(z) raning over the class B(,8), is convex.

for

PROOF. We employ the same manner due to Singh [6]. For the function

f(z) belonging to the class B(e,8), we define the function

h(z) zf’ (z) If(z) l-ag(z)a (2.14)

,
where g(z) e S Then, it is clear that Re{h(z)} > for z e U. We denote

by P(B) the subclass of analytic functions h(z) satisfying Re{h(z)} > 8

for 0 =< B < 1 and z e U. We note from (2.14) that

log{zl-ef’(z)/f(z) I-} logh(z) + a log{g(z)/z} (2.15)

Since, for a fixed z E U, the range of logh(z), as h(z) ranges over the

class P(8), is a convex set, and the range of log{g(z)/z}, as g(z) ranges,
over the class S is a convex set, we complete the proof of Theorem 2.

Taking a 0 in Theorem 2, we have

COROLLARY 2. The set of all points log{zf’(z)/f(z)}, for a fixed

z s U and f(z) ranging over the class S*(B), is convex.

Furthermore, taking I in Theorem 2, we obtain
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COROLLARY 3. The set of all points log{f’(z)}, for a fixed z e U

and f(z) ranging over the class C(8), is convex, where C(8) is the class

of analytic functions f(z) which satisfy Re{zf’(z)/g(z)} > for g(z) e S

3. SOME PROPERTIES OF THE CLASS Bl(a,B).
In order to derive some properties of the class BI(a,B), we shall

recall here the following lemmas.

LEMMA 3 (Miller [13]). Let (u,v) be the complex function,. D C, D C x C (C-complex plane) and let u uI + iu2, v v1

Suppose that the function # satisfies the conditions:

(i) (u,v) is continuous in D;

(ii) (I,0) e D and Re{(l,0)} > 0;

(iii) Re{(iu2,vl)} __< 0 for all (iu2,vI) e D and such that

vI __<-(i + up2)/2.
Let p(z) I + plz + be regular in the unit disk U, such that

(p(z),zp’(z)) e U for all z e U. If Re{(p(z),zp’(z))} > 0 (z U),

then Ne{p(z)} > 0 for z e U.

+ iv2

LEMMA 4 (Robertson [14]). Let f(z) e S. For each 0 < t < i let

F(z,t) be regular in the unit disk U, let F(z,0)__ f(z) and F(0,t) 0.

Let p be a positive real number for which

F(z,t) F(z,0)
F(z) lim

t +0 ztp

exists. Let F(z,t) be subordinate to f(z) in U for 0 < t =< i, then

Re{F(z)/f’(z)} < 0 (z e U). (3.1)

If in addition F(z) is also regular in the unit disk U and Re{F(0)} # 0,

then

Re{F(z)/f’(z)} < 0 (z e U). (3.2)
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LEMMA 5 (MacGregor [15]). Let the function f(z) be in the class

K(8). Then f(z) S ((8)), where

28- i

2(1- 21-28)

21og2

1/2)

1/2). (3.3)

We begin with

LEMMA 6. Let the function f(z) be in the class BI(a,B), where

a is a positive integer and 0 < 8 < I. Then

Re{f(z)/z} ( > (z e U). (3.4)

PROOF. For f(z) e BI(,8), we have

Re{zf’(z) f(z)e-I/z} Re { df(z)e/dZdze/dz
> B (3.5)

Applying Lemma I, we can prove the assertion (3.4).

THEOREM 3. Let the function f(z) be in the class BI(a,B), where

a is a positive integer and 0 < B < i. Then the function Fl(Z) defined by

Fl(Z)a+ zYf(z) a (3.6)

belongs to the class Bl(+y,8) for y > O.

PROOF. Note that

( + )Fl(Z)
Fl (z)

i- (+y)
yzY-if(z)e + (3.7)

or

(( + ) ZFIl(Z)
Fi (z)

i- ((+y) zc+-f

f(z)
(3.8)
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Therefore, by using Lemma 6, we have

(+) 1 z+Re{ZFl(Z)Fl(Z) / > B (3.9)

which implies Fl(Z) Bl(a+y,B). Thus we completes the theorem.

Applying Lemma 3, we derive

THEOREM 4. Let the function f(z) be in the class BI(a,B) with

and 0 < g < 1. Then

f(z) I + 2
Re >

z i+2
(z e U). (3.10)

PROOF. We define the function p(z) by

A{f(z)/z} p(z) + B, (3.11)

where A (I + 2)/2(i B) and B (i + 2)/2(I ). Then p(z) is

analytic in the unit disk U and p(0) i. Differentiating both sides of

(3.11) logarithmically, we obtain

zf’ (z) i zp’ (z)
+

or f(z) p(z) + B
(3.12)

zf’(z) f(z)-I/z {zp’(z) + e(p(z) + B)}leA.

Since f(z) e BI(,), (3.13) gives

Re{zp’(z) + (p(z) + B)} eBA > 0.

Letting p(z) u uI
the function

+ iu2 and zp’(z) V vI + iv2, we consider

(3.13)

(3.14)

(u,v) v + (u + B) BA (3.15)

which is continuous in D C x C, and which (i,0) s D and

Re{(l,0)} 3/2 > 0. Then, for all (iu2,vl) such that vI =<-(i + u22)/2,
we have
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Re{(iu2,vI)} vI + a8

< -up2/2

Consequently, with the aid of Lemma 3, we conclude that

Re{p(z) > 0

that is, that

Re A
z

(3.16)

This completes the proof of Theorem 4.

(z e U), (3.17)

> B (3.18)

Putting 8 0 in Theorem 4, we have

COROLLARY 3 ([8, Theorem 3]). Let the function f(z) be in the class

BI(,0) with > 0. Then

f(z) ] i
Re >

z i+2
(z e U). (3.19)

Taking I in Theorem 4, we have

COROLLARY 4. If the function f(z) belonging to A satisfies

Re{f ’(z)} > 8 with 0 __< < i, then

f(z) I + 28
Re >

z 3
(Z U). (3.20)

REMARK i. Letting 8 0 in Corollary 4, we have the corresponding

result due to Obradovi [7, Theorem 2].

Next, we prove
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THEOREM 5. Let > I, 0 __< 8 < I, and y(8) define by (3.3). Let

-1/4 __< ( l)y(B) =< 1/4. If the function f(z) belongs to the

class K(B), then f(z) BI(,B’), where

’ 1112{- 8 (- 1)y()} + 1].

PROOF. Define the function p(z) by

Azf’(z)f(z)-I/ze p(z) + A i (3.21)

where A i + i/2{e B ( l)y(B)}. Differentiating both sides of

(3.21) logarithmically, we know that

zf" (z) zf’ (z) zp’ (z)
i- + + (- l)

f’(z) f(z) p(z) + A- i
(3.22)

I +
zf"(z) zf’ (z)- + (- I)[ -y()]
f’(z) f’(z)

zp’ (z)

p(z) + A- I

With the help of Lemma 5, (3.23) implies

Re{ zp’ (z) }p(z) +A- i
(- I)(S) > 0.

Let the function (u,v) be defined by

(3.23)

(3.24)

(u,v)
u+A- i

+ =- S- (- I)(S)

with p(z) u uI + iu2 and zp’(z) v vI + iv2. Then (u,v) is

continuous in D (C- {l-A}) x C. Further, (i,0) e D and

(3.25)

Re{(l,0)} e 8 (- l)y(8)

> (- i){i- y(B)}

> 0. (3.26)
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Consequently, for all (iu2,vI) such that vI < -(i + u22)/2, we obtain

Re{(iu2,vI)}
(A- l)vI

2 2(A i) + u2

+ a B (a’- l)x(8)

2{- 8- (a- I)X(8)}{(A- 1)2 + u} (A- i)(i + u)
2{(A i)2 + up2}

(3.27)

By virtue of Lemma 3, we have

Re{p(z)} > 0 (z e U),

that is,

Re{Azf’(z)f(z)-I/za} > A- I. (3.28)

It follows from (3.28) that

zf’ (z) f(z) e-I } >Re ez 2{=- 8 (a- 1)(8)} + I
(3.29)

which completes the assertion of Theorem 5.

Finally, we prove

THEOREM 6. Let f(z) E A, a > 0, 0 < B < I, and 0 _< t < I. If

g(z) Iz f(s)

0 s
ds S (3.30)

and

G(z,t) f((l-t) z) f(l-t2)z)

+ (i- t2)iz f(s)]l-e
0 s

ds + ztS[
f(z)

z
-< (3.31)g(z),



358 SHIGEYOSHI OWA and MILUTIN OBRADOVI

then f(z) e BI(=,8).

PROOF. Note that

G(z) lira
t /+0

G(z,t) G(z,0)

zt

lim
t /+0

G(z,t)/3t

f(z) ]i-8 f’ (Z) (3.32)
z

and g’(z) {f(z)/z} l-e. It is clear from (3.32) that Re{G(0)} 8 I # 0.

ConSequently, applying Lemma 4 when p i, we have

zf’ (z) f(z)-I }Re 8
z

< 0 (3.33)

or

Re{zf’(z)f(z)-I/ze} > 8

which shows f(z) e Bl(e,8).

(3.34)

REMARK 2. Letting 8 0 in Theorem 6, we have the corresponding

theorem by Obradovi6 [8, Theorem I].
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