A NOTE ON THE INVERSE FUNCTION THEOREM OF NASH AND MOSER

MIKAEL LINDSTROM

Department of Mathematics Åbo Akademi SF-20500 Åbo, Finland

(Received September 9, 1985)

ABSTRACT. The Nash-Moser inverse function theorem is proved for different kind of differentiabilities.

KEY WORDS AND PHRASES. Continuous convergence, coreflective subcategory, graded space, smoothing operators, tame map, C_{Ω}^{∞} -differentiability. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 58C15.

1. INTRODUCTION

The purpose of this note is to formulate the inverse function theorem of Nash and Moser for different differentiabilities using a categorical approach. The proof is based on the inverse function theorem of Nash and Moser in the version of Hamilton [1] formulated in the category of graded Fréchet spaces which admit smoothing operators and C_c^{∞} -differentiable [2] tame maps. Our proof is using the same technique as Schmid [3] uses when he proves this theorem for a stronger notion of differentiability, called the Γ -differentiability, than the C_c^{∞} -differentiability. From our formulation it is possible to derive the inverse function theorem of Nash and Moser for natural differentiabilities stronger than the C_c^{∞} -differentiability. 2. THE INVERSE FUNCTION THEOREM OF NASH AND MOSER.

Let LC denote the category of locally convex limit vector spaces [2] and continuous linear mappings. Further let K_{α} denote a coreflective subcategory of LC which is closed under finite products and the coreflector $?^{\alpha}$: LC $\rightarrow K_{\alpha}$ is the identity on morphisms and such that the identity mapping $(C_{C}(X,F))^{\alpha} = C_{\alpha}(X,F) \rightarrow C_{C}(X,F)$ is contrinuous. Here $\mathcal{C}_{\mu}(X,F)$ denotes the vector space of continuous mappings $X \neq F$, endowed with continuous convergence [2], and X is a limit space and F \in obj(LC) .

For any pair E,F \in obj(LC) we let $L_c^k(E,F)$ be the space of all continuous k-linear mappings from E^k into F, endowed with continuous convergence. We write $(L_{\alpha}^{k}(E,F))^{\alpha} = L_{\alpha}^{k}(E,F)$.

DEFINITION. Let E and F be locally convex spaces and let U be open in E .

A mapping $f:U \rightarrow F$ is said to be differentiable of class C^p_α , if there exist functions

$$D^{k}f : U \to L^{k}(E,F)$$
, $k = 0,1,...,p$,

such that $D^{O}f = f$ and for each $x \in U$, each $h \in E$ and each $k = 0, 1, \dots, p-1$, we have

$$\lim_{t \to 0} t^{-1}(D^k f(x+th) - D^k f(x)) = D^{k+1} f(x)h ,$$

and such that for each $k \in \mathbb{N}$, $k \leq p$, the following two conditions are satisfied:

(1) $D^k f(U) \subseteq L^k(E,F)$ (2) $D^k_{\alpha} f: U \to L^k(E,F)$ is continuous.

f is called differentiable of class C^∞_α if it is differentiable of class C^p_α for every $p\in {\rm I\!N}$.

By Keller [2] the chain rule is valid for C_{α}^{∞} , since α is a finer limit structure than continuous convergence. From the universal property of continuous convergence follows that for any continuous map $g: U \rightarrow L_{\alpha}^{k}(E,F)$ the associated map $\tilde{g}: U \times E^{k} \rightarrow F$ defined by $\tilde{g}(x,h_{1},\ldots,h_{k}) = g(x)(h_{1},\ldots,h_{k})$, $x \in U$, $h_{i} \in E$, is continuous. As the limit structure α is always finer than c, we have that differentiability of class C_{α}^{∞} implies differentiability of class C_{c}^{∞} . The latter is exactly the concept of differentiability used by Hamilton [1] to prove the inverse function theorem of Nash and Moser.

We first recall some definitions that will be needed.

Let E be a Fréchet space. A grading on E is an increasing sequence of norms $(||\cdot||\frac{1}{r})_{r\in\mathbb{N}}$ on E which defines the topology on E. Two gradings $(||\cdot||\frac{1}{r})_{r\in\mathbb{N}}$ and $(||\cdot||\frac{2}{r})_{r\in\mathbb{N}}$ are equivalent if for some $s\in\mathbb{N}$ $||x||\frac{1}{r}\leq c||x||^2_{r+s}$ and $||x||^2_r\leq c||x||^2_{r+s}$, $x\in E$, with a constant c which may depend on r. A graded space is a Fréchet space together with an equivalence class of gradings. We say that a graded space E admits smoothing operators if we can find linear maps $S_t: E \to E, 1 \leq t < \infty$, such that for some $r ||S_t(x)||_{i+k} \leq ct^{r+k} ||x||_i$ and $||S_t(x) - x||_i \leq ct^{r-k} ||x||_{i+k}$ for all $i, k \in \mathbb{N}$, $1 \leq t < \infty$, $x \in E$ and some constant c which may depend on i and k. Let E and F be graded spaces and U open in E. We say that a map $f: U \to F$ is tame if for every $x_0 \in U$ we can find a neighbourhood U_0 and a number $r \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ we have the growth estimate $||f(x)||_n \leq c(||x||_{n+r} + 1)$ for all $x_0 \in U$, where the constant c may depend on n.

In the proof of the inverse function theorem of Nash and Moser we shall also need the following result (Lemma 2, [3]): The composition of two continuous tame maps is continuous and tame.

THEOREM. Let E and F be graded spaces which admit smoothing operators. Let U be open in E and assume that

(1) $f: U \to F$ is differentiable of class C_{α}^{∞} and tame.

(2) $\widetilde{D^k f} : U \times E^k \to F$ is tame for every $k \in \mathbb{N}$.

(3) For each $x \in U$ the derivative $Df(x) : E \rightarrow F$ is an isomorphism.

(4) The map Vf : U $\rightarrow L_{\alpha}(F,E)$, Vf(x) = (Df(x))⁻¹, is continuous.

(5) \widetilde{Vf} : $U \times F \rightarrow E$ is tame.

Then for any $x_0 \in U$ we can find open neighbourhoods of x_0 and V_0 of $f(x_0)$ such that f is a bijective map from U_0 onto V_0 and the inverse map $f^{-1}: V_0 \rightarrow U_0$ is differentiable of class C_{α}^{∞} and the maps $D^k f^{-1}: V_0 \times F^k \rightarrow E$ are tame for all $k \in \mathbb{N}$. Furthermore we have the formula $D(f^{-1})(y) = Vf(f^{-1}(y))$ for all $y \in V_0$.

PROOF. The maps $D^{k}f$: $U \times E^{k} \rightarrow F$ are continuous and tame, since f is differentiable of class C_{α}^{∞} and assumption (2). Further the assumptions (4) and (5) imply that also \widetilde{Vf} : U x F \rightarrow E is continuous and tame. Now we have that f is differentiable of class C_{α}^{∞} and all $D^{k}f$ are tame, $Df(x) : E \rightarrow F$ is an isomorphism for every $x \in U$ and the family of inverses \widetilde{Vf} : UxF \rightarrow E are continuous and tame maps. Consequently the conditions of the inverse function theorem of Nash-Moser are fulfilled (theorem 1.1.1 p. 171 in [1]). Then for every $x_0 \in U$ there exist neighbourhoods U_0 of x_0 and V_0 of $f(x_0)$ such that $f: U_0 \to V_0$ is bijective and $f^{-1}: V_0 \to U_0$ is continuous and tame. Furthermore the formula $\lim_{t\to 0} t^{-1}(f^{-1}(y + tw) - f^{-1}(y)) = Vf(f^{-1}(y))w$ holds, for all $y \in V_0$ and $w \in F$, by the proof of theorem 1.1.1 p. 186 in [1]. By induction on k we will prove the remaining part that $f^{-1}: V_0 \rightarrow U_0$ is differentiable of class C_{α}^{∞} and $D^{k}f^{-1}$: $V_{0} \times F^{k} \rightarrow E$ is tame for every $k \in \mathbb{N}$. From the formula $Df^{-1} =$ $Vf \circ f^{-1}$ and assumption (4) follow that $Df^{-1} : V_0 \to L$ (F,E) is continuous. Further we have that \widetilde{Df}^{-1} : $V_0 \times F \to E$ is tame since \widetilde{Vf} and f^{-1} are tame. Assume now it to be true for k. From the definition of the α -differentiability follows that the map f^{-1} is C_{α}^{k+1} if Df^{-1} is differentiable of class C_{α}^{k} . Since $Df^{-1} = Vf \circ f^{-1}$, $D^{k+1}f^{-1}$ is clearly tame so we only have to show that Vf is differentiable of class C^k . By induction on p. By theorem 5.3.1, p. 102 in [1] we have that Vf is weakly differentiable and that $\widetilde{D(Vf)}$: $U_0 \times E \times F \rightarrow E$ is continuous and the formula $[D(Vf)](x)\{u,w\} = -Vf(x)[D^2f(x)\{u,Vf(x)w\}] \text{ holds for all } x \in U_0 \text{ , } u \in E \text{ and } w \in F.$ Thus the derivative $D(Vf) : U_0 \rightarrow L_{\alpha}(E \times F, E)$ can be factorized according to

$$U_0 \xrightarrow{(D^2 f, Vf)} L^2_{\alpha}(E,F) \times L_{\alpha}(F,E) \xrightarrow{h} L_{\alpha}(E \times F,E)$$
,

where h is defined by $h(\phi,\psi) = -\psi \circ \phi \circ (id_E,\psi)$ for $\phi = D^2 f(x)$ and $\psi = Vf(x)$. By theorem 0.3.5 in [2] h is continuous for $\alpha = c$. Since the category K_{α} is closed under finite products and ?^{α} is a coreflector it follows that h is continuous. Thus it is true for p = 1. Since h is bilinear it is differentiable of class C_{α}^{∞} , and consequently the map Vf is differentiable of class C_{α}^{∞} by induction. Thus the theorem is proved.

We shall now consider examples of coreflective subcategories of LC which are closed under finite products and the coreflectors ?^{α} fulfill the assumption that the identity mapping $C_{\alpha}(U,F) \rightarrow C_{c}(U,F)$ is continuous.

EXAMPLE 1. Let K_{α} be the category $K_{c} = LC$; ?^{α} is the identity functor $1_{LC} = ?^{c}$.

EXAMPLE 2. Let K_{α} be the category K_{e} of equable locally convex limit vector spaces [2]. The coreflector ?^e : LC $\rightarrow K_{e}$ is the identity on morphisms and on objects E it is characterized as follows: a filter F on E converges to zero in E^e iff $\mathbb{V}G = G \leq F$ for some filter G which converges to zero in E.

MIKAEL LINDSTROM

EXAMPLE 3. Let K be the category K_{M} of Marinescu spaces [2]. The corflector $?^{M}$: LC $\rightarrow K_{M}$ is the identity on morphisms and on objects E it is characterized as follows: a filter F on E converges to zero in E^{M} iff $\Im G = G \leq F$ and $\bigcap{\mathbb{K}G : G \in G} \in G$ for some filter G which converges to zero in E.

EXAMPLE 4. Let K_{α} be the category K_{b} of bornological locally convex limit vector spaces. The coreflector ?^b : LC $\rightarrow K_{b}$ is the identity on morphisms and on objects E it is characterized as follows: a filter F on E converges to zero in E^b iff VB \leq F for some bounded subset B \subseteq E, i.e. some set B such that VB converges to zero in E.

Example 1 gives us the inverse function theorem of Nash and Moser by Hamilton [1]. From example 3 we derive the inverse function theorem of Nash and Moser for the differentiability of class C_{M}^{∞} (C_{Δ}^{∞} in Keller [2]). In [4] Kriegl has discussed smooth mappings between locally convex spaces, where a mapping is called smooth iff its composition with smooth curves are smooth. He has compared this concept of smoothness with different C_{α}^{∞} -differentiabilities (see [2]). From [2] and [4] follow that a mapping between Fréchet spaces is smooth iff it is C_{c}^{∞} -differentiable. Thus the inverse function theorem of Nash and Moser is valid for this concept of smoothness.

REFERENCES

- HAMILTON, R.S. The Inverse Function Theorem of Nash and Moser. <u>Bulletin of AMS</u>, New ser. vol. 7, 65-222 (1982).
- KELLER, H.H. Differential calculus in locally convex spaces. Lecture Notes in Math. 417, Springer Berlin, 1974.
- SCHMID, R. The inverse function theorem of Nash and Moser for the Γ-differentiability. Proc. of the 2nd school on convergence spaces, Schwerin, 1983, Convergence Structures and Applications, II, Berlin 1984.
- KRIEGL, A. Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen lokalkonvexen Vektorräumen. Mh. Math. 95, 287-309 (1983).