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INTRODUCT ION

The purpose of this note is to formulate the inverse function theorem of Nash and

Moser for different differentiabilities using a categorical approach. The proof is

based on the inverse function theorem of Nash and Moser in the version of Hamilton [I]

formulated in the category of graded Frchet spaces which admit smoothing operators and

C-differentiable [2] tame maps. Our proof is using the same technique as Schmid [3]
c

uses when he proves this theorem for a stronger notion of differentiability, called

the F-differentiability than the Coo-differentiability. From our formulation it is
C

possible to derive the inverse function theorem of Nash and Moser for natural

Cdifferentiabilities stronger than the differentiability
C

2. THE INVERSE FUNCTION THEOREM OF NASH AND MOSER.

Let LC denote the category of locally convex limit vector spaces [2] and con-

tinuous linear mappings. Further let K denote a coreflective subcategory of LC

which is closed under finite products and the coreflector . LC Ks is the identity

on morphisms and such that the identity mapping (Cc(X F)) C (X,F) C (X F) is
C

endowed with continuous convergence [2], and X is a limit space and F E obj(LC)

For any pair E,F E obj(LC) we let Lk(E F) be the space of all continuous
C

k-linear mappings from Ek into F endowed with continuous convergence. We write

(ekc(E F)) ek(E,F)
DEFINITION. Let E and F be locally convex spaces and let U be open in E
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A mapping f U F is said to be differentiable of class Cp if there exist

f unc t ions

Dkf U Lk(E,F) k 0,I ,p

such that Df f and for each x E U each h E E and each k O,|,...,p-| we

have

lid t-|(Dkf(x+th) Dkf(x)) Dk+|f(x)h
t+0

and such that for each k IN k < p the following two conditions are satisfied:

(I) Dkf(u) c Lk(E,F) (2) Dkf U Lk(E,F) is continuous.

C if it is differentiable of class Cp forf is called dfferentiable of class

every p IN

By Keller [2] the chain rule is valid for Coo since a is a finer limit
(

structure than continuous convergence. From the universal property of continuous con-

vergence follows that for any continuous map g U- Lk(E,F) the associated map

E
k

,hk) g(x)(h hk) x U h i E is con-Ux /F defined by (x,hl
tinuous. As the limit structure is always finer than c we have that differenti-

The latter is exactlyability of class Ca implies differentiability of class C
c

the cDncept of differentiability used by Hamilton [I] to prove the inverse function

theorem of hash and Moser.

We first recall some definitions that will be needed.

Let E be a Frchet space. A grading on E is an increasing sequence of norms

(li’II r)riN on E which defines the topology on E Two gradings (II’II r rEIN
< cllxli2 andand II’112r )rCIN are equivalent if for some s IN llXllr r+s

II..x.. r2 _< c llx llr+s2 X E with a constant c which may depend on r A graded space

is a Frchet space together with an equivalence class of gradings. We say that a graded

space E admits smoothing operators if we can find linear maps S
t

E

such that for some r liSt(x) lli+k < ctr+kllxll i and llSt(x) xll i < ctr-kllxlli+k for

all i,k f IN < t < Oo, x E and some constant c which may depend on i and k.

Let E and F be graded spaces and U open in E We say that a map f U- F

is tame if for every x E U we can find a neighbourhood U and a number r

< =(llxli + I) forsuch that for every n C IN we have the growth estimate f(x)II n n+r
all x U, where the constant c may depend on n

In the proof of the inverse function theorem of hash and Moser we shall also need

the following result (Lemma 2, [3]): The composition of two continuous tame maps is

continuous and tame.

THEOREM. Let E and F be graded spaces which admit smoothing operators. Let

U be open in E and assume that

(I) f U- F is differentiable of class C and tame.

(2) DKf U Ek- F is tame for every k IN.

(3) For each x f U the derivative Df(x) E F is an isomorphism.

(4) The map Vf U L (F,E) Vf(x) (Df(x)) -I is continuous.

(5) Vf U xF E is tame.
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Then for any x E U we can find open neighbourhoods of x and V of f(x 0) such
-1

that f is a bijective map from U onto V and the inverse map f V U is

D- Fkdifferentiable of class Ca and the maps V E are tame for all k t IN

Furthermore we have the formula D(f-1)(y) Vf(f-l(y)) for all y V

PROOF. The maps U Ek F are continuous and tame, since f is differenti-

able of class C and assumption (2). Further the assumptions (4) and (5) imply that

also Vf Ux F E is continuous and tame. Now we have that f is differentiable

of class Ca and all Dkf are tame, Df(x) E -F is an isomorphism for every x t U

and the family of inverses Vf U F E are continuous and tame maps. Consequently

the conditions of the inverse function theorem of Nash-Moser are fulfilled (theorem

1.1.1 p. 171 in [I]). Then for every x E U there exist neighbourhoods U of x

V is bijective and f V Uand V of f(x 0) such that f U is continuous

and tame. Furthermore the formula lim t-1(f-1(y + tw) f-1(y)) Vf(f-1(y))w holds,
t/O

for all y E V and w f F by the proof of theorem 1.1.1 p. 186 in [I]. By induction

on k we will prove the remaining part that f V U is differentiable of class

Cc and Dkf-1 FkV E is tame for every k IN From the formula Df

Vf f and assumption (4) follow that Df V L (F,E) is continuous Further

we have that Df V F E is tame since Vf and f are tame. Assume now it

to be true for k From the definition of the c-differentiability follows that the

map f-1 is Cak+1 if Df
-I is differentiable of class Ck( Since Df-I Vf f-1

Dk+If-I is clearly tame so we only have to show that Vf is differentiable of class

Ck By induction on p By theorem 5.3.1, p. 102 in [I] we have that Vf is weak-

ly differentiable and that D) U E F E is continuous and the formula

[D(Vf)](x){u,w} -Vf(x)[D2f(x){u,Vf(x)w}] holds for all x U u E E and w F.

Thus the derivative D(Vf) U Lc(E F,E) can be factorized according to

(D2f--) e (E,F) L((F,E) e (E F,E)Uo c oc

where h is defined by h(,) - o(idE,) for D2f(x) and Vf(x) By

theorem 0.3.5 in [2] h is continuous for c Since the category K is closed

under finite products and ? is a coreflector it follows that h is continuous.

Thus it is true for p Since h is bilinear it is differentiable of class Ca
and consequently the map Vf is differentiable of class Ca by induction Thus the

theorem is proved

We shall now consider examples of coreflective subcategories of LC which are

closed under finite products and the coreflectors fulfill the assumption that the

identity mapping Cc(U F) C (U,F) is continuous.
C

90/. ?CEXAMPLE Let Kc be the category Kc LC is the identity functor 1LC
EXANPLE 2. Let K

a be the category K of equabIe locaiIy convex Iimit vector

?espaces [2]. The coreflector LC K is the identity on morphisms and on objectse
E it is characterized as foilows: a filter F on E converges to zero in E

e
iff

for some filter G which converges to zero in E
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EXAMPLE 3. Let K be the category KM of Marinescu spaces [2]. The corflector

M LC KM is the identity on morphisms and on objects E it is characterized as

follows: a filter F on E converges to zero in EM iff G G < F and

N{G G E } E for some filter which converges to zero in E

EXAMPLE 4. Let be the category b of bornological locally convex limit

b Kbvector spaces. The coreflector LC is the identity on morphisms and on

objects E it is characterized as follows: a filter F on E converges to zero in

Eb iff B < for some bounded subset B c E i.e. some set B such that VB

converges to zero in E

Example gives us the inverse function theorem of Nash and Moser by Hamilton [|].

From example 3 we derive the inverse function theorem of Nash and Moser for the

differentiability of class C
M

(CA in Keller [2]). In [4] Kriegl has discussed

smooth mappings between locally convex spaces, where a mapping is called smooth iff

its composition with smooth curves are smooth. He has compared this concept of smooth-

ness with different C -differentiabilities (see [2]). From [2] and [4] follow that a

mapping between Frchet spaces is smooth iff it is C -differentiable. Thus the inversec
function theorem of Nash and Moser is valid for this concept of smoothness.
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