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ABSTRACT. Shallow water waves are governed by a pair of non-linear partial differ-

ential equations. We transfer the associated homogeneous and non-homogeneous systems,

(corresponding to constant and sloping depth, respectively), to the hodograph plane

where we find all the non-simple wave solutions and construct infinitely many poly-

nomial conservation laws. We also establish correspondence between conservation laws

and hodograph solutions as well as Bcklund transformations by using the linear nature

of the problems on the hodogrpah plane.
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i. INTRODUCTION.

The linearity of a partial differential equation implies that any linear combina-

tion of solutions of the equation will also be a solution. This fundamental fact is

also the main reason behind the method of separation of variables. In the event that

a partial differential equation is non-linear, this property is lost, and it becomes

impossible to employ separation of variable techniques, or any other argument that de-

pends on superpossibility. Another striking difference between linear and non-linear

partial differential equations is that, unlike linear p.d.e.’s, non-linear equations

often do not admit solutions which can be continuously extended wherever the differen-

tial equations themselves remain regular.

During the last decade, finding exact solutions to non-linear differential equa-

tions has once more become important for both theoretical and practical purposes

(Soliton Theory). It has been observed on some occasions (Korteweg-de Vries, Sine-

Gordon) that there are close connections between exact solutions, the existence of con-

servation laws, the inverse scattering method and Bcklund transformations. Such cases

are called completely integrable systems. They come in association with some linear

differential equations. In this article we shall obtain similar relations and proper-

ties in the case of the shallow water wave theory.

We were introduced to the area of water waves by Nutku’s recent paper [i]. Shallow

water waves are governed by a system of two non-linear partial differential equations,
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which can also be written in the form of two conservation laws. First, we try to find

further conservation laws by using the method of Estabrook-Wahlquist [2]. For the

homogeneous case (corresponding to constant depth) we are able to" construct an infinite

family of conservation equations. This leads us to search for the exact solutions. It

was at this point that we learnt that these results were already known to Whitham [3].

We pass to the hodograph plane where we catch the linear system of equations associated

with our non-linear problem. On this plane we show that conservation laws are easily

derivable. On the hodograph plane we obtain all the solutions, except simple waves,

by potentials which also satisfy linear equations. These potentials are, in fact, the

Legendre transforms of the ones introduced by Nutku. Via these potentials we are also

able to construct a correspondence between conservation laws and non-simple wave solu-

tions of the homogeneous problem.

Finally, we take up the non-homogeneous case corresponding to a sloping beach. By

using the polynomial conservation laws of the related homogeneous problem we construct

an infinite family of polynomial conservation laws for the non-homogeneous case. By

using the solutions of the cylindrical wave equation we also indicate how one can con-

struct auto-Bcklund and Bcklund transformations for these homogeneous and non-

homogeneous problems.

2. METHOD OF ESTABROOK-WAHLQUIST.

We consider the following system of two homogeneous first order quasi-linear equa-

tions

u + uu + 2cc 0, (2.1)
t x x

+ uc
c

ct x
u
x O, (2.2)

representing shallow water waves, the bottom of the ocean being horizontal [4]. u(x,t)

and c(x,t) are the velocities of the fluid and of the disturbance with respect to the

fluid respectively. Subscripts denote partial derivatives.

First we shall apply the techniques of Estabrook-Wahlquist [2] (Section 3) to the

system (2.1) and (2.2) above to find all the conservation laws, which are to be used to

obtain potentials in their paper.

In the four-dimensional space of all the independent and dependent variables

{x, t, u, c}, the set of first-order differential equations (2.1) and (2.2) above can

be expressed by the following pair of differential 2-forms [I].

l du ^ dx udu ^ dt 2cdc ^ dt, (2.3)

a2 2cdc ^ dx 2cudc A dt c2du ^ dr. (2.4)

Any regular (differentiable) solution (u,c) of (2.1) and (2.2) will nnu this set of

forms. Since d.l O, i 1, 2, the ideal generated by al and a2 is closed and

one can, therefore, apply Cartan’s theory.

Coeaf Zr correspond to the existence of e 2-forms contained in the

ring a. Let us try to find all the 2-forms
1

B fl + g2 (2.5)

satisfying dB O, the condition for exactness. This is the (local) integrability
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condition for the existence of a l-form, say m such that

B dm. (2.6)

The following treatment is restricted in that we do not al%ow f and g to be explicit

functions of the independent variables x and t This seems plausible since the

system (2.1) and (2.2) itself has no explicit (x,t) dependence.

dB (fudu + fcdc) ^ i + (gudu + gcdc) ^ 2

(2cg
u

f du ^ dc ^ dx + (c2gc- 2cug
u

+uf -2cf du^dc^dt.
C C U

Hence, d 0 implies

fc 2cgu, (2.7)

2f (2 8)
u Cgc"

B dm f1 + g2 fdu ^ dx + 2cgdc ^ dx (uf + c2g)du ^ dt 2c(f + ug)dc ^ dr,

which, with the help of (2.7) and (2.8) integrates to

m dx-f fDu dt.f (uf + c2g)u. (2.9)

Since d lies in a closed ideal of differential forms, "Frobenius theorem" applies:

Any local solution which annuls the ideal must also annul . This, in turn, gives

us the following conservation equation.

F + G O, (2.10)
t x

where

and

F f fu with F 2cg, (2.11)
C

G f (uf + c2g)u with G 2c(f + ug). (2.12)
C

When the condition (2.10) is satisfied we shall say that the pair (F,G) forms a con-

seuaion . If G 0 at x 0 and we obtain the corresponding conserved

quantity f= Fdx.

Since the system of equations (2.1) and (2.2) is quasi-linear (i.e., linear in the

derivatives) with polynomial coefficients in u and c the most interesting conser-

vation equations are polynomial in u and c They may be obtained consistently from

(2.7) and (2.8) along with (2.11) and (2.12) by taking

n 0 2j
f i$0 Pi(U)C

2i
g qj(u)c

from which it follows that

0PO
0qn

mPm qm-l’ m 1,2 n

Pm mqm"

(It can easily be checked that the odd powers of c do not survive). We list the first

few of these polynomials:
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0 u u + =2
2

0 c2 uc 2

c2

uc2

c
u uc 2 u2c2+
u u2c2 c u3c+ c2 + uc4
2 2 2 2

u2c2+ c4
u u3c 2 u4c 2 3u2c4 c 6

3
+ 2uc2

3
+ uc4

3
+ ----- + --2 2+

uq ug 2 c6 5c2-u c 2ucq 6 + 2u2 c2+ cg 6c + u2c + 3 u6 +-u43c +uc6

It is interesting to note that F and G are homogeneous in u and c This ob-

servation immediately makes us think of our Russian colleagues who have extracted the

algebro-geometric structures of some of the "completely integrable" evolution equations

[5,6]. For the boundary conditions u O, c 0 at x 0 and we obtain in-

finitely many conserved quantities by integrating F’s with respect to x from 0 to

Differentiating (2.7) partially with respect to u and (2.8) with respect to

c and subtracting, we find

gc
4guu gcc +--c (2.13)

or

(2 14)4guu (Cgc) c

Thus, we have the cylindrical wave equation for g(u,c). This is a linear equation

for g which can be solved by standard methods Similarly, for f(u,c) we have

f
4f f

c---, (2.15)
uu cc c

or
f

4 f c (--V-)
cuu c

On the other hand, upon eliminating f and g from the set of equations (2.11)

and (2.12) we arrive at the following relations:

G uF + F (2 16)
u u 2 c’

G 2cF + uF (217)
c u c

As before, differentiating (2.16) partially with respect to c, and differentiating

(2.17) partially with respect to u and subtracting we obtain

F
4F F -!c (2.18)

uu cc c

Unfortunately, (maybe fortunately), we don’t have a nice equation for G

We make the following observation: Even though x and t are the independent

variables, all our expressions are (linear) partial differential equations in the
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variables u and c This is because we have no (x,t) dependence in the system of

equations (2.1) and (2.2) with which we started. This suggests that we should inter-

change the roles of the dependent and independent variables. This is called the

"hodograph" method, which we will take up in the following section.

3. METHOD OF HODOGRAPH TRANSFORMATION.

We consider the system (2.1) and (2.2) which has no explicit (x,t) dependence.

For any region where the Jacobian

J=u c -u c
x t t x

is non-zero, the system (2.1) and (2.2) can be transformed into an equivalent linear

system by interchangin the roles of dependent and indep dent vari b]e.

for a solution u(x,t), c(x,t) of (2.1) and (2.2), we may consider x and t as

functions of u and c. From

u Jt u -JXc, (3.
x c t

Cx =-Jtu, ct JXu (3.2)

we see that the highly non-linear factor J cancels through in (2. I) and (2.2) and

that x(u,c) and t(u,c) satisfy the linear differential equations

C
x ut (3.3)
U U tc

x -2ct + ut (3.4)
C U C

By elimimating x we obtain the linear equation

4t t + --3t (3.5)
UU CC C C

which can be solved by standard methods. This can be further simplified by introducing

the transformation
S
C

t (3.6)
c

We obtain the cylindrical wave equation

S

4s s +__c (3 7)
UU CC C

whose solutions involve Bessel functions.

We remark that g and s satisfy the same equation.

The described transformation of the (x,t)-plane into the (u,c)-plane is called

a hodograph transformation. Since the possibility of this reduction dependes essen-

tially on the assumption J O, solutions for which J 0 cannot be obtained by the

hodograph method. These solutions are called simle waves and they are important tools

for the solutions of flow problems, (Courant-Friedrichs [7], Section 29). Wave-breaklng

occurs when J 0 corresponding to the multivaluedness, i.e., shock waves. We

notice that the solution

2x Ix
u =, c =7,

given by the Nutku [I] represents a simple wave. So, we could not possibly obtain

this solution by the hodograph method.

We would like to mention that in the set of all solutions the waves form a set of

measure zero. But this is not to say simple waves re unimportant.
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Just to show how noatural it is to work in the hodograph plane we shall rederive

the conservation equations (2.16) and (2.!7). In the (u,c)-plane the equation (2.10)

becomes

+ G F u + FcC t
+ G u + G cFt x u t ux c x

-Jx F + Jx F + Jt G Jt G 0
C U U C C U U C

Above we have employed the equations (3.1) and (3.2). Again, the non-linear factor J

cancels through and we arrive at

x F x F t G t G (3.8)
u c c u u c c u

or

dx ^ dF dt ^ dG.

Upon using (3.3) and (3.4), (3.8) becomes

(3.9)

t (G uF
c

-z--Vc) tu(Gc- 2CFu -UVc )" (3.10)
c u u

Since this is to be an identity, the coefficients of the derivatives must vanish sepa-

rately:

G uF + C--F
u u 2 c’

G 2cF + uF
c u c

These are the same as (2.16) and (2.17). We note that the computation above is some-

what shorter than the Estabrook-Wahlquist method used in the previous section to esta-

blish these equations. Whitham [3] has an even simpler way of deriving them. Even so,

we have included the method of Estabrook-Wahlquist because it has provided us with two

nice functions f and g of which we make use in this paper.

4. POTENTIALS.

We look for potentials in the hodograph plane. The system of equations (3.3) and

(3.4) can be rewritten in the following equivalent form

(2cx- 2cut)
u -(C2tc) (4.1)

(x Ut)c -(2Ct)u" (4.2)

These, in return, suggest the existence of potentials (u,c) and (u,c) satisfying

=-c2t V 2cx- 2cut, (4.3)
u c

and

x ut, -2ct. (4.4)
u c

? are in fact, the Legendre transforms of the potentials introduced by Nutku [I].

Solving them for x and t we obtain

c u__ t __u (4.5)x 2-- c2 u c2
and

X

__
t

C

u 2c c 2- (4.6)

Hence, if we know (u,c) or (u,c), by using these formulas we con compute x and

t. Combining (4.5) and (4.2) we obtain
c

4V
uu cc c

(4.7)
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(4.6) together with (4.7) gives

+ + __c (4.8)4uu cc c

Unlike their legendre transforms, and satisfy linear equations.

Comparing (2.13), (2.15), (2.18), (3.7), (4.7), and (4.8), our readers realize

that we keep encountering the following set of equations:

X c4uu cc _+ -- (4.9)

In the next section too we shall encounter these equations when we are dealing with a

related non-homogeneous problem. Not only can we derive the conservation laws from

the solutions of (4.9) but we can also construct all the hodograph solutions of the

original system of equations with which we started. In this way, we are also able to

construct a solution of the system of equations (2.1) and (2.2) from a given conserva-

tion law by letting F and by using (4.5). We can reverse this process for non-

simple wave solutions. Now we have an infinite family of solutions associated with

the list of polynomial conservation laws given in Section 2. Here we list the first

few of these special solutions:

F _x t u c

u x

c c2

c 0

uc o

u2c 2 c u+ + c -u -t x + t2
2 2 2 2

u3c 2 2u
u2 + c 2

3
+ uc

3
uc2 implicit solution

u4c 2 C
6 U4

6 + u2c+ - 2
c 2u3

3
+ 2uc 2 implicit solution

5. CASE OF SLOPING BEACH.

We consider the following non-homogeneous system of equations

u
t
+ uu + 2cc gB, (5.1)

X X

C
c
t
+ uc + ux

0 (5.2)
X

representing shallow water waves on a sloping beach. The constant term gB involves

the gravitational constant g and the slope of the bottom B.

On p. 70 of his Tata Institute Notes [8J, Whitham absorbs the non-homogeneous

term gB in a conservation form as

+ 2 c 2(u gBt)t (u + )x O, (5.3)

and adds the following statement: "But this comment does not appear to lead any fur-

ther." However, by the means of (5.3) we were fortunate in finding ourselves able t.

construct conservation laws in the form

[F(u c) iZ=ml i(gBt)iP m IQ
i

0 (5 4)i(u,c)]t + [G(u,c) iZ__l gBt) (u c)]
x
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for the non-homogeneous system (5.1) and (5.2) above. We will denote the contents of

the two square brackets in (5.4) as and respectively. As one can guess, we

shall require (F,G) to form a conservation law for the related homogeneous system

(2.1) and (2.2). Hence, as in (2.16) and (2.17) of Section 2 they satisfy the follow-

ing linear system of equations

FG uF + (5 5)
U U 2 C

G 2cF + uF (5.6)
C U C

whose integrability condition is (2.18)

F
4F F _c_. (5.7)

UU CC C

With the help of (5.5) and (5.6), (5.4) simplifies to

m if c
gB-F iZ= (gSt) gS"P + uP -Pic +

u iu Ux(Qiu iu

m i-Ipc (Qi 2cP uP )} gS- O.
x c iu ic iZ--I (i-l)!(gSt)

Imposing the following further conditions

forces us to take

Qiu uP. + c
lU ic

Qic 2cP.u + UPic,

P1 Fu’
P2 -Plu -Fuu’
P3 -P2u +Fuuu’

(5.8)

(5.9)

and

p (_l)m+lF
m -Pm-l,u uu...u’

m- t imes

(m)
For convenience, we shall use the notation F F The last condition re-

U HU...U.

m-times
(re+l)

quirem us to take F 0, which can automatically be satisfied for a suitable F,
u

if we start with polynomial conservation laws for the related homogeneous problem.

What really makes this construction work is the fact that all the Po turn out to be
1

(i)+ F and the pairs (Pi Qi and (F,G) satisfy the same system of equations.
U

(i)
Since the compatibility equation (5.7) is also satisfied by the u-derivatives F

U

The integrabi]ity condition of the system (5.8) and (5.9) is automatically guaranteed.

We have, therefore a consistent method, and by using the list on p. in Section 2,

we can construct an infinite family of conservation laws for the non-homogeneous

system (5.1) and (5.2).
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The computations for Qi become easier once one realizes that the ith u-derivative

of F on the jth line in the list is proportional to F on the (j-i)th line in the

same list in Section 2 (excluding the first line).

Here we list the first few of these conservation laws (>,):

u2
g?t

2
+ c

c uc

uc 2 gBtc
cU2C 2 + -- gStuc 2

u2c c

--2 + --- gStuc2 + (gSt)2c? u3c c+ uc 4 gSt(u?c2+ -)+ 2(gt)2uc

u3c u2c c

3
+uc -2gBt (---- + -)

+(gBt)2uc2- (gSt) 3c

c c6 uc2u + 3u2c + -2gBt(----- + uc)
3 2 - c+ (gBt) 2(u2c2+ --)- (gSt)3uc2

u c c 6 u3c+U2C+ -- -2gBt (--- +UC4) u5c 2 4u3c uc2 3u2ch c6

6
+ 3 +uc6-2gBt(----- + + --u2c2 c+2(gBt)2 (-- + --)

2 2+ 2(gBt)3uc (gSt)4c

u3c2
+2(gSt) 2(-- + uc4)

2 c4 _I(-(gSt) (u2c2+ --)+ 6
gBt)4uc2

We note that and are homogeneous in u, c, and t We would like to

thank Dr. Mirie for drawing our attention to the fact that the terms containing t can

i
be put into the form (u gBt) But, as is clear even from the first line of the

above list, we cannot completely eliminate all the u’s in ’s, although we can write

’s in terms of v u gBt and c only. Nevertheless, v’s do not show up sepa-

rately in ’s they all come multiplied with u’s or c’s. Hence for the boundary

conditions u 0, c 0 at x 0 and we still obtain infinitely many conserved

quantities by integrating ’s with respect to x from 0 to =, cf. the homogeneous

case.

Having constructed an infinite number of conservation laws, one might, therefore,

expect to be able to find the solution of the non-homogeneous system (5.1) and (5.2)

analytically. Indeed, as we have learnt from Whitham [8], Carrier and Greenspan

introduced new variables suggested by the characteristic forms of these equations and

applied a hodograph transformation to them and obtained

gSx -- + + (5 10)
202 16

g8t
4 o

(5.11)

where o 4c, %= -4(u -gBt) and satisfies the cylindrical wave equation

+ _o (5 2)4 ao o
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We observe that in (5.12) and in (4.8) satisfy the same kind of equation.

Hence, after the necessary relabelling of the variables, a solution of (5.12) can be

used to generate a solution of either of the problems: homogeneQus (via (5.11) and

non-homogeneous (via (5.10) and (5.11)). In this way, we find a correspondence between

the non-simple wave solutions of the two systems which we have considered in this paper.

In a way, this correspondence can be thought of as a Bcklund transfoation between

the homogeneous and non-homogeneous problems (2.1) and (2.2), and (5.1) and (5.2). By

using the linearity of the space of solutions of (5.12) we can also construct auto-

Bicklund transformations for each of these problems.

We leave it to our interested readers to construct the solutions of the non-

homogeneous problem which correspond to the solutions given in Section 4 of the homo-

geneous system.

To us, the story of this paper looks similar to the Hydrogen Atom problem, (the

invariance group being the space of solutions of the cylindrical wave equation). We

expect to shed more light on this subject by using the orbit theory picture of Krillov-

Kostant-Souriau. This is our forthcoming project.
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