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ABSTRACT. Let be a continuous positive increasing function defined on [0,) such

that (x y) _< (x) + (y) and (0) 0. The Hardy-Orlicz space generated by
is denoted by H(). In this paper, we prove that for # 4, if H() H() as

sets, then H() H() as topological vector spaces. Some other results are given.
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I. INTRODUCTION.

Let :[0, =) [0,=) be a continuous increasing function such that (x y)

(x) (y) and 4(0) 0. Let T be the unit circle, and m be the Lebesgue measure

on T. A complex valued measurable function f defined on T is called -integrable

if fiIf(t) Idm(t) < . The space of all -integrable functions on T will be denoted

by L(). This space was first introduced by Orlicz, [8]. Subsequent papers were

written to study different aspects of L(). Examples of these papers are Cater, [4],

Gramsch, [5] and Pallashke [9].

In [6] and [7], Lesniewicz introduced the so called Hardy-Orlicz spaces H() for

a given such function 9. The space H() was defined to be the space of all functions

f e L() such that f is the radial limit of some function g analytic in the open

unit disc and belongs to the Nevalinna class N. The relation between different H()-

spaces was studied by Deeb, Khalil and Marzug [3]. In this paper, we show that the

inclusion map between two H()-spaces is always continuous. Some other results are

given. It should be remarked that in the work of Lesniewicz, [6], [7] and many other

authors, is assumed to be a Q-convex function. In this paper it is not assumed so.

2. PRELIMINARIES AND NOTATIONS.

A function ’[0,=) --> [0,) is called a modulus function if

(i) is continuous and increasing

(ii) (x) 0 if and only if x 0

(iii) (x +y) (x) (y).

The functions (x) xp, 0 p and (x) in(1 x) are examples of modulus

functions. Further, if bl and b2 are modulus functions, then l 2 and bl ’}2
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is a modulus function if is.are modulus functions. Further, @- #

Let T {z" Izl i}, A {z" Izl < i}. The space of analytic functions on &

is denoted by H(4). Let H+(A) {f e H(4)" li f @
rX+ (re

I
exists a.e.@} We will

consider H+(4) as a space of functions on T. For a given modulus function we

define"

H i @) i@H() {f (4)" sup elf(re Id0 If(e )Ido }.
0 <r <I

The function d" l-t(qb) H(40 [0,), d(f,g) ,If(eie) g(ei0) Id defines

a metric on H(O), under which H(b) becomes a topological vector space. If one

assumes that Olul is subharmonic for u e I-I(4), then tt.) turns out to be complete

[21. For f e H(,), we write llfll T If(e )ld@" If ,(x) xp, 0 p i,

fthen H() Hp and for (x) In(l + x), H() N {f e N"
T in(l Ifl) <},

where N is the Nevalinna class.

3. I- II H() IS CONTINUOUS.

In [2], it was shown that H H() for all modulus functions The authors

in [3] were not able to show that the inclusion map H H() is continuous.

In this section we prove that H H() is continuous. Some other related

questions are discussed.

THEOREM 2.1. Let and , be two modulus functions such that lira (

exists. Then" x-

(i) H() --H() if X 0 and is finite

(ii) H() H() if 0

(iii) H() H() if .
PROOF. (i) Let 0 be finite. Then there exists a

l, b I, a
2, b

2 [0,) such

that

(x) _< al(X for x [a2, (*)

(x) _< bl(x) for x e [b2,) (**).

Let f H(). Set E(a2) {t e T If(t) >_a2}. Then

*lf(e )ld0 ,]f(eio)Ilfl[
(a2) EC(a2)

_< a If flI (a2) <-
Hence f e H() and H() H(). Similarly we sho H() H(). Consequently,

H() H(). Case (xi) and (iii) are proved similarly and details are omitted. This

ends the proof.

(x)THEOREM 2.2. Let lira -- O. Then the inclusion map I" H() tt() is
X-Oo

continuous.

PROOF. From the proof of Theorem 2.1, there exists a,b 0 such that IIfll
(a) b ]lfl] for all f H().

Let fn 0 in H(). Thus the sequence (fn) is bounded in the metric of H(,)

and consequently bounded in H(). If possible let there exist a subsequence (f
n
k
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fnk fnk 0 (fnk) has a subsequence whichsuch that II II a > 0. Since I] I1
converges pointwise to the zero function. With no loss of generality, we can assume

that f 0 a.e. Another application of the proof of Theorem 2.1, yields (x)n
k

(a) + b-Ixl for all x e [0,). Hence

(t)Ifnk(t) ,(a) b

The sequence of functions gnk ,(a) / b 01fnk converges a.e. to ,(a) and

f (t)dt
T gnk

Consequently, by the generalized Lebesgue convergence theorem, [10], we have

lin 41fnk(t; Idt limnk 41 fnk (t) Idt 0.

This is a contradiction. Thus, the point w 0 is the only limit point of the

bounded sequence (11 fnll,)" Consequently, [11] the sequence lie converges to
n

zero. Hence I: H(O) H() is continuous. This ends the proof.

COROLLARY 2.3. If lira ,,- e(O,o), then H() H() as topological vector
X-o

spaces.

PROOF. By Theorem 2.1, H(O) H() as sets. Theorem 2.2 implies that I: H()

H() is an isomorphism. This ends the proof.

A linear map A" H() H() is called metrically bounded if

for all f e H() and some X 0. Clearly every metrically bounded map is contanuous.

The converse need not be true. However, for the inclusion map, we have the following:

THEOREM 2.4. Let be any modulus function. Then there exists X 0 such that

for all f e H I,
PROOF. It is know, [2] (and easy to show) that H H() for all modulus func-

tions . If f e H and If film m, then using the argument in Theorem 2.1, we

have !1 fll,
get f H II elI.. > 1. Then there exists 0 a such that II af[I1.. 1.

Since a 1, there exists a natural nber n such that a Hence
n+ 1-- --n

II fll fo an>, odu function Itllfll andBut
n i f[l_ + K

follows that:

X-
n+ "f",

and consequently

xn+ Ilfll xllfllII,,f,,, "This ends the proof.

TItEOREM 2.5. Let be a given modulus function such that H H(). If metric

and topological bounded sets coincide in H(,), then Ilfll xllfll for al f e It(,),

for some X 0.
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PROOF. Applying Corollary 2.3, I" H() H1
is an isomorphism of topological

__< III f be not true on the unlt sphere ofvector spaces If possible let f 111
H() Then, for each n there exists fn C H(), llfn II such that

f
Conslder the sequence --= gn By the assumption on bounded sets of H() we

f
have, [12], gn 0 in H(). But llgn IIi ll_-lll_> for all n This contradicts

the continuity of the identity map I: H() H Hence there exists 0

such that

f < t f II {*)

for all f C H(), f !1
Let f C H(), f 11 < Consider the map K" [0 ) [0 ) K(t) ]]tf 1]

It can be easily seen that K is continuous. Hence there exists a > such that

we can find a such thatK(a) Thus for every f E H() f

Iaf Hence, from equation (*) we get"

]af Il ! ]]af ]I ! 2ak lf [
2t f This end the proofConsequently, f II +

4. FURTHER RESULTS

The concept of metrically bounded linear operator was introduced in Section 3.

A linear map A: H() H() is called metrically bounded if there exists

III f In general a continuous linear map need notI C (0,) such that ]IAf [1_
be metrically bounded In this section we prove a result which is a generalizatlon

of Theorem 3.1 in [3].

THEOREM 4.1 Let and be any two modules functlons. Then the following

are equivalent

(i)
lit (x) lit (x)
k+o (x) x- (x)

for some c, C (0,)

(ii) H() H(), and the identity map is metrically bounded.

PROOF. (i) (ii) From the assumption in (i) one can choose a and b

in (0,) such that

(x] >- r on [0,a]

(X)
S on (b,)(x]

for some r,s (0,oo) Theorem 3.2 implies that H() H(q)

Let f H() Consider the following sets:
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Then-

E(a) ={t- 0 < If(eil <a}

E(b) ={t" If(ei%l > b)

E(a,b) {t" a_< fi _< b}

E(a,b) E(b)

< --I] f ]f(eit) Idt +r ,
E(a,b) 7 II f I1

on the closed interval [a,b], the continuity of (x)
(x) implies the existence of

X > 0 such that (x) _< X(x) Hence

(1 1)Thus, If[ _< 8 ]f []$ where m,,3 In a similar way one c show that
f ]$ ! [$ for all f g H($) H() Hence the identity map is metrically

.bounded.

Conversely, (ii) (i) Asse H($) H() d " H() H() is

metrically bounded. en there exists and in (0,) such that

< a ]if ]if ]]l] f ,
Hence ! for all f g H() H() Consider the function f(z) xz

itfor z e x g (0,) Then

[If [[ }(x) and [If II (x)

(x)Consequently ---< (x) < a Since ,8 g (0,) (i) then follows. This end the
proof.
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