ON SOME RESULTS FOR λ -SPIRAL FUNCTIONS OF ORDER α

MILUTIN OBRADOVIĆ

Department of Mathematics Faculty of Technology and Metallurgy 4 Karnegieva Street 11000 Belgrade Yugoslavia

and

SHIGEYOSHI OWA Department of Mathematics Kinki University Higashi-Osaka, Osaka 577 Japan

(Received March 1, 1986)

ABSTRACT. The results of various kinds concerning λ -spiral functions of order α in the unit disk U are given in this paper. They represent mainly the generalizations of the previous results of the authors.

KEY WORDS AND PHRASES. $\lambda\text{-spiral}$ of order $\alpha,$ starlike of order $\alpha,$ subordination, univalent.

1980 MATHEMATICS SUBJECT CLASSIFICATION. 30C45.

1. INTRODUCTION.

Let A_n denote the class of functions of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \qquad (n \in N = \{1, 2, 3, \dots\}) \quad (1.1)$$

which are regular in the unit disk $U = \{z: |z| < 1\}$.

For a function f(z) belonging to the class A_n we say that f(z) is $\lambda\text{-spiral of order }\alpha$ if and only if

$$\operatorname{Re}\left\{ e^{i\lambda} \frac{zf'(z)}{f(z)} \right\} > \alpha \cos\lambda \qquad (1.2)$$

for some real λ ($|\lambda|$ < $\pi/2)$, for some α (0 $\leq \alpha$ < 1), and for all z ϵ U.

We denote by $S_n^{\lambda}(\alpha)$ the class of all such functions. In the case n = 1 we write A and $S^{\lambda}(\alpha)$ instead of A_1 and $S_1^{\lambda}(\alpha)$, respectively. The class $S^{\lambda}(\alpha)$ has been considered by Libera [1].

We note that $S^{\lambda}(0) = S^{\lambda}$, $S_n^0(\alpha) = S_n^{\star}(\alpha)$, and $S^0(0) = S^{\star}$, where S^{λ} , $S_n^{\star}(\alpha)$, and S^{\star} denote the classes of functions which are λ -spiral, starlike of order α and type (1.1), and starlike, respectively.

Let f(z) and g(z) be regular in the unit disk U. Then a function f(z) is said to be subordinate to g(z) if there exists a regular function w(z) in the unit disk U satisfying w(0) = 0 and |w(z)| < 1 ($z \in U$) such that f(z) = g(w(z)). For this relation the following symbol $f(z) \prec g(z)$ is used. In particular, if g(z) is univalent in the unit disk U the subordination $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(U) \subset g(U)$. 2. RESULTS AND CONSEQUENCES.

First we give the following result due to Miller and Mocanu [2].

LEMMA 1. Let $\Phi(u, v)$ be a complex valued function,

 $\Phi: D \longrightarrow C$, $D \subset C \times C$ (C is the complex plane),

and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that the function $\phi(u, v)$ satisfies the following conditions:

(i) Φ(u,v) is continuous in D;
(ii) (1,0) ε D and Re{Φ(1,0)} > 0;
(iii) Re{Φ(iu₂,v₁)} ≤ 0 for all (iu₂,v₁) ε D and such that v₁ ≤ -n(1 + u₂²)/2.

Let $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots$ be regular in the unit disk U such that $(p(z), zp'(z)) \in D$ for all $z \in U$. If

$$Re{\phi(p(z), zp'(z))} > 0$$
 (z ε U),

then

Then we have

$$Re{p(z)} > 0$$
 (z ϵ U).

By using the above lemma, we prove

THEOREM 1. Let the function f(z) defined by(1.1) be in the class $S^{\lambda}_{n}(\alpha)$ and let

$$0 < \beta \leq \frac{n}{2(1 - \alpha) \cos \lambda} .$$
 (2.1)

$$\operatorname{Re}\left\{\left(\begin{array}{c} f(z) \\ z\end{array}\right)^{\beta e^{1\lambda}}\right\} > \frac{n}{2\beta(1-\alpha)\cos\lambda + n} \qquad (z \in U).$$

PROOF. If we put

$$B = \frac{n}{2\beta(1 - \alpha)\cos\lambda + n}$$
(2.2)

and

$$\left(\frac{f(z)}{z}\right)^{\beta e^{i\lambda}} = (1 - B)p(z) + B, \qquad (2.3)$$

where β satisfies (2.1) then p(z) is regular in the unit disk U and $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots$. From (2.3) after taking the logarithmical differentiation we have that

$$\beta e^{i\lambda} \frac{zf'(z)}{f(z)} - \beta e^{i\lambda} = (1 - B) \cdot \frac{zp'(z)}{(1 - B)p(z) + B}, \qquad (2.4)$$

and from there

$$e^{i\lambda} \frac{zf'(z)}{f(z)} - \alpha \cos \lambda = e^{i\lambda} - \alpha \cos \lambda + \frac{(1 - B)zp'(z)}{\beta\{(1 - B)p(z) + B\}} (2.5)$$

Since f(z) $\epsilon S_n^{\lambda}(\alpha)$ then from (2.5)we get

$$\operatorname{Re}\left\{ e^{i\lambda} - \alpha \cos \lambda + \frac{(1 - B)zp'(z)}{\beta\{(1 - B)p(z) + B\}} \right\} > 0 \qquad (z \in U). \quad (2.6)$$

Let consider the function $\Phi(u, v)$ defined by

$$\phi(u,v) = e^{i\lambda} - \alpha \cos \lambda + \frac{(1 - B)v}{\beta\{(1 - B)u + B\}}$$

(it is noted u = p(z) and v = zp'(z)). Then $\phi(u,v)$ is continuous in $D = (\mathbf{c} - \{-B/(1-B)\}) \mathbf{x} \mathbf{c}$. Also, (1,0) ε D and $\operatorname{Re}\{\phi(1,0)\} = (1 - \alpha) \cos \lambda > 0$. Furthermore, for all $(iu_2, v_1) \varepsilon$ D such that $v_1 \leq -n(1 + u_2^2)/2$ we have

$$\operatorname{Re}\{\phi(iu_{2}, v_{1})\} = (1 - \alpha) \cos \lambda + \operatorname{Re}\left\{\frac{(1 - B)v_{1}}{\beta\{(1 - B)iu_{2} + B\}}\right\}$$
$$= (1 - \alpha) \cos \lambda + \frac{B(1 - B)v_{1}}{\beta\{(1 - B)^{2}u_{2}^{2} + B^{2}\}}$$
$$\leq (1 - \alpha) \cos \lambda - \frac{nB(1 - B)(1 + u_{2}^{2})}{2\beta\{(1 - B)^{2}u_{2}^{2} + B^{2}\}}$$
$$= \frac{(1 - B)\{4\beta^{2}(1 - \alpha)^{2}\cos^{2}\lambda - n^{2}\}u_{2}^{2}}{2\beta\{(1 - B)^{2}u_{2}^{2} + B^{2}\}}$$
$$\leq 0$$

because 0 < B < 1 and $2\beta(1 - \alpha) \cos \lambda - n \leq 0$. Therefore, the function $\Phi(u, v)$ satisfies the conditions in Lemma 1. This proves that $\operatorname{Re}\{p(z)\} > 0$ for $z \in U$, that is, that from (2,3),

$$\operatorname{Re}\left\{\left(\begin{array}{c} f(z) \\ -\frac{z}{z} \end{array}\right)^{\beta e^{i\lambda}}\right\} > B \qquad (z \in U),$$

which is equivalent to the statement of Theorem 1.

Taking $\alpha = 0$ and $\beta = n/2 \cos \lambda$ in Theorem 1, we have

COROLLARY 1. Let the function f(z) defined by (1.1) be in the class $S_n^{\lambda}(0)$. Then

$$\operatorname{Re}\left\{\left(\begin{array}{c} f(z) \\ z \end{array}\right)^{(n/2\cos\lambda)e^{i\lambda}}\right\} > \frac{1}{2} \qquad (z \in U).$$

REMARK 1. If $\lambda = 0$ in Theorem 1, then we have the former result given by the authors in [3]. If $\lambda = 0$ in Corollary 1, then we have the earlier result given by Golusin [4].

THEOREM 2. Let β be a fixed real number, $0 \leq \beta < 1$, and let the function f(z) be in the class $S^{\lambda}(\alpha)$. Let

$$g(z) = z \left(\frac{f(z)}{z} \right)^{\gamma} \frac{1}{(1-z)^{2\mu} e^{-i\lambda} \cos \lambda} \qquad (z \in U), \quad (2.7)$$

where $0 < \gamma \leq (1 - \beta)/(1 - \alpha)$ and $\mu = 1 - \beta - \gamma(1 - \alpha)$. Then the function g(z) is in the class $S^{\lambda}(\beta)$.

PROOF. Let β (0 $\leq \beta < 1$) be a given real number. Then from (2.7) by using the logarithmic differentiation and some simple transformations, we have that

$$e^{i\lambda} \frac{zg'(z)}{g(z)} - \beta \cos \lambda$$

= $\gamma \left\{ e^{i\lambda} \frac{zf'(z)}{f(z)} + \alpha \cos \lambda \right\} + (1 - \gamma)e^{i\lambda} - \left\{ \beta - \alpha\gamma - \frac{2\mu z}{1 - z} \right\} \cos \lambda$

$$= \gamma \left\{ e^{i\lambda} \frac{zf'(z)}{f(z)} - \alpha \cos \lambda \right\} + \mu \cos \lambda \frac{1+z}{1-z} - i(1-\gamma) \sin \lambda. \quad (2.8)$$

From (10) we have

$$\operatorname{Re} \left\{ e^{i\lambda} \frac{zg'(z)}{g(z)} - \beta \cos \lambda \right\}$$
$$= \operatorname{Re} \left\{ e^{i\lambda} \frac{zf'(z)}{f(z)} - \alpha \cos \lambda \right\} + \mu \cos \lambda \left\{ \frac{1+z}{1-z} \right\}$$
$$> 0 \qquad (z \in U), \quad (2.9)$$

because of the suppositions for γ , f(z) and μ given in the statement of Theorem 2. Thus we complete the proof of Theorem 2.

COROLLARY 2. Let $0 \leq \beta \leq \alpha$, and let $f(z) \in S^{\lambda}(\alpha)$. Then the function g(z) defined by

$$g(z) = \frac{f(z)}{(1-z)^{2(\alpha-\beta)}e^{-i\lambda}\cos\lambda}$$
(2.10)

belongs to the class $S^{\lambda}(\beta)$.

PROOF. Since $0 \leq \beta \leq \alpha$, it follows that $1 \leq (1 - \beta)/(1 - \alpha)$ and we may choose $\gamma = 1$ in Theorem 2. Also, we have $\mu = \alpha - \beta$.

REMARK 2. In particular, for $\lambda = 0$ in Corollary 2 we have that if $f(z) \in S^{*}(\alpha)$ and $0 \leq \beta \leq \alpha$, then the function

$$g(z) = \frac{f(z)}{(1-z)^{2(\alpha-\beta)}}$$

belongs to the class $S^{*}(\beta)$. This is the earlier result given by the authors [5].

Letting $\lambda = 0$ in Theorem 2, we have

COROLLARY 3. Let $f(z) \in S^*(\alpha)$ and let $0 \leq \beta < 1$. Then the function g(z) defined by

$$g(z) = z \left(\frac{f(z)}{z} \right)^{\gamma} \frac{1}{(1-z)^{2\mu}}$$

belongs to the class $S^*(\beta)$, where $0 < \gamma \leq (1 - \beta)/(1 - \alpha)$ and $\mu = 1 - \beta - \gamma(1 - \alpha)$.

In order to derive the following theorem, we shall apply the next result given by Robertson [6].

LEMMA 2. Let the function f(z) belonging to A be univalent in the unit disk U. For $0 \leq t \leq 1$, let F(z,t) be regular in the unit disk U with $F(z,0) \equiv f(z)$ and $F(0,t) \equiv 0$. Let p be a positive real number for which

$$F(z) = \lim_{t \to +0} \frac{F(z,t) - F(z,0)}{zt^{p}}$$

exists. Further, let F(z,t) be subordinate to f(z) in the unit disk U for $0 \leq t \leq 1$. Then

$$\operatorname{Re}\left\{\frac{F(z)}{f'(z)}\right\} \leq 0 \qquad (z \in U)$$

If, in addition, F(z) is also regular in the unit disk U and $Re{F(0)} \neq 0$, then

$$\operatorname{Re}\left\{\frac{f'(z)}{F(z)}\right\} < 0 \qquad (z \in U). \quad (2.11)$$

Applying the above lemma, we prove

THEOREM 3. Let the function f(z) be in the class A, and let the function g(z) defined by

$$g(z) = \frac{1}{1 - \alpha \cos \lambda} \left\{ f(z) - \alpha \cos \lambda \int_{0}^{z} \frac{f(s)}{s} ds \right\}$$
$$= z + \cdots$$
(2.12)

be univalent in the unit disk U, where λ is a real number with $|\lambda|<\pi/2$ and $0\leq\alpha<1.$ If the function G(z,t) defined by

$$G(z,t) = \frac{1}{1 - \alpha \cos \lambda} \left\{ (1 - te^{-i\lambda})f(z) - \alpha \cos \lambda (1 - t^2) \int_0^z \frac{f(s)}{s} ds \right\} (2 \ 13)$$

is subordinate to g(z), that is, G(z,t) \prec g(z), in the unit disk U for fixed α and λ , and for each t ($0 \leq t \leq 1$), then f(z) is in the class $S^{\lambda}(\alpha)$.

PROOF. It is easy to show that G(z,0) = g(z) and G(0,t) = 0. We choose p = 1 and F(z,t) to be the function G(z,t) defined by (2.13) in Lemma 2. Then we have

$$G(z) = \lim_{t \to +0} \frac{G(z,t) - G(z,0)}{zt} = \lim_{t \to +0} \frac{\partial G(z,t)/\partial t}{-e^{-i\lambda}f(z)}$$
$$= \frac{-e^{-i\lambda}f(z)}{(1 - \alpha \cos \lambda)z}. \qquad (2.14)$$

From (2.14) we know that G(z) is regular in the unit disk U and

Since $Re{G(0)} = \frac{-\cos \lambda}{1 - \alpha \cos \lambda} \neq 0.$ $g'(z) = \frac{1}{1 - \alpha \cos \lambda} \left\{ f'(z) - \alpha \cos \lambda \frac{f(z)}{z} \right\},$

it follows from (2.11) in Lemma 2 that

$$\operatorname{Re}\left\{\begin{array}{c} g'(z)\\ \hline G(z)\end{array}\right\} < 0 \qquad (z \in U),$$

which is equivalent to

$$\operatorname{Re}\left\{e^{i\lambda} \frac{zf'(z)}{f(z)} - \alpha \cos\lambda\right\} > 0 \qquad (z \in U).$$

Consequently, we prove that f(z) is in the class $S^{\lambda}(\alpha)$.

If we put $\alpha = 0$ in Theorem 3, then we have

• •

COROLLARY 4. Let the function f(z) belonging to the class A be univalent in the unit disk U such that

$$(1 - te^{-1\lambda})f(z) \prec f(z) \qquad (z \in U),$$

where λ is real such that $|\lambda| < \pi/2$ and $0 \le t \le 1$. Then f(z) is in the class $S^{\lambda}(0)$. This is the former result due to Robertson [6].

For $\lambda = 0$ in Theorem 3, we have the following result for starlike functions of order α .

COROLLARY 5. Let the function f(z) be in the class A and let the function g(z) defined by

$$g(z) = \frac{1}{1-\alpha} \left\{ f(z) - \alpha \int_0^z \frac{f(s)}{s} ds \right\} \qquad (0 \le \alpha < 1)$$

be univalent in the unit disk U. If

$$G(z,t) = \frac{1}{1-\alpha} \left\{ (1-t)f(z) - \alpha(1-t^2) \int_0^z \frac{f(s)}{s} ds \right\} \prec g(z)$$

in the unit disk U, then f(z) belongs to the class $S^*(\alpha)$. This is the previous result given by Obradović [7].

REFERENCES

- 1. Libera, R. J., Univalent λ -spiral functions, Canad. J. Math. 19(1967), 449 - 456.
- Miller, S. S. and Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(1978), 289 - 305.
- Obradović, M. and Owa, S., An application of Miller and Mocanu's result, to appear.
- 4. Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Moscow, 1952.
- 5. Owa, S. and Obradović, M., A note on a Robertson's result, Mat. Vesnik, to appear.
- Robertson, M. S., Applications of the subordination principle to univalent functions, Pacific J. Math. 11(1961), 315 - 324.
- Obradović, M., Two applications of one Robertson's result, Mat. Vesnik, <u>35(3)</u> (1983), 283 - 287.

446