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ABSTRACT. Thls paper concerns linear random boundary value problems that contain

random variables In the boundary conditions and weakly correlated processes in the

differential equations. When the correlation length e is smmll the structure of

the solution is pointed out, and the formulas for the density function of the

solutions are derived. The discussion is given in terms of second order equations,

but extensions to higher order problems are readily apparent.
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I. INTRODUCTION.

For many years it has been of interest to find conditions under which the dis-

tribution of the solution of a random differential equation tends to a normal

distribution.

In 1930, while studying Brownlan motion, Uhlenbeck and Ornstein [I] established

that the solution x(t) of certain initial value problems has approximately a normal

distribution.

In 1966 Boyce [2] obtained a similar result for a class of linear self-adjoint

boundary value problems

L[x] f(t), 0 < t < (I.I)

with boundary conditions

U.[x] O, (1.2)

at the end points. The operator L has the form

m
e[x] j0 (-l)J["j (t)x(j)](j)" (1.3)

Randomness entered the problem (I.I), (1.2) only through the forcing function f, which

we assumed to be weakly correlated with correlation length e << I. The solution

y() has a property that the distribution function of y(t)/e,r approaches normal

as g O.



498 N.M. XIA

When f, o,...,m_l,m are small independent weakly correlated processes,

Purkert and vom Scheidt [3,4]; Boyce and Xia [5] found a similar and better results by

combining the methods of [2] with perturbation and Chebyshev-Hermite polynomial

expansion.

Here we extend the results of [2] in another way, our problem need not be self-

adjoint and the random parts of the forcing terms need not be small.

When (x) 0 we can always rewrite equation (I.I) into a standard linearm
system, so instead of (1.1) in this paper we consider a general linear system with

random boundary conditions and with weakly correlated processes in the forcing terms.

In Section 2 we will define the problem and derive the functional form of the

solution. Section 3 contains some preliminary results that are required later. The

main results of this paper are in Section 4, that is when e 0 we can find the

asymptotic approximation for the density function of the solution which has a nice

structure, namely it consists of three functions, one is deterministic; one can be

obtained in terms of the random boundary conditions; and the other, which is the

contribution of the random forcing terms, has the normal distribution. The usefulness

of his expression is illustrated by the examples in Section 5.

2. STATEMENT OF THE PROBLEM AND THE FORM OF THE SOLUTION.

Although the same methods can be applied to higher order problems, in this

section we consider the linear random boundary value problem of the second order

differential equation.

d(t)
dt (t)(t) + (t)(t,) + (t) (2.1 a)

Dx(0) + x(1) (),

where A(t), B(t), DI D2 are deterministic 2 x 2 matrices

(all(t) al2(t)) (bll(t) bl2(t) )A(t) B(t)
a21(t) a22(t) b21(t) b22(t)

DI d(I)
dk 21 22

C(t), x(t) are 2 x vectors

T
C(t) (Cl(t),C2(t)) x(t) (x(t),y(t))T,

(2.1 b)

(2.2)

(2.3)

and !(t,m), (m) are random 2 x vectors defined on an underlying probability

space (,F,P)

(t,) (l(t,m),2(t,m)) T () (e(m) (m))T
We are interested in the case in which l(t,m) and l(t,) and 2(t,m) are

weakly correlated with the same correlation length e. The term "weakly correlated"

has been defined by Purkert and vom Scheidt [3,6,4] in the following way. Let S

(t l,t2,...,t n) be an n-tuple of real numbers and let e > 0 be a positive constant.
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Let S (til ti2 ,tik) be a subset of S, and suppose that til _< ti2 _< <_ tik;
this ordering can always be attained by relabeling the elements of S if

necessary. Then S is said to be g-neighboring if

(2.4)

A single element subset is always e-neighboring. The subset S is maximally

g-neighboring, with respect to S, if S is e-neighboring but is not contained in

any larger e-neighboring subset of S. It can be shown [6] that S can be separated

into disjoint maximally e-neighboring subsets in a unique way. Then a stochastic

process h(t,m) is said to be weakly correlated with correlation length e if, for

each n,

<h(t l,m)...h(tn,m)> <h(t11,m)---h(tlpl,m)>’--<h(tkl,m)-’’h(tkpk,m)> (2.5)

where <.> denotes the mathematical expectation and the n-tuple S has been separated

(t
k

t withinto the maximally e-neighboring subsets (tll’ "’’tlPl 1’ kPk
k

iZ=1 Pi n.

In this paper we assume that l(t,m) and 2(t,m) have the property (2.5), and

without loss of generality we also assume that

<l(t,m)> 0, <2(t,)> 0 (2.6)

Otherwise we can redefine C(t) so as to include (t,m)>.
For the case n 2 the condition (2.5) reduces to

<i(tl,m) i(t2,)> i i. 2. (2.7)

R.(tl,t2), Itl t21 <
1

Now we consider the form of the solution of problem (2.1). Let (t) be the

fundamental matrix of the homogeneous system corresponding to (2.1). Then (t)
satisfies

d(t)

dt A(t)(t), (0) I (2.8)

where is the 2 x 2 identity matrix, (t) (ij(t)) is a uniquely determined

and nonsingular 2 x 2 matrix.
-i

With the assumption that (i + 2(I)) exists we can easily find the funda-

mental matrix of the homogeneous system corresponding to (2.1 a) and the boundary con-

dition (2.1 b). Let this fundamental matrix be (t), then (t) satisfies

d(t)
dt A(t)(t), DI!(0) + D2!(1) I (2.9)

and is given by

!(t) !(t)[D1 + D2!(1)] -I. (2. lO)

In order to find the solution of (2.1), we set
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(t) (t)(t)
T

where (t) (kl(t),K2(t)) is a 2 x vector to be determined.

If we substitute (2.11) into (2.1 a) and use (2.9), we have

d(t)
(t) at (t)(t,) + (t).

-IIn the case [I + 2(I)] exists we find that

d(t) -I (t)[(t)(t,) + (t)]dt

-I
[I + 2(1)](t) [(t)(t,) + (t)],

(2.11)

and then

K (t)) t

K(t) K2(t () + DI(0) -I()[B()(,) + C()]d
0

2(I) $-l(T)[()(,m) + ()] d
t

t

(t) (t)[() + I(0) -I()[()(,) + ()] d
0

D2(1) f -l()[B()(,0) + C()] d]
t

(2.12)

(2.13)

where the boundary condition (2.1 b) has been used to obtain the last two results.

3. SOME PRELIMINARY RESULTS.

In order to obtain the density function of the solution (t), we first rewrite

it into the following form

t

(t) (t)[() + I(0) f -1()()dz D2(1) f -l()()dz
0 t

t
+ I(0) / $-l()g(rl(,)d 2(11 f g-l()() d]

0 t

(t)() + 6(t) + ](t,), (3.1 a)

where

(t) (l(t),62(t))

t

(t)Dl(0) f -l()C()d (t)D2(1) f -I()C() d
0 t

is a deterministic 2 x vector, and

(3.1 b)

l(t,) (Yl(t,),Y2(t,o)) T

t

0
(z)B(z)(z ,)dt

(t)D2(1)j -1
t

(Z)(Z)(z

(3.1 c)

is a random 2 x vector.
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If we set

then

where

nl(T) rl(T) 1(t)Dl(0)- ()B()
n3(T) r3(1)

(t)D2(1)-I(1)B(T) In2(T)n(1) rr2())()
Y2(t,m) n3(t,) +

t

nl(t, ] [nl(1)l(I,) + rl(1)2(T,))dl,
0

2(t,) f [n2()l(,) + r2()2(,)]d,
t

t

n3(t, [n3(T)I(T,) + r3()2(,m)Id,
0

(t,0) f [n()l(T,m) + r()2(,0)]d.
t

(3.2)

(3.3)

(3.4)

From now on we always assume that l(t,) and 2(t,) are independent weakly

correlated processes with the same correlation length e, then we can show that as

e 0, l(t,) and n2(t,); 3(t,) and (t,) will be independent and they will

have the normal distributions.

In order to prove this and then to obtain the density function of x(t) and y(t),

the following properties are required.

[Property i] If we have

t

2 [n21()Rl(,T + r21(1)Rm(I,I)]d 0Al(t)
0

Bl(t) 2 / [n22(T)RI(,) + r22()R2(,)]d # 0
t

then for n 1,2,...

(3.5)

R__J__I ] 2n
<

/A---
i 2n +

n2 2n

rl 2 2n +

(2n)’ + 0(e)
2nn!

> (2n + I! A3

3!2
n l(n- I)! AI

3/2

(2n)! + 0()
2nn!

B3(2n + I)!> n 3/2
3!2 (n I)! BI

(3.6 a)

I/2 3/2+ 0( (3.6 b)

3.6 c)

1/2 3/2+ 0( (3.6 d)

where A3(t), B3(t are the corresponding main parts of <i> and <n32> respectively,

and O(em) denotes the term with the order d > m (see [5,2]).
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[Property 2] If KI,K2 1,2,... and (i KI + K2
is g-neighboring

then

t t K + K2
/... /...f [...]dl...dKl 0(e ). (3.7)

+K20 0 t_St
K1 K2

where the integrand [...] is any function having continuous derivatives, and t is

any fixed number between 0 and I.

Proof: Consider the case K 2, K2 for simplicity. Then the region of

integration is

IIe [0,t], 12 e [0,t], 13 e It,l]
G3 {i,2,31 (i,2,3) is g-neighboring

From the definition of g-neighboring we know that if 2 > I then

0 <__ Z <__ e, 0 __< 2 i <__ e; and if i > 2 then 0 _< 3 i < e, o _< i- 2 _< e.

The region G can be divided into two parts

G G I) (J G 2)
(3.8)

where

Ii e [0,t], 12 e [0,t], 13 e It,l]
G I) {II,12,131 (3.9 a)

and

Ii e [0,t], 12e [0,t], I e [t,1]G 2) {Ii,12,131 }. (3.9 b)
0 <__ 3 i __< e, 0 <__ i 2 __< e

NOW we consider the distance between the point P (i ,2,3) in G and the

point T (t,t,t). Because of (3.8) we may assume P e G 1)
and then from (3.9 a)

we find that

t <_ 13 <_ 12 + e, t e _< 13 e <_ 12 _< t, t 2e _< 12 e _< II _< t,

or

t < < t + e, t e _< 12 _< t t 2e _< I _< t.

An estimate for the distance p(P,T) is

O(P,T) / (Ii t) 2 + (2 t) 2 + (13 t)2 _< / (2e)2 + e2 + e2

0(e).

From this estimate we have

G3

.fff did2d + 0(e) fff did2d
G3 G3
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<--I[’’’]]P T "’[ d’rld2d’r3 + O(e) j’j’j" dl:ld’r2dl:
03 03

0(e3)

where 03 is a ball, with center at T (t,t,t) and with radius max(P,T) < /--.
Thus we have proved (3.7); for other KI,K2 the situation is similar.

[Property 3] If KI,K2 1,2 and (Zl ,KI+ K2
is g-neighboring then

K K
2

t t

< ... ... >
0 0 t t
(K + K2)/2

(KI + K2)/2
o(e (3.1o)

where we assume that the integrand and t have the same properties as in (3.7).

[Property 4] If we assume that the coefficients of equation (2.1 a) have the

properties that A(t) e C [0,I], B(t) e CI[0,1], C(t) e CI[0,I], and all the mathe-

matical expectations of different orders for l(t,m), 2(t,) have continuous

derivatives, then we have the conclusion that for KI,K2 0,1,2,...

i KI I K2
> < > 0(e).

Proof: For K 0 or K2 0 (3.11) is obvious. Now we consider

(3.11)

KI,K2 1,2, In order to find the contribution of < > we

use (2.5) and consider all different maximally g-neighboring subsets (ll,...ipl),...
K

with
i

y" KI+ K2" These maximally g-neigh-(il’ ’TiP.) ’(KI’ ’KP
K IPi

boring subsets are of two distinct kinds. The first kind consists of all maximally

g-nelghboring subsets for which at least one of its subsets has the property that

(iI ( ’ ’ ’ )’ ’ e [0,t], and
iPi ii iqi iqi+1 iPl ii iqi

riqi+ I’’’’’ zi e [t,l]. The second kind consists of all maximally g-neighboring
Pi

subsets for which every subset has the property that il"’’’iPie [0,t] or

iI "’’ e [t,1].
ip

i
Because of (3.6) and (3.10), we know that all integrals on the maximally g-neigh-

boring subsets of the first kind have the order e; and if we notice that all the

integrals on the maximally g-neighboring subsets of the second kind are just the con-

tribution of < >< >, then we have the conclusion (3.11).

For example, when K 2, K2 2, we consider
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where

< >
t t

f <[...]> dld2d3dAIBIZ 0 0

<[...]> <[nl(l)51(l) + rl(l)52(l)][nl(z2)51(2) + ri(2)52(2)]

(3.12)

[n2(3)51(3) + rz(E3)Z(3)l[n2(E)l(g) +

For simplicity we only pick the first term in the integrand, that is

t t

f f f f nl(l)nl(2)n2(3)n2(g)<l(l)51(2)l(3)51(g)>dld2d3dtg
A1BI2 0 0 t t

AIBI E2
t t

f f f f
00 t t

R123

2
A1B1

t t

f f nl(El)nl(2)<51(l)51(2)>d1d2"f f n2(B)n2(Yg)<l(3)l

0 0 t t

R12 R3g

t t

z’ f f f f nl(l)nl(2)n2(3)n2()<l(l )l(2)><l(3)l(g)>dId2d3dg
AIBIe 0 0 t t

(R12x R3) [ R123g

t t

+ f f nl(l)n(3)<l(:l)l(:3)>d:ld:3f f nl(2)n2(:g)<l(2)l
A1B1 0 t 0 t

R R2

t t

Z f f f f nl(l)nl(:2)n2(:3)n2 (g)<l(:l)l(3)><l(z2)l(g)>dYld:2dr3d:g
A1Blg 0 0 t t

(R x R2)f R12g

t t

+ Z f f nl(l)n2(T)<l(l)51()>dld J f nl(2)n2(3)<l(2)1(3)>d2dT
AIBIg 0 t 0 t

Rlg R23

t t

z f f f f nl(l)nl(2)n2(z3)n2( )<I(I)KI())><I(2)KI (z3)>did2d3dg

AIBI 0 0 t t
(Rig x R23) R123g

t t

z f f f f nl(zl)nl(2)n2(3)n2(zg )[<I(I)I(2)I(3)I(g)>
AIB2g 0 0 t t

R123

<l(-rl)l(,r2)><l(’r3)l(’r4)>- <l(’[1)l(’r3)><l(2)l(Tt)>

<1 (’rl)1 (’rg)><l (’r2)E1 (’r3)>]d’rldr2d’r3dEg

tt
+ 2 f f nl(Yl)nl(z2)<l(Yl)l (Y2)>dzldY2 f f n2(3)n2(E)<l(3)l(Z)>d3dg

AIB e 0 0 t t

R12 R3 g
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t t
+ 2 f f nl(II)nR(T3)<l(l)l(3)>dId3 J I nl(2)n2(4)<l(T2)l()>dI2d

AIBI E 0 t 0 t

RI3 R2

t t

+------ f f nl(l)n2()<l(l)l()>dId4 f f nl(2)n2(3)<l(2)l(3)>d2d3
AIBIE 0 t 0 t

Rl R23

(3.13)

where RI234,RI2,...,R23 are maximally g-neighboring of I,2,3,; I,2;---;2,3

respectively, and (2.7) has been used to obtain the last result.

By means of (3.10), we can have

t t
(3.13) z / nl(%l)nl(%2)<l(%l)l(%2)>d%Id%2

AIBI E 0 0
RI2

f f n2(IB)n2(%4)<l(%3)l(I4)>d%3d%W + O(E).
t t

After using the same procedure for other terms in (3.12), we find

<--_. > <--_><--_> + o( ).
B

4. THE DENSITY FUNCTION AND THE STRUCTURE OF THE SOLUTION.

In this section we will consider the density function of the solution (t) and

if we notice that the situation will be simple when t 0 or t I, so our main

interest is in the case when t E (0,I).

In order to find the density function of x(t), we first consider Yl(t,m) or

nl(t,) and n2(t,) which are defined by (3.4).

We introduce a new function pl(vl,v2) such that

(Vl).P (v2) + Pl(Vl,V2) (4.1)P
nl n2

(Vl’V2) P nl n2

where p (Vl) is the density function of and so on. Because of (3.!I) we

have for K1,K2 0,I,...

K K2
f f v v2 Pl (Vl ,v2)dvl dv2

KI K2
f f Vl v2 P r2

(vl ,v2)dvl dv2

K K2
(vl) Pn (vz)dvldV2f f Vl v2 Pnl 2

(4.2)



506 N.M. XIA

Klf n2 IK2 >
KI

>>4 1

o().

Then from (4.1) we know when e is a small number but not zero

pQl,B2(Vl,V2) p
e/ AIB

and from (3.3) we have

Vl v2 Vl v2
() P () + PI(

r2 e/Al B AIg’ BIe

PYI (v) Pnln2 (z,v-z)dz

f P (z____) (.v z

e/AIB /Ale P2 /B-7
)dz +

Pl
z v Z)dz

e/AIB /A-- /le

(4.3)

Under the assumtion that the density function of () is pa(a,8), we can

easily find the density function of (t)(m), that is

pala2(al,a2) pas(e,B)[Det (t)-l[ (4.4)

where (t)a(0) (al(m),ae(m))
T

is the density function of al(m) a2(o)Pal a2
-I -Iand Det (t) is the determinant of the inverse matrix (t)

Then the density function of al() is

Pal(al) f Pala2(al,a2)da2

J Pa(,)l Det (t)-l[ da2

(a

(4.5)

Because of (3.3) and (3.4) if we assume that (m) is independent of (t,m)
for every t [0,I], then al() and Yl(t,m) will be independent and we have

(v)dvPI + YI
(w) Pal (w v)PyI

f j pal(W- v)p
I (TAe)p 2 (v Z)dzd v

e/AIB /B e

/Ale ,/i e

+ f f Pa (w v)pl(
z v z

_dzdv
e/AIB /A--- /Big

(4.6)

where Pal + Yl
is the density function of al + YI- The second integral can be
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written as

z v- Z)dzdvpal(W_ v)Pl(A_ CBI’A1B

f pu (w- TB-- SA--)PI(S,T)/IB dSdT

/AIBI
(4.7)

pul(W TB-- SA--)pI(S,T)dSdT

where S z/Ale, T (v- z)/B-Ie.
If we can expand pa into a Taylor series in S, T

pal(W- - SIe) - C ijSiTj
i,j 0

and allow the following analytic procedure, then after using (4.2) we have

(4.7) F. C*ij SIT3pI(S,T)dSdT 0().
i,j 0

Thus (4.6) becomes

(w)Pal +Y (w- v)p z_____)p (v Z)dzdv + 0(e)f f P*I i I-- 2 ,/BI eeAIBI

and from (3.1a) we have

(/_z____A_ (v-______Z)dzdv + 0(e) (4.8)Px(X f pal(X- 61 -v)p
I
)P

2 /lee’AlBI

(x) is thewhere x, 61 are the first component of (t) (t) respectively, and Px
density function of x.

In order to obtain the asptotic approximation for Px(X), we need the follow-

ing facts [see [5]],
2

Vl I
(v I) exp(- )[I + Hl (vl) +P

1
#A e

P (v2)
r2

i 2

(4.9)
2

v2 2
exp(- A---)[1 + # H2 (v2) + ...]

where H H2 are certain polynomials of degree I, 2 respectively and the dots

denote some polynomials with the order e.

To substitute (4.9) into (4.8), we obtain

Px(X) I + 12 + 13 + 0(e). (4.10)
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where

11

13

z2 (v- z) 2
Pa (x 61 v)exp[- (I + )dzdv,

2AIB--- BI

2gAIB2 _PI l_z ,(v -, z) 2 ’l
(x 61 v)exp[- 2’I +

B1
]HI z--)dzdv’

x2 (v z) 2)(x 61 v)exp[- 2-e + ]H2 (V] Pa BI
7. Z)dzdv.

2/AIB Ble

From the fact

2gAIB2

z2 (v- z))] 6(z,v- z)exp[- 2-e +
BI

( O)

where W.C. denotes weak convergence, and 6 is the Delta function; we have

lim I Pa (x 61 v)6(z,v z)dzdv
e 0

pal(x-

and if we can show that 12 and 13 are bounded as e 0, then in (4.10) we can

keep the first term as the main term.

In fact for 12 if we set I 0 or H a constant, we have
o

lim Iz lira aoll aoPal (x 61),

+0 /0

and for ZI ,2,... or for 13 where 2 0,I we can use the similar way to

obtain the conclusion.

Thus as e 0 we can consider nl(t,) and n2(t,) to be independent, and we

obtain the asymptotic formula for x(t)

Px(X) f f (x 6 v)exp[- (z
2 (v z) 2

2g/A- Pel ’I +
BI

) ]dzdv

J" Pal (x 61 v)exp[- 2e(A + B1)]dv,/2e(A1 + B l)

(4.11)

where 61 and pa can be evaluated in terms of (3.1b) and (4.5) respectively.

The asymototic formula for y(t), which is the second component of the solution

x(t), can be obtained in a similar way.

By means of these asymptotic formulas we can find the structure of the

solution. If we recall the functional form (3.1a) of the solution x(t), and notice

that (t)(m) is the solution of the equation

dx( t

dt A(t)x(t), Dlx(1) + D2x(1) (m)"
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(t) is the solution of the deterministic equation

dx( t

dt A(t)x(t) + C(t), .p.D x(O) + .X.X( .qO;

and that (t,m) (Yl(t,m),Y2(t,m))
T (nl(t,m),n3(t,m))T+ (n2(t,m),n(t,m))

is the solution of the equation

dx( t

dt A(t)x(t) + B(t)(t,m), p.Dx(O) + x( 0,

where 0 is a 2 x vector with zero components, then we can say that the solution

x(t) has such kind of structure that it consists of three functions, the first one is

the contribution of (m); the second one is deterministic, and the last one is the

contribution of (t,m). When e 0 every component of the last function has the

normal distribution with the mean value zero and the variance e(A + BI) and it can

be divided into two independent normal random processes.

5. THE JOINT DENSITY FUNCTION AND THE EXAMPLE.

If the matrices DI, D2 in the boundary condition (2.1b) have the forms

0 0 d21 d2
(5.1)

then we can find the joint density function of the solution x(t) (x(t),y(t)) T.
fact under the assumption (5.1), the solution is

x(t) (t)[(m) + (t) + (t,m)] (5.2)

where
t

6 (t)l f ml(T)d, 0(t) ,
62(t) f m2(T)d

t

(t,),

* I i n* r* /(t o) () (,,oa) + () ,))d
2
(

* r* d /Y (t,w) (n () (%,m)+ () (%,m))
2 2 2 2

(5.4)

and

I()C(%)= _m2(%
(5.5)

* * ()’\n (:)

-I(’r)B’B"(’r) l-ln:(’r) -r*2(%) ] (5.6)
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If we know the density function of ] (,m), then

p+,(wl,w2) ] pe(w -, w2 B)p],(e,B)dsdB, (5.7)

where pas, p, are the density functions of (m) and *(t,m) respectively, and

the independence assumption of (m) and (t,) has been used again.

But compare (5.4) with (3.4), we can find the fact that i, n2; Y*, Y* have the
Z

similar forms except that the functions n r n2 r2 have been repalced by
* * * *nI, rI, n2, r2 respectively.

It follows that

p+],(Wl,W2) / / Pes(Wl a, w2 B)P )p 8 ’)dad8 + 0(e),
A*B* * /A* * /B*

YI Y2

/A* e B* e

pa+,+l,(w ,we)

+ 0(e).

In a similar way we have the asymptotic formula

Pa+*+y (wl ,w2 f i p=(w 6" *, w2 6 2 )
2n e/A’B*

e2 82
exp[- 2-’- + "’)

2

(5.8)

and

Px(X,Y) Pa+6,+,(wl,w2)[Det -l(t)[[
wl v_i(t)(x)
w2 y

(5.9)

where Px is the density function of x(t) x( t) y( t) T; and

* * * )T *(t) ( (t), 6 (t) A B can be evaluated by (5.3), (5.5), (5.6) and the
2

formula which likes (3.5) but the functions nl, n2, rl, r2 need to be replaced by
, * , *

n n2, r1,
r
2

respectively.

Now we consider the first example

() 0 x 0
y -2 -3)(y + (-i

I (t,)

2(t,m
+ (0) (5.0)

x(0) (), y(1) B(m),
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where l(t,), 2(t,) are independent weakly correlated processes with correlation

length , <l(t,)> 0, <2(t,)> 0,

2 + 82
RI(T,T) I, R2(,) I, and p8(,8) exp (-

2
). (5.11)

It is easy to find that

-t -2t -t -2t )(ll(t) 12(t)) 2e e e e

(t) -2t -t+ e-2t21(t) 22(t) -2e-t+ 2e -e 2
(5.12)

and

Then

+ 2e
-t

-I + e

-I (t) e
2t

A B

-t
A (222(I) 21(I)) + 2e (21(I) 22(I))

B (222(I) 21(I)) + e-t(21(1) 2Z(1))

\-n2 -r2 21(1) 22(1) et(222(I) 21(1)) + (21(I) 22(I))
/

ml 2 e
t

e
m2 et(222(I) 21(I)) + 2(21(I) 22(I)

,
B (t) 2[

4t 3t
* e 2e 2t 7AI(t) 2[--- 3

+ e ],

2
e (222(I) 21(I)) 2e (222(I) #21( I) (21( I) 22(I))

and

2 2t
+ e (21(I) 22(I))

2 2
e (q21(1) q22(I))

4t(e 222(I) 21(I))
2

2e3t(222(1) 21(I))(@21(1) #22(1))

Pxy(X, y) 0.0309425e
3t

exp{-[
* * *2(1 + eAl(t))(l + eBl(t)) 2(I + eAl(t))

t
(1.5 + e (2x + y- 2)
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where

2t 2
e (x + y- 0.5)) + ,

2(I + B1(t))
2

+ 0.2706705e2t(x + y- 0.5)) ]},

4t 2e3t* e 2t 7
AI(t) 2[

4 3
+ e ]]

(-I- 0.3678794et(2x + y- 2)

(5.13)

* 2 2(t- I) 4 3(t- I) 4(t-I)
B l(t) 2[ e + e e ].

The results of evaluating (5.13) when t 0.5, y -0.6860 appear in Figure

for 0 (solid curve), 0.2 (longer dashed curve), and g 0.4 (shorter

dashed curve).

In Figures 2, 3, and 4 we show some level curves of the density function p:

0.04, t 0.5, g 0, 0.2, 0.4 (Figure 2);

0.005, t 0.5, 0, 0.2, 0.4 (Figure 3);

0.5, 0.2, p 0.01, 0.03, 0.05 (Figure 4).

The second example is

x + 3 + 2x f(t,)

x(O) a(), (1) B(m)

(5.14)

where f(t ,m) is a weakly correlated process with the correlation length

m, <f(t,)> 0 and Rf(t,t) I.

We introduce a new function y(t) (t) and rewrite (5.14)

( 0
y) (-2

x 0
-3)Cy + (1)fCt’m)

(00)(y 0
+ (0 I)(y(1 (B(o)"

(5.15)

have

This equation has the same fundamental matrices as in the first example, then we

Z(t)

q21 (1)
*ll(t) *12(t) ’22(I)

@21(t) ,22(t) ,22(I) ’22(I) /
where .ij are the components of (t) and can be evaluated by (5.12).

From (3.1) we can obtain



LINEAR RANDOM BOUNDARY VALUE PROBLEMS 513

where

_xCt) %(t) +
(m) Y2(t,m

YI (t,m)1 t

(t)Dl(0) ..,-1
2(t,) I 0

()B() f( ,t)d

(t)D2(1) -l()B()f(,)d
t

()
=(*ll(t) ’12(t)

It/ (e e

921(t) 922(t) 2(1) /

2T)f(,)d:

+ (921(I) 922(1))e]f(I,)dl[(2922(1) 921(I))e2

Then the solution x(t) of the equation (5.14) has the structure

x(t)
922(1) {[911(t)922(1) 912(t)92(1)]() 12(t)lB(t)} +

t

{[911(t)922(1) 912(t)921(1)] f (e
1;

e )f(1;,t)dl922(I)
0

912(t) f [(2922(I) 921(I))e21 + (921(I) 922(I)) e ]f(,m)d}.
t

The first term is the contribution of ((), ())T. and the second term, which

contains two integrals, is the contribution of f(t,).

When the correlation length e 0, the second term approaches normal with the

mean value zero and the variance e(A + BI) where

A 2[ 911(t) 912(t)
921( 2 t

2 2

f (e e Rf(,)d922( 0

2t e3t921(I) 2 e
4t

e 2( I)]21911(t)- 912(t) 922(I) ][ +
2 3

92(t) 2
B 2 --Z f [(2922(1) 921(I))e2 ]+ (921(1)- 922(I))e Rf( )dr

922(I) t

92(I) (2922(1) 921(1))2 (921(I) 922(I))2

2 2 4
e(4 4t) (2 2t)

2
e

922(I)

3 (2922(1) 92(1))(921(1) 22(1)) e
(3 3t)
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