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ABSTRACT. A general numerical finite element scheme is described for parabolic pro-

blems with phase change wherein the elements of the domain are allowed to deform con-

tinuously. The scheme is based on the Galerkin approximation in spae, and finite

difference approximation for the time derivatives. The numerical scheme is applied

to the two-phase Stefan problems associated with the melting and solidification of a

substance. Basic functions based on Hermite polynomials are used to allow exact

specification cf flux-latent heat balance conditions at the phase boundary. Numerical

results obtained by this scheme indicates that the method is stable and produces an

accurate solutions for the heat conduction problems with phase change; even when large

time steps used. The method is quite general and applicable for a variety of pro]ems

involving transition zones and deforming regions, and can be applied fr one multi-

dimensional problems.
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1. INTRODUCTION.

Application of the finite element method to transport problems is now well esta-

blished, and several valuable texts and compilations are currently available. The use

of Galerkin method in conjuction with the finite element technique has significantly

extended its scope such that a broad class of transient field problems can now be

approached confidently with finite elements, particularly, for problems allowing con-

tinuous mesh deformation, which result that a moving boundary lies on element boundaries,

Halabi [i]. The finite element method has proven to be valuable in these types of pro-

blems. It provides a mechanism for eneratin difference equations on a non-u[iform

mesh and allows the use of higher order elements in regions where they are suited to

the physics of the problem.

Numerous solutions for Stefan problems have been reported, and several review

arnicles are available [2]. Crank [3] gives a sufficient count f finite differ’ne
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method, indicating that, in general, both fixed and deforming grids have been used.

Applications are largely confined to one-dimensional situations and frequently lack

generality. The isotherm migration method [4] is in a sense a hyprid, in so far as the

roles of the dependent and one of the independent space variable are interchanged,

allowing a fixed grid to be created in the temperature domain. Among the moving grid

approaches, a common problem would appeat to be the distorted mesh which would result

in higher dimensional situations. Comini et al. [5] uses a fixed mesh approach and

finite width transition zone. Latent heat effects in the transition zone were a counted

for, by a special device (the ’apparent heat capacity’ approach). Morgan et al. [6]

have reported improvements of this method.

Herein, a general Galerkin finite element approach will be applied. In this ap-

proach, the choice of integration scheme in time is left to user, it is not dictated by

the moving-mesh feature. The integration in time may thus be chosen to suit the de-

tails of a specific problem. This added flexibility is viewed as a potential advan-

tage for moving boundary simulation in general.

2. PHYSICAL AND MATHEMATICAL MODEL.

The proposed model in this researh, described an internal transition zone ’internal

moving boundary’, changing primarily in location, as a function of time. This transi-

tion zo,e occurs between the frozen and unfrozen zones. As freezing proceeds with

time, the 1ocaion of the transition zone changes, and consequently, an important quan-

tities change rapidly across it. The complexity in these types of problems arises on

the mechanism of generating the governing difference equations on the non-uniform mesh

of the domain of definition. In addition, a great numerical details might be required

to describe the expected steep or mild gradients in temperature and other descriptive

parameters across a frozen layer.

The model describes the freezing process, which is a two-phase Stefan probelm.

The domain D is divided into D and D2 in which;

D (D u D2) + S (2.!)

D n D
2

2.2)

and S is the internal moving boundary as shown in Figure (I).

The governing equations for this model are

H
VH) in D (2 3)Ci V-(K

H
C2 V- (K2VH) in D2 (2.4)

where (C1,KI),(C2,K2) are the volumetric heat capacity and thermal conductivity of the

frozen (unfrozen) portion of the medium, and H denotes the temperat,.re.

At the internal moving boundary, the temperature is a constant (the freezing tem-

perature) and the velocity of the moving boundary is given by the boundary coditio,

d KIVH(s) K2VH(s) (2.5)

in which, s: is the location of a given point on S and L is the volumetric latent

heat of fusion of the soil-water mixture.
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When the temperature of the unfrozen material, is effectively constant throughout

the freezing temperature, the problem reduces to the one-phase Stephan problem:

H
C =V-KVH (2.6)

dse =KVH(s) (2.7)

3. NUMERICAL FORMULATION.

The numerical approximation of this problem is derived from the general formulation

of Galerkin finite element equations, with the extension to include the effects of de-

forming mesh by the addition of a single extra ’convective’ term in the weighted resid-

ual equations. Basis functions derived from Hermite polynomials are used to stimulate

this problem. They appear to offer accuracy and efficiency competitive with or superior

to other basis function for the same computational effort, and have the particular

attraction that gradient boundary conditions may be specified exactly.

In the presence of node motion, the finite element basis functions become implicit

functions of time, (x,t), and the approximate solution can be written as:

H(x,t) ai(t) i(x,t) (3.1)

where al(t) are the coefficients to be determined, and i(x,t) are the Hermite basis

functions. Consequently one can write

da (t) i(x t)
H

(x,t)=
i

(3 2)- dx
(x,t) + a

i t

If x is expressed as xi$ i
using the directional function i at each x.1, then the

following is simply obtained,

(x t)3i dx
t dt Vi x’t (3.3)

in which dx/dt represents the mesh deformation velocity which is continuous through-

out the spatial domain, while the minus sign is due to the decrease in mesh space cor-

responding to a fixed origin in the unfrozen area, and (x,t) maps Rn into Rn+1

Consequently, equation (3.2) becomes,

Sa. (t)H(x,t) @ (x t)
1 (__x_.a (t) V@(x t)) (3 4)

Dt i t i dt

which can be written as,

a (t)
H(x,t) (x t)

i dx
VH(x t) (3 5)

t i t dt

Following the Galerkin approximation technique, assuming the representation of H

as in equation (3.1), and substituting into equation (2.6), then after taking the scalar

product of i with the resulting equation the main equation ca, be written as

da.

(i Cj)dt- (i cu-’V )a + (V
i
KV )a a I n- KV dr 0 ( 6)

dt

where

(i,j) ij dR (3.7)

and F(t) is the boundary of R.
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The potential advantage of this approach, is the choice of integration scheme in

time, which is left to the user. The general approach is by applying equation (3.6)

at time t* where

, n tn+lt t + e( tn), 0 (3.8)

and using the following approximations,

da.(t*)j _- a+l-- ajn)
(3.9)

dt tn+l t
n

n+1 na.(t*) Z _a. + (I e)a. (3.10)

then equation (3.6) can be written as,

n+l
[Aij + eBij] a.3 [A..lj + (e-l)B’’]an’ljj (3.11)

in which the coefficient matrices A and B.o have to be determined taking into con-
13 I

sideration the time dependence of dx/dt and the region of integrations to be performed.

The solution of equation (3.11) yields to complete determination for the unknown co-

effi,cient vector (t), which in turn, can be used to determine the temperature profile

in any predefined region.

4. NUMERICAL SOLUTIONS.

The problem to be considered is a two-phase stefan problem in which freezing pro-

ceeds from the region into the medium which is bounded by fixed constant temperature

boundaries;

H=H x= 0
s

H H x x H 0 H (3 12)
s

H=H t 0

in which Hs and H is the temperature of the frozen (solid) and unfrozen (liquid)

regions. The temperature of liquid phase is initially above the freezing point. Con-

sequently, equation (2.3) applies over the frozen region 0 x s(t), and equation

(2.4) applies over the unfrozen region s(t) x x Boundary and initial condi-

tions are as in equation (3.12). The motion of the internal phase boundary s(t) is

given in equation (2.5); temperature is zero on this boundary.

Numerical solution in the liquid and solid phases can be approached as two separate

heat transfer problems, coupled only by the moving boundary conditions which can be

written as,

Ld
dt KIH K2H (3.13)

sl ii

where H are that coefficients corresponding to the frozen and unfrozen phase"’sl II

temperature gradient at the phase change boundary. The numerical approximation of

equation (3.13) is.

n At
K2ll) (3.14)s s + ---(’IL-

where,
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0Hn+l H
n

sl sl + (1-8) sl
(3.15)

Hll eHll + (1 -8)Hll (3.16)

This problem is solved using predictor-corrector scheme. The selection of 8 0.54

for the satisfaction of moving boundary condition, and e 0.62 for the temperature

solution would appear to be the ideal choice. The present formulation allows the user

an additional valuable numerical flexibility.

The values of the different parameters used in this study are as follows:

C 0.49 cal/C cm

K 9.6 x 10-3cal/cm sec C

C
2

0.62 cal/C cm

K
2 6.9 x 10-3cal/cm sec C

L 19.2 cla/cm

H 10C
S

H 4C

Computed temperature profiles together with the analytic solution as obtained from

Ingersoll et al. [7] for zero initial frozen thickness are shown in Figure (2). Twenty

Hermitian cubic elements are used in the simulation. The time step in this simulation

is continuously adjusted such that the size of the frozen zone increased by a factor of

10 in 15 time step. The temperature in both phases is plotted vs. distance. Steady

state solution is obtained after 3 x 10 sec or 55 time step.

Frozen Unfrozen

x=o s=s t x=x1

D

Figure (I). Domain of definition
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Analytical

+ umerical

6 7 8

distance X(cm)

Figure (2). Computed and analytical temperature

profile in frozen and unfrozen regions.

5. CONCLUSION.

The present approach for simulation the two-phase Stefan problem is quite leneral
and is applicable to a variety of problems involving moving transition zones and de-

forming regions. Numerical results obtained by this scheme was accurate and in an ex-

col[ent agreement with the analytical solutions. This method is valid for one and

multi-dimensional situations without any limitation in the formulation, and can be used

for simualtion of complicated moving boundary problems.
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