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ABSTRACT. It is proved that in order to find a nontrivial hyperinvariant subspace for

a cohyponormal operator it suffices to make the further assumption that the operator
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1. INTRODUCTION.
Let T be a cohyponormal operator on the complex Hi|bert space X. This means that

T* is hyponormal, so lTxll < lT*xll for each vector x. The aim of this paper is to

reduce the problem of existence of a nontrivial invariant (or hyperinvariant) subspace

for T to the case where T has the single-valued extension property and is the compact

perturbation of a normal operator (see 3). In {}2 we record some consequences of a

recent theorem of Putinar [1] that every hyponormal operator is "subscalar". The last

section gives some further invariant subspace results for this reduced case.

We mention a recent paper of S. Brown [2] in which the author shows that a

hyponormal operator having spectrum with nonempty interior has invariant (but not

necessarily hyperinvariant) subspaces.

2. HYPONORMAL OPERATORS.

M. Putinar [1] has recently proved that every hyponormal is "subscalar" in the

sense of [3, Def. 1.2, p. 94]. The precise statement is as follows.

THEOREM 1. Let T be hyponormal on X. Then T has an extension S on a Hilbert

space Y containing X such that S is a generalized scalar operator of order 2. In

particular, S in decomposab|e [3, p. 67].
Every decomposable operator has property (B) [4], introduced by Bishop [5]; T has

property (B) if, for each sequence of analytic functions fn:D X such that

(- T)fn(}, 0 uniformly on compact sets, fn 0 uniformly on compact sets. Since

it is clear that restrictions inherit (B), the following is immediate.

COROLLARY 1. Every hyponormal operator has property (B).
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COROLLARY 2. If T is hyponormal and has a nonzero invariant subspace M such

that o(TIM) o(T) is proper, then T has a nontrivial hyperinvariant subspace.

PROOF. It follows from Corollary that the spectral manifold N XT(O(TIM)) is

closed, hyperinvariant for T, and contains M. Since o(TIM) o(T), N is nontrivial.

3. COHYPONORMAL OPERATORS.
THEOREM 2. Let T be cohyponormal on X. Then T is decomposable iff it has

property ().
PROOF. If T has property (B), then it is decomposable by Corollary and [6].

The converse was noted in I.
REMARK I. The left shift on 2(N) is cohyponormal but it does not have

property (B)since it is not decomposable. On the other hand, there do exist nonnorma|

decomposable cohyponormal operators satisfying (B). Radjabalipour [7] has proved the

existence of nonnormal decomposable subnormal operators; adjoints of such operators

are cohyponormal and satisfy the conclusion of Theorem 2.

COROLLARY 3. Let T be a cohyponormal operator which is not a scalar multiple of

the identity on X. If T satisfies (), then it has a nontrivial hyperinvariant

subspace.

PROOF. If o(T) is the singleton {}, then (L- T)* is a quasinilpotent

hyponormal opertor. Hence T O, contradiction. Now T is decomposable by Theorem

2, and since o(T) has at least two points, T has a nontrivial, hyperinvariant spectral

manifold XT(F).
COROLLARY 4. Let T be cohyponormal and have property (B). If for each

hyperinvariant subspace M the restriction TIM is cohyponormal, then T is strongly

decomposabl e.

PROOF. Let M XT(F for F closed. Since TIM is cohyponormal by hypothesis and

inherits (B), then TIM is decomposable by Theorem 2. This is just the definition

that T is strongly decomposable [8].

REMARK 2. Since t,he subnormal operators mentioned in Remark in fact have

spectral distributions, their adjoints are strongly decomposable cohyponormal

operators but nonnormal (see [3, p. 65 and p. 81]).
In general it is not known if (B)is preserved under the Dunford functional

calculus, but it is in the case of cohyponormal operators (Corollary 5). We note

that (B) is also preserved in this way for hyponormal operators as well. For let T be

hyponormal on X and let f be analytic on some region containing o(T). If S is the

scalar extension of Theorem I, then o(S)= (T) [I, Cor 2.6] so f(S) is defined and

decomposable [3, p. 37] and f(T) f(S)IX. Thus f(T) satisfies (B).
COROLLARY 5. Let T be cohyponormal and let f be analytic on o(T). Then f(T)

satisfies (B) if T does. Conversely, if f is nonconstant on each component of its

domain, then T satisfies (B) if f(T) does.

PROOF. If T has property (B), then it is decomposable by Theorem 2. Hence f(T)

is also decomposable and so satisfies (B)[4]. For the converse, note that (the

conjugate of f) is analytic on o(T*). Thus if S is the scalar extension of T*

(Theorem i), then (S) is decomposable and (T*) has property (B). By [6] f(T) is

decomposable, so by [8] T is decomposable and thus satisfies (B).
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REMARK 3. Corollary 5 may fail if f is anywhere constant. If T is the left

shift and f 1, then f(T) has property (8) but T does not.
Property (6) implies the (strictly) weaker single-valued extension property

(SVEP) which has had a role in the theory of spectral decomposition (see [3, p. 1]).
We shall see below that it may also be significant in the invariant subspace problem
for hyponormal operators. (An example in [3, p. 25] shows SVEP does not imply (8).
The manifold XT({O} constructed there is not closed, so (8) fails [4]).

PROPOSITION 1. Let T be cohyponomal satisfying SVEP. If S is the scalar
extension of T*, then o(S) o(T*).

PROOF. Since we know (S) (T*) [1, Cor. 2.6], suppose o(T*) o(S).
Then >, S, and hence T*, is bounded below. Since T* is hyponomal, it is

semi-Fredholm with index at most zero. If ind(L- T*) < O, then

ind(- T*)< 0 for sufficiently near },. Hence is an eigenvalue of T for all

such u. Moreover, T is also semi-Fredholm, so by [9, Th. 9] T does not have SVEP,
contradiction. Hence o(S) o(T*).

As corollaries to the previous proof we have the following:
COROLLARY 6. If T is cohyponromal and has SVEP, then T is biquasitriangular.
PROOF. For }, in the essential resolvent set of T* the previous proof implies

ind( T*) O. By [I0] T*, and so T, is biquasitriangular.

COROLLARY 7. Let T be hyponomal with scalar extension S. If o(S) o(T), then
T has a nontrivial hyperinvariant subspace.

PROOF. Since o(S) is proper in o(T), the proof of Proposition shows that T*
does not have the SVEP. Hence T* has an eigenvector, so T has a nontrivial

hyperi nvariant subspace.

COROLLARY 8. Let T be a cohyponomal operator which is not a scalar multiple of
the identity. Then T has a nontrivial hyperinvariant subspace if T has

property (8) or T does not have SVEP.

PROOF. If T satisfies (8), use Corollary 3. In the other case T has at least
one eigenvector.

By Coro|lary 8 the hyperinvariant subspace problem for a h,vponomal operator is
reduced to the case where its adjoint has SVEP but not property (8). This leads to

the related question: if T is cohyponomal does SVEP imply (B)? An affimative

answer to the last question would, of course, resolve the former one. On the other
hand, if our interest is merely invariant subspaces, we have:

THEOREM 3. If T is cohyponomal, then either T has a nontrivial invariant

subspace or T is a compact perturbation of a nomal operator.

PROOF. By Corollary 8 we may suppose that T has SVEP. If T* has a cyclic
vector, we may suppose it is rationally cyclic. By [11, Th. 4] T*T TT* is in the

trace class. By Proposition and [12, Th. 11.11] T N + K where N is normal and K
s compact.

Our results now indicate that to solve the hyperinvariant subspace problem for

cohyponomal T we may make the following additional assumptions:

(a) T is the compact perturbation of a nomal operator and (T*) (S) where S

is the scalar extension of T*.
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(b) T satisfles SVEP but not ().
(c) for at least one open disc D the manifold XT(C- D) is not closed but dense

in X; otherwise T has already a hyperinvariant (nontrivial) subspace.

4. INVARIANT SUBSPACES.

In this section we derive some invariant subspace results for hyponormal
operators in light of the reduction given in the last section. Given an operator T,

we write R(T) for the uniform closure of rational functions f(T) where f has poles
off o(T). Let _K be the set of compact operators on X of norm I. Finally, recall

that o(T) is c-spectral for T [13] if there exists c 0 such that

Ilf(T)il c fll o(T)
where f(T)e R(T) and the last norm is the sup-norm of f on o(T).

COROLLARY 9. If T is hyponormal, then it has a nontrivial invariant subspace in

each of the following cases.

(i) distance from R(T) to K_I is positive"

(ii) the image of R(T) is closed in the Calkin algebra;

(iii) the image of R(T) is closed under the Gelfand transform.

PROOF. We may suppose (a) holds for T*. In this case, by [14, Th. i] (i)

(i i)’ are equivalent to o(T)being c-spectral for T. So T has a proper invariant

subspace by [13, Th. 2].

COROLLARY i0. Let T be hyponormal with scalar extension S. If o(S)is c-

spectral for S, then T has a nontrivial invariant subspace M. Moreover, T has a

nontrivial hyperinvariant subspace or TIM itself has a nontrivial invariant subspace.

PROOF. Since o(S)c o(T)it is easy to check that o(T)is c-spectral for T,
hence T has a nontrivial invariant subspace M by [13, Th. 2].

To prove the second statement we consider several cases for o(TIM). I.

o(TIM o(T) is proper: use Corollary 2. II. o(TIM) contains a bounded component

of p(T): let e p(T) o(TIM ). It follows that I is an eigenvalue of (TIM)* so TIM
has a proper (hyper) invariant subspace. III. o(T) o(TIM): this implies

o(TIM) is c-spectral for TIM, so TIM has a proper invariant subspace by [13].
LEMMA i. Let N be normal and suppose for an operator T that (,- T)X (- N)X

for all . e F where F is some closed set. Then XN(F) is T-invariant.

PROOF. Since N is normal, by [15] XN(F nF(>.- N)X. Hence for f e XN(F)
we have f e (},- N)X for . F. Let e F. Then (l- T)f a (- N)X, so for some

g eX

Tf f + (u- N)g e (- N)X

Thus Tf e XN(F and lemma is proved.

PROPOSITION 2. Let T be hyponormal such that T N + K where N is normal and K

is the rank-one operator defined by Kf (u, f)v for all feX, and fixed u, v. Let

F o(N)be proper, closed such that ve(-N)X, all >,F. Then T has a nontrivial

invariant subspace. Furthermore, if N has no point spectrum, then T has a nontrivial

hyperinvariant subspace.

PROOF. Since the conclusion is clear if T has an eigenvalue, we suppose T has

empty point spectrum. Now Kf is a scalar multiple of v for all f, so if we

let g X, , F,
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(X T)g (;k N)g + v ( N)X. ( complex).

Hence (>,- T)X (>,- N)X for all >,# F. By the lemma, XN(F is T-invariant.

Since 0 v XN(F and F is proper in o(N), XN(F) is nontrivial.

Put U XN(F ). Then TIU NIU + KIU, so by Weyls Theorem

(TIU o(NIU F o(N). If we suppose N has no eigenvalues, then o(N)= o(T)by
Weyl’s Theorem, and o(TIU is properly contained in o(T). By Corollary 2 T has a

proper hyperinvariant subspace.
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